Tuning the Integration Rate of Ce(Ln)O2 Nanoclusters into Nanoparticulated ZrO2 Supports: When the Cation Size Matters

Three nanostructured catalysts with low total rare earth elements (REEs) content (i.e., 15 mol.%) were prepared by depositing CeO2 or Ln3+-doped CeO2 (Ln3+ = Y3+ or La3+; Ln/Ce = 0.15) on the surface of ZrO2 nanoparticles, as nanometre-thick, fluorite-type clusters. These samples were subjected to s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2020-06, Vol.13 (12), p.2818
Hauptverfasser: Barroso-Bogeat, Adrián, Daza Raposo, Iván, Blanco, Ginesa, Pintado, José María
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page 2818
container_title Materials
container_volume 13
creator Barroso-Bogeat, Adrián
Daza Raposo, Iván
Blanco, Ginesa
Pintado, José María
description Three nanostructured catalysts with low total rare earth elements (REEs) content (i.e., 15 mol.%) were prepared by depositing CeO2 or Ln3+-doped CeO2 (Ln3+ = Y3+ or La3+; Ln/Ce = 0.15) on the surface of ZrO2 nanoparticles, as nanometre-thick, fluorite-type clusters. These samples were subjected to successive reduction treatments at increasing temperatures, from 500 to 900 °C. A characterisation study by XPS was performed to clarify the diffusion process of cerium into the bulk of ZrO2 crystallites upon reduction to yield CexZr1−xO2−δ surface phases, and the influence of the incorporation of non-reducible trivalent REE cations, with sizes smaller (Y3+) and larger (La3+) than Ce4+ and Ce3+. For all nanocatalysts, a reduction treatment at a minimum temperature of 900 °C was required to accomplish a significant cerium diffusion. Notwithstanding, the size of the dopant noticeably affected the extent of this diffusion process. As compared to the undoped ZrO2-CeO2 sample, Y3+ incorporation slightly hindered the cerium diffusion, while the opposite effect was found for the La3+-doped nanocatalyst. Furthermore, such differences in cerium diffusion led to changes in the surface and nanostructural features of the oxides, which were tentatively correlated with the redox response of the thermally aged samples.
doi_str_mv 10.3390/ma13122818
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7345361</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2417940218</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2988-9bb7d4aaf8179f182060592a33cd715d6207135f6a9cccd452cce2a49ec15bbc3</originalsourceid><addsrcrecordid>eNpdkVlLAzEQgIMoVrQv_oKAL1Wo5tgj8UGQ4gVVwQPBl5DNZtuUbbImWUF_vdsDr3mZYebjY4YBYB-jY0o5OplLTDEhDLMNsIM5z4aYJ8nmr7oH-iHMUBeUYkb4NuhRkrKU5fkOeH9qrbETGKca3tioJ15G4yx8kFFDV8GRHozt4T2Bd9I6Vbchah-gsdEtO4300ai27ugSvvqOe2ybxvkYTuHLVNuld7RSPppPDW9lXBj2wFYl66D767wLni8vnkbXw_H91c3ofDxUhDM25EWRl4mUFcM5r7rlUYZSTiSlqsxxWmYE5ZimVSa5UqpMUqKUJjLhWuG0KBTdBWcrb9MWc10qbaOXtWi8mUv_IZw04u_EmqmYuHeR0ySlGe4Eg7XAu7dWhyjmJihd19Jq1wZBEswwRRzxDj34h85c62133oLKeYIIZh11tKKUdyF4XX0vg5FYfFT8fJR-ASHEkgQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2417940218</pqid></control><display><type>article</type><title>Tuning the Integration Rate of Ce(Ln)O2 Nanoclusters into Nanoparticulated ZrO2 Supports: When the Cation Size Matters</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>PubMed Central Open Access</source><creator>Barroso-Bogeat, Adrián ; Daza Raposo, Iván ; Blanco, Ginesa ; Pintado, José María</creator><creatorcontrib>Barroso-Bogeat, Adrián ; Daza Raposo, Iván ; Blanco, Ginesa ; Pintado, José María</creatorcontrib><description>Three nanostructured catalysts with low total rare earth elements (REEs) content (i.e., 15 mol.%) were prepared by depositing CeO2 or Ln3+-doped CeO2 (Ln3+ = Y3+ or La3+; Ln/Ce = 0.15) on the surface of ZrO2 nanoparticles, as nanometre-thick, fluorite-type clusters. These samples were subjected to successive reduction treatments at increasing temperatures, from 500 to 900 °C. A characterisation study by XPS was performed to clarify the diffusion process of cerium into the bulk of ZrO2 crystallites upon reduction to yield CexZr1−xO2−δ surface phases, and the influence of the incorporation of non-reducible trivalent REE cations, with sizes smaller (Y3+) and larger (La3+) than Ce4+ and Ce3+. For all nanocatalysts, a reduction treatment at a minimum temperature of 900 °C was required to accomplish a significant cerium diffusion. Notwithstanding, the size of the dopant noticeably affected the extent of this diffusion process. As compared to the undoped ZrO2-CeO2 sample, Y3+ incorporation slightly hindered the cerium diffusion, while the opposite effect was found for the La3+-doped nanocatalyst. Furthermore, such differences in cerium diffusion led to changes in the surface and nanostructural features of the oxides, which were tentatively correlated with the redox response of the thermally aged samples.