Molybdenum Oxide and Nickel Nitrate as Cooperative Sintering Aids for Yttria-Stabilized Zirconia

The entirely accidental observation of increased sintering performance of nickel-infiltrated yttria-stabilized zirconia (8YSZ) in a molybdenum and oxygen rich atmosphere was explored. Molybdenum and nickel were found to be synergistic sintering aids for 8YSZ. However, sintering had to take place in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2020-06, Vol.13 (12), p.2875
Hauptverfasser: Hunt, Clay, Allemeier, John Kyle, Driscoll, David, Weisenstein, Adam, Sofie, Stephen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page 2875
container_title Materials
container_volume 13
creator Hunt, Clay
Allemeier, John Kyle
Driscoll, David
Weisenstein, Adam
Sofie, Stephen
description The entirely accidental observation of increased sintering performance of nickel-infiltrated yttria-stabilized zirconia (8YSZ) in a molybdenum and oxygen rich atmosphere was explored. Molybdenum and nickel were found to be synergistic sintering aids for 8YSZ. However, sintering had to take place in an atmosphere of flowing oxygen. Samples sintered in air consistently burst. The sintering performance, microstructure, and crystal structure of 8YSZ with additions of both Mo and Ni together are compared to the sintering performance, microstructure, and crystal structure of pure 8YSZ, 8YSZ with only Ni added as a sintering aid, and 8YSZ with only Mo added as a sintering aid. Enhanced densification and grain growth is observed in the Mo–Ni 8YSZ samples when compared to all other sintering samples. Order of magnitude sintering rate increases are observed in the Mo–Ni 8YSZ over that of pure 8YSZ. With a maximum sintering temperature of 1200 °C and a one-hour dwell, sintered densities of 85% theoretical density (5.02 g⁄cm3) are achieved with the Mo–Ni samples: a 57% increase in density over pure 8YSZ sintered with the same sintering profile. EIS results suggest conductivity may not be negatively impacted by the use of these two sintering aids at temperatures above 750 °C. Finally, the spontaneous generation of nickel-molybdenum nano-rods was observed on the 5, and 10 mol.% Mo–Ni infiltrated 8YSZ samples after being left under vacuum in a scanning electron microscope chamber, suggesting evaporation of a possible nickel–molybdenum compound from the sample fracture surfaces.
doi_str_mv 10.3390/ma13122875
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7344588</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2419416058</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-56fce797814a116472afd9eafb7ddf20945b4b1ba2c401de4b4959ec549037a53</originalsourceid><addsrcrecordid>eNpdkclO3TAUhi1EBYiy4QkssUFIoR6TeIOErpgkCgvaRbsxjn1CDYl9sRMEffr6FkSHsznTp19nQGiXkkPOFfk0GsopY20j19AWVaquqBJi_a94E-3kfE-KcU5bpjbQJmc1EYrJLXT7OQ4vnYMwj_j62TvAJjh85e0DDMVNyUyllPEixiWUxD8BvvFhguTDHT72LuM-JvxtmpI31c1kOj_4n-Dwd59sDN58RB96M2TYefPb6OvpyZfFeXV5fXaxOL6sLG_5VMm6t9CopqXCUFqLhpneKTB91zjXM6KE7ERHO8OsINSB6ISSCqwUivDGSL6Njl51l3M3grMQyuyDXiY_mvSio_H6307wP_RdfNINF0K2bRHYfxNI8XGGPOnRZwvDYALEOWsmyjFpTeQK3fsPvY9zCmW93xRbPYYU6uCVsinmnKB_H4YSvUL0n9_xX8D4iwI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2419233900</pqid></control><display><type>article</type><title>Molybdenum Oxide and Nickel Nitrate as Cooperative Sintering Aids for Yttria-Stabilized Zirconia</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>EZB Electronic Journals Library</source><source>PubMed Central Open Access</source><creator>Hunt, Clay ; Allemeier, John Kyle ; Driscoll, David ; Weisenstein, Adam ; Sofie, Stephen</creator><creatorcontrib>Hunt, Clay ; Allemeier, John Kyle ; Driscoll, David ; Weisenstein, Adam ; Sofie, Stephen</creatorcontrib><description>The entirely accidental observation of increased sintering performance of nickel-infiltrated yttria-stabilized zirconia (8YSZ) in a molybdenum and oxygen rich atmosphere was explored. Molybdenum and nickel were found to be synergistic sintering aids for 8YSZ. However, sintering had to take place in an atmosphere of flowing oxygen. Samples sintered in air consistently burst. The sintering performance, microstructure, and crystal structure of 8YSZ with additions of both Mo and Ni together are compared to the sintering performance, microstructure, and crystal structure of pure 8YSZ, 8YSZ with only Ni added as a sintering aid, and 8YSZ with only Mo added as a sintering aid. Enhanced densification and grain growth is observed in the Mo–Ni 8YSZ samples when compared to all other sintering samples. Order of magnitude sintering rate increases are observed in the Mo–Ni 8YSZ over that of pure 8YSZ. With a maximum sintering temperature of 1200 °C and a one-hour dwell, sintered densities of 85% theoretical density (5.02 g⁄cm3) are achieved with the Mo–Ni samples: a 57% increase in density over pure 8YSZ sintered with the same sintering profile. EIS results suggest conductivity may not be negatively impacted by the use of these two sintering aids at temperatures above 750 °C. Finally, the spontaneous generation of nickel-molybdenum nano-rods was observed on the 5, and 10 mol.% Mo–Ni infiltrated 8YSZ samples after being left under vacuum in a scanning electron microscope chamber, suggesting evaporation of a possible nickel–molybdenum compound from the sample fracture surfaces.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma13122875</identifier><identifier>PMID: 32604925</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Crystal structure ; Densification ; Dental implants ; Electrolytes ; Fracture surfaces ; Fuel cells ; Grain growth ; Microstructure ; Molybdenum ; Molybdenum compounds ; Molybdenum oxides ; Nanorods ; Nickel ; Nitrates ; Scanning electron microscopy ; Sintering ; Sintering aids ; Spectrum analysis ; Studies ; Theoretical density ; Yttria-stabilized zirconia ; Yttrium oxide ; Zirconium dioxide</subject><ispartof>Materials, 2020-06, Vol.13 (12), p.2875</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-56fce797814a116472afd9eafb7ddf20945b4b1ba2c401de4b4959ec549037a53</citedby><cites>FETCH-LOGICAL-c383t-56fce797814a116472afd9eafb7ddf20945b4b1ba2c401de4b4959ec549037a53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7344588/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7344588/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids></links><search><creatorcontrib>Hunt, Clay</creatorcontrib><creatorcontrib>Allemeier, John Kyle</creatorcontrib><creatorcontrib>Driscoll, David</creatorcontrib><creatorcontrib>Weisenstein, Adam</creatorcontrib><creatorcontrib>Sofie, Stephen</creatorcontrib><title>Molybdenum Oxide and Nickel Nitrate as Cooperative Sintering Aids for Yttria-Stabilized Zirconia</title><title>Materials</title><description>The entirely accidental observation of increased sintering performance of nickel-infiltrated yttria-stabilized zirconia (8YSZ) in a molybdenum and oxygen rich atmosphere was explored. Molybdenum and nickel were found to be synergistic sintering aids for 8YSZ. However, sintering had to take place in an atmosphere of flowing oxygen. Samples sintered in air consistently burst. The sintering performance, microstructure, and crystal structure of 8YSZ with additions of both Mo and Ni together are compared to the sintering performance, microstructure, and crystal structure of pure 8YSZ, 8YSZ with only Ni added as a sintering aid, and 8YSZ with only Mo