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma13122818</identifier><identifier>PMID: 32585877</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Aging ; Catalysis ; Cations ; Cerium oxides ; Crystallites ; Diffusion effects ; Fluorite ; High temperature ; Nanoclusters ; Nanocomposites ; Nanomaterials ; Nanoparticles ; Nanostructured materials ; Rare earth elements ; Reduction ; Solid solutions ; Surfactants ; Zirconium ; Zirconium dioxide</subject><ispartof>Materials, 2020-06, Vol.13 (12), p.2818</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2988-9bb7d4aaf8179f182060592a33cd715d6207135f6a9cccd452cce2a49ec15bbc3</citedby><cites>FETCH-LOGICAL-c2988-9bb7d4aaf8179f182060592a33cd715d6207135f6a9cccd452cce2a49ec15bbc3</cites><orcidid>0000-0003-3242-1339 ; 0000-0002-1272-3834</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7345361/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7345361/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids></links><search><creatorcontrib>Barroso-Bogeat, Adrián</creatorcontrib><creatorcontrib>Daza Raposo, Iván</creatorcontrib><creatorcontrib>Blanco, Ginesa</creatorcontrib><creatorcontrib>Pintado, José María</creatorcontrib><title>Tuning the Integration Rate of Ce(Ln)O2 Nanoclusters into Nanoparticulated ZrO2 Supports: When the Cation Size Matters</title><title>Materials</title><description>Three nanostructured catalysts with low total rare earth elements (REEs) content (i.e., 15 mol.%) were prepared by depositing CeO2 or Ln3+-doped CeO2 (Ln3+ = Y3+ or La3+; Ln/Ce = 0.15) on the surface of ZrO2 nanoparticles, as nanometre-thick, fluorite-type clusters. These samples were subjected to successive reduction treatments at increasing temperatures, from 500 to 900 °C. A characterisation study by XPS was performed to clarify the diffusion process of cerium into the bulk of ZrO2 crystallites upon reduction to yield CexZr1−xO2−δ surface phases, and the influence of the incorporation of non-reducible trivalent REE cations, with sizes smaller (Y3+) and larger (La3+) than Ce4+ and Ce3+. For all nanocatalysts, a reduction treatment at a minimum temperature of 900 °C was required to accomplish a significant cerium diffusion. Notwithstanding, the size of the dopant noticeably affected the extent of this diffusion process. As compared to the undoped ZrO2-CeO2 sample, Y3+ incorporation slightly hindered the cerium diffusion, while the opposite effect was found for the La3+-doped nanocatalyst. Furthermore, such differences in cerium diffusion led to changes in the surface and nanostructural features of the oxides, which were tentatively correlated with the redox response of the thermally aged samples.</description><subject>Aging</subject><subject>Catalysis</subject><subject>Cations</subject><subject>Cerium oxides</subject><subject>Crystallites</subject><subject>Diffusion effects</subject><subject>Fluorite</subject><subject>High temperature</subject><subject>Nanoclusters</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Nanostructured materials</subject><subject>Rare earth elements</subject><subject>Reduction</subject><subject>Solid solutions</subject><subject>Surfactants</subject><subject>Zirconium</subject><subject>Zirconium dioxide</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkVlLAzEQgIMoVrQv_oKAL1Wo5tgj8UGQ4gVVwQPBl5DNZtuUbbImWUF_vdsDr3mZYebjY4YBYB-jY0o5OplLTDEhDLMNsIM5z4aYJ8nmr7oH-iHMUBeUYkb4NuhRkrKU5fkOeH9qrbETGKca3tioJ15G4yx8kFFDV8GRHozt4T2Bd9I6Vbchah-gsdEtO4300ai27ugSvvqOe2ybxvkYTuHLVNuld7RSPppPDW9lXBj2wFYl66D767wLni8vnkbXw_H91c3ofDxUhDM25EWRl4mUFcM5r7rlUYZSTiSlqsxxWmYE5ZimVSa5UqpMUqKUJjLhWuG0KBTdBWcrb9MWc10qbaOXtWi8mUv_IZw04u_EmqmYuHeR0ySlGe4Eg7XAu7dWhyjmJihd19Jq1wZBEswwRRzxDj34h85c62133oLKeYIIZh11tKKUdyF4XX0vg5FYfFT8fJR-ASHEkgQ</recordid><startdate>20200623</startdate><enddate>20200623</enddate><creator>Barroso-Bogeat, Adrián</creator><creator>Daza Raposo, Iván</creator><creator>Blanco, Ginesa</creator><creator>Pintado, José María</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3242-1339</orcidid><orcidid>https://orcid.org/0000-0002-1272-3834</orcidid></search><sort><creationdate>20200623</creationdate><title>Tuning