added as a sintering aid. Enhanced densification and grain growth is observed in the Mo–Ni 8YSZ samples when compared to all other sintering samples. Order of magnitude sintering rate increases are observed in the Mo–Ni 8YSZ over that of pure 8YSZ. With a maximum sintering temperature of 1200 °C and a one-hour dwell, sintered densities of 85% theoretical density (5.02 g⁄cm3) are achieved with the Mo–Ni samples: a 57% increase in density over pure 8YSZ sintered with the same sintering profile. EIS results suggest conductivity may not be negatively impacted by the use of these two sintering aids at temperatures above 750 °C. Finally, the spontaneous generation of nickel-molybdenum nano-rods was observed on the 5, and 10 mol.% Mo–Ni infiltrated 8YSZ samples after being left under vacuum in a scanning electron microscope chamber, suggesting evaporation of a possible nickel–molybdenum compound from the sample fracture surfaces.</description><subject>Crystal structure</subject><subject>Densification</subject><subject>Dental implants</subject><subject>Electrolytes</subject><subject>Fracture surfaces</subject><subject>Fuel cells</subject><subject>Grain growth</subject><subject>Microstructure</subject><subject>Molybdenum</subject><subject>Molybdenum compounds</subject><subject>Molybdenum oxides</subject><subject>Nanorods</subject><subject>Nickel</subject><subject>Nitrates</subject><subject>Scanning electron microscopy</subject><subject>Sintering</subject><subject>Sintering aids</subject><subject>Spectrum analysis</subject><subject>Studies</subject><subject>Theoretical density</subject><subject>Yttria-stabilized zirconia</subject><subject>Yttrium oxide</subject><subject>Zirconium dioxide</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkclO3TAUhi1EBYiy4QkssUFIoR6TeIOErpgkCgvaRbsxjn1CDYl9sRMEffr6FkSHsznTp19nQGiXkkPOFfk0GsopY20j19AWVaquqBJi_a94E-3kfE-KcU5bpjbQJmc1EYrJLXT7OQ4vnYMwj_j62TvAJjh85e0DDMVNyUyllPEixiWUxD8BvvFhguTDHT72LuM-JvxtmpI31c1kOj_4n-Dwd59sDN58RB96M2TYefPb6OvpyZfFeXV5fXaxOL6sLG_5VMm6t9CopqXCUFqLhpneKTB91zjXM6KE7ERHO8OsINSB6ISSCqwUivDGSL6Njl51l3M3grMQyuyDXiY_mvSio_H6307wP_RdfNINF0K2bRHYfxNI8XGGPOnRZwvDYALEOWsmyjFpTeQK3fsPvY9zCmW93xRbPYYU6uCVsinmnKB_H4YSvUL0n9_xX8D4iwI</recordid><startdate>20200626</startdate><enddate>20200626</enddate><creator>Hunt, Clay</creator><creator>Allemeier, John Kyle</creator><creator>Driscoll, David</creator><creator>Weisenstein, Adam</creator><creator>Sofie, Stephen</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20200626</creationdate><title>Molybdenum Oxide and Nickel Nitrate as Cooperative Sintering Aids for Yttria-Stabilized Zirconia</title><author>Hunt, Clay ; Allemeier, John Kyle ; Driscoll, David ; Weisenstein, Adam ; Sofie, Stephen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-56fce797814a116472afd9eafb7ddf20945b4b1ba2c401de4b4959ec549037a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Crystal structure</topic><topic>Densification</topic><topic>Dental implants</topic><topic>Electrolytes</topic><topic>Fracture surfaces</topic><topic>Fuel cells</topic><topic>Grain growth</topic><topic>Microstructure</topic><topic>Molybdenum</topic><topic>Molybdenum compounds</topic><topic>Molybdenum oxides</topic><topic>Nanorods</topic><topic>Nickel</topic><topic>Nitrates</topic><topic>Scanning electron microscopy</topic><topic>Sintering</topic><topic>Sintering aids</topic><topic>Spectrum analysis</topic><topic>Studies</topic><topic>Theoretical density</topic><topic>Yttria-stabilized zirconia</topic><topic>Yttrium oxide</topic><topic>Zirconium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hunt, Clay</creatorcontrib><creatorcontrib>Allemeier, John Kyle</creatorcontrib><creatorcontrib>Driscoll, David</creatorcontrib><creatorcontrib>Weisenstein, Adam</creatorcontrib><creatorcontrib>Sofie, Stephen</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>ProQuest Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hunt, Clay</au><au>Allemeier, John Kyle</au><au>Driscoll, David</au><au>Weisenstein, Adam</au><au>Sofie, Stephen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molybdenum Oxide and Nickel Nitrate as Cooperative Sintering Aids for Yttria-Stabilized Zirconia</atitle><jtitle>Materials</jtitle><date>2020-06-26</date><risdate>2020</risdate><volume>13</volume><issue>12</issue><spage>2875</spage><pages>2875-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>The entirely accidental observation of increased sintering performance of nickel-infiltrated yttria-stabilized zirconia (8YSZ) in a molybdenum and oxygen rich atmosphere was explored. Molybdenum and nickel were found to be synergistic sintering aids for 8YSZ. However, sintering had to take place in an atmosphere of flowing oxygen. Samples sintered in air consistently burst. The sintering performance, microstructure, and crystal structure of 8YSZ with additions of both Mo and Ni together are compared to the sintering performance, microstructure, and crystal structure of pure 8YSZ, 8YSZ with only Ni added as a sintering aid, and 8YSZ with only Mo added as a sintering aid. Enhanced densification and grain growth is observed in the Mo–Ni 8YSZ samples when compared to all other sintering samples. Order of magnitude sintering rate increases are observed in the Mo–Ni 8YSZ over that of pure 8YSZ. With a maximum sintering temperature of 1200 °C and a one-hour dwell, sintered densities of 85% theoretical density (5.02 g⁄cm3) are achieved with the Mo–Ni samples: a 57% increase in density over pure 8YSZ sintered with the same sintering profile. EIS results suggest conductivity may not be negatively impacted by the use of these two sintering aids at temperatures above 750 °C. Finally, the spontaneous generation of nickel-molybdenum nano-rods was observed on the 5, and 10 mol.% Mo–Ni infiltrated 8YSZ samples after being left under vacuum in a scanning electron microscope chamber, suggesting evaporation of a possible nickel–molybdenum compound from the sample fracture surfaces.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>32604925</pmid><doi>10.3390/ma13122875</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2020-06, Vol.13 (12), p.2875
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7344588
source MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central; Free Full-Text Journals in Chemistry; EZB Electronic Journals Library; PubMed Central Open Access
subjects Crystal structure
Densification
Dental implants
Electrolytes
Fracture surfaces
Fuel cells
Grain growth
Microstructure
Molybdenum
Molybdenum compounds
Molybdenum oxides
Nanorods
Nickel
Nitrates
Scanning electron microscopy
Sintering
Sintering aids
Spectrum analysis
Studies
Theoretical density
Yttria-stabilized zirconia
Yttrium oxide
Zirconium dioxide
title Molybdenum Oxide and Nickel Nitrate as Cooperative Sintering Aids for Yttria-Stabilized Zirconia
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A40%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molybdenum%20Oxide%20and%20Nickel%20Nitrate%20as%20Cooperative%20Sintering%20Aids%20for%20Yttria-Stabilized%20Zirconia&rft.jtitle=Materials&rft.au=Hunt,%20Clay&rft.date=2020-06-26&rft.volume=13&rft.issue=12&rft.spage=2875&rft.pages=2875-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma13122875&rft_dat=%3Cproquest_pubme%3E2419416058%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2419233900&rft_id=info:pmid/32604925&rfr_iscdi=true