the Integration Rate of Ce(Ln)O2 Nanoclusters into Nanoparticulated ZrO2 Supports: When the Cation Size Matters</title><author>Barroso-Bogeat, Adrián ; Daza Raposo, Iván ; Blanco, Ginesa ; Pintado, José María</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2988-9bb7d4aaf8179f182060592a33cd715d6207135f6a9cccd452cce2a49ec15bbc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aging</topic><topic>Catalysis</topic><topic>Cations</topic><topic>Cerium oxides</topic><topic>Crystallites</topic><topic>Diffusion effects</topic><topic>Fluorite</topic><topic>High temperature</topic><topic>Nanoclusters</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Nanostructured materials</topic><topic>Rare earth elements</topic><topic>Reduction</topic><topic>Solid solutions</topic><topic>Surfactants</topic><topic>Zirconium</topic><topic>Zirconium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barroso-Bogeat, Adrián</creatorcontrib><creatorcontrib>Daza Raposo, Iván</creatorcontrib><creatorcontrib>Blanco, Ginesa</creatorcontrib><creatorcontrib>Pintado, José María</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barroso-Bogeat, Adrián</au><au>Daza Raposo, Iván</au><au>Blanco, Ginesa</au><au>Pintado, José María</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tuning the Integration Rate of Ce(Ln)O2 Nanoclusters into Nanoparticulated ZrO2 Supports: When the Cation Size Matters</atitle><jtitle>Materials</jtitle><date>2020-06-23</date><risdate>2020</risdate><volume>13</volume><issue>12</issue><spage>2818</spage><pages>2818-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Three nanostructured catalysts with low total rare earth elements (REEs) content (i.e., 15 mol.%) were prepared by depositing CeO2 or Ln3+-doped CeO2 (Ln3+ = Y3+ or La3+; Ln/Ce = 0.15) on the surface of ZrO2 nanoparticles, as nanometre-thick, fluorite-type clusters. These samples were subjected to successive reduction treatments at increasing temperatures, from 500 to 900 °C. A characterisation study by XPS was performed to clarify the diffusion process of cerium into the bulk of ZrO2 crystallites upon reduction to yield CexZr1−xO2−δ surface phases, and the influence of the incorporation of non-reducible trivalent REE cations, with sizes smaller (Y3+) and larger (La3+) than Ce4+ and Ce3+. For all nanocatalysts, a reduction treatment at a minimum temperature of 900 °C was required to accomplish a significant cerium diffusion. Notwithstanding, the size of the dopant noticeably affected the extent of this diffusion process. As compared to the undoped ZrO2-CeO2 sample, Y3+ incorporation slightly hindered the cerium diffusion, while the opposite effect was found for the La3+-doped nanocatalyst. Furthermore, such differences in cerium diffusion led to changes in the surface and nanostructural features of the oxides, which were tentatively correlated with the redox response of the thermally aged samples.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>32585877</pmid><doi>10.3390/ma13122818</doi><orcidid>https://orcid.org/0000-0003-3242-1339</orcidid><orcidid>https://orcid.org/0000-0002-1272-3834</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2020-06, Vol.13 (12), p.2818
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7345361
source MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; PubMed Central Open Access
subjects Aging
Catalysis
Cations
Cerium oxides
Crystallites
Diffusion effects
Fluorite
High temperature
Nanoclusters
Nanocomposites
Nanomaterials
Nanoparticles
Nanostructured materials
Rare earth elements
Reduction
Solid solutions
Surfactants
Zirconium
Zirconium dioxide
title Tuning the Integration Rate of Ce(Ln)O2 Nanoclusters into Nanoparticulated ZrO2 Supports: When the Cation Size Matters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T04%3A34%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tuning%20the%20Integration%20Rate%20of%20Ce(Ln)O2%20Nanoclusters%20into%20Nanoparticulated%20ZrO2%20Supports:%20When%20the%20Cation%20Size%20Matters&rft.jtitle=Materials&rft.au=Barroso-Bogeat,%20Adri%C3%A1n&rft.date=2020-06-23&rft.volume=13&rft.issue=12&rft.spage=2818&rft.pages=2818-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma13122818&rft_dat=%3Cproquest_pubme%3E2417940218%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2417940218&rft_id=info:pmid/32585877&rfr_iscdi=true