Molybdenum Oxide and Nickel Nitrate as Cooperative Sintering Aids for Yttria-Stabilized Zirconia
The entirely accidental observation of increased sintering performance of nickel-infiltrated yttria-stabilized zirconia (8YSZ) in a molybdenum and oxygen rich atmosphere was explored. Molybdenum and nickel were found to be synergistic sintering aids for 8YSZ. However, sintering had to take place in...
Gespeichert in:
Veröffentlicht in: | Materials 2020-06, Vol.13 (12), p.2875 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 12 |
container_start_page | 2875 |
container_title | Materials |
container_volume | 13 |
creator | Hunt, Clay Allemeier, John Kyle Driscoll, David Weisenstein, Adam Sofie, Stephen |
description | The entirely accidental observation of increased sintering performance of nickel-infiltrated yttria-stabilized zirconia (8YSZ) in a molybdenum and oxygen rich atmosphere was explored. Molybdenum and nickel were found to be synergistic sintering aids for 8YSZ. However, sintering had to take place in an atmosphere of flowing oxygen. Samples sintered in air consistently burst. The sintering performance, microstructure, and crystal structure of 8YSZ with additions of both Mo and Ni together are compared to the sintering performance, microstructure, and crystal structure of pure 8YSZ, 8YSZ with only Ni added as a sintering aid, and 8YSZ with only Mo added as a sintering aid. Enhanced densification and grain growth is observed in the Mo–Ni 8YSZ samples when compared to all other sintering samples. Order of magnitude sintering rate increases are observed in the Mo–Ni 8YSZ over that of pure 8YSZ. With a maximum sintering temperature of 1200 °C and a one-hour dwell, sintered densities of 85% theoretical density (5.02 g⁄cm3) are achieved with the Mo–Ni samples: a 57% increase in density over pure 8YSZ sintered with the same sintering profile. EIS results suggest conductivity may not be negatively impacted by the use of these two sintering aids at temperatures above 750 °C. Finally, the spontaneous generation of nickel-molybdenum nano-rods was observed on the 5, and 10 mol.% Mo–Ni infiltrated 8YSZ samples after being left under vacuum in a scanning electron microscope chamber, suggesting evaporation of a possible nickel–molybdenum compound from the sample fracture surfaces. |
doi_str_mv | 10.3390/ma13122875 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7344588</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2419416058</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-56fce797814a116472afd9eafb7ddf20945b4b1ba2c401de4b4959ec549037a53</originalsourceid><addsrcrecordid>eNpdkclO3TAUhi1EBYiy4QkssUFIoR6TeIOErpgkCgvaRbsxjn1CDYl9sRMEffr6FkSHsznTp19nQGiXkkPOFfk0GsopY20j19AWVaquqBJi_a94E-3kfE-KcU5bpjbQJmc1EYrJLXT7OQ4vnYMwj_j62TvAJjh85e0DDMVNyUyllPEixiWUxD8BvvFhguTDHT72LuM-JvxtmpI31c1kOj_4n-Dwd59sDN58RB96M2TYefPb6OvpyZfFeXV5fXaxOL6sLG_5VMm6t9CopqXCUFqLhpneKTB91zjXM6KE7ERHO8OsINSB6ISSCqwUivDGSL6Njl51l3M3grMQyuyDXiY_mvSio_H6307wP_RdfNINF0K2bRHYfxNI8XGGPOnRZwvDYALEOWsmyjFpTeQK3fsPvY9zCmW93xRbPYYU6uCVsinmnKB_H4YSvUL0n9_xX8D4iwI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2419233900</pqid></control><display><type>article</type><title>Molybdenum Oxide and Nickel Nitrate as Cooperative Sintering Aids for Yttria-Stabilized Zirconia</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>EZB Electronic Journals Library</source><source>PubMed Central Open Access</source><creator>Hunt, Clay ; Allemeier, John Kyle ; Driscoll, David ; Weisenstein, Adam ; Sofie, Stephen</creator><creatorcontrib>Hunt, Clay ; Allemeier, John Kyle ; Driscoll, David ; Weisenstein, Adam ; Sofie, Stephen</creatorcontrib><description>The entirely accidental observation of increased sintering performance of nickel-infiltrated yttria-stabilized zirconia (8YSZ) in a molybdenum and oxygen rich atmosphere was explored. Molybdenum and nickel were found to be synergistic sintering aids for 8YSZ. However, sintering had to take place in an atmosphere of flowing oxygen. Samples sintered in air consistently burst. The sintering performance, microstructure, and crystal structure of 8YSZ with additions of both Mo and Ni together are compared to the sintering performance, microstructure, and crystal structure of pure 8YSZ, 8YSZ with only Ni added as a sintering aid, and 8YSZ with only Mo added as a sintering aid. Enhanced densification and grain growth is observed in the Mo–Ni 8YSZ samples when compared to all other sintering samples. Order of magnitude sintering rate increases are observed in the Mo–Ni 8YSZ over that of pure 8YSZ. With a maximum sintering temperature of 1200 °C and a one-hour dwell, sintered densities of 85% theoretical density (5.02 g⁄cm3) are achieved with the Mo–Ni samples: a 57% increase in density over pure 8YSZ sintered with the same sintering profile. EIS results suggest conductivity may not be negatively impacted by the use of these two sintering aids at temperatures above 750 °C. Finally, the spontaneous generation of nickel-molybdenum nano-rods was observed on the 5, and 10 mol.% Mo–Ni infiltrated 8YSZ samples after being left under vacuum in a scanning electron microscope chamber, suggesting evaporation of a possible nickel–molybdenum compound from the sample fracture surfaces.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma13122875</identifier><identifier>PMID: 32604925</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Crystal structure ; Densification ; Dental implants ; Electrolytes ; Fracture surfaces ; Fuel cells ; Grain growth ; Microstructure ; Molybdenum ; Molybdenum compounds ; Molybdenum oxides ; Nanorods ; Nickel ; Nitrates ; Scanning electron microscopy ; Sintering ; Sintering aids ; Spectrum analysis ; Studies ; Theoretical density ; Yttria-stabilized zirconia ; Yttrium oxide ; Zirconium dioxide</subject><ispartof>Materials, 2020-06, Vol.13 (12), p.2875</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-56fce797814a116472afd9eafb7ddf20945b4b1ba2c401de4b4959ec549037a53</citedby><cites>FETCH-LOGICAL-c383t-56fce797814a116472afd9eafb7ddf20945b4b1ba2c401de4b4959ec549037a53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7344588/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7344588/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids></links><search><creatorcontrib>Hunt, Clay</creatorcontrib><creatorcontrib>Allemeier, John Kyle</creatorcontrib><creatorcontrib>Driscoll, David</creatorcontrib><creatorcontrib>Weisenstein, Adam</creatorcontrib><creatorcontrib>Sofie, Stephen</creatorcontrib><title>Molybdenum Oxide and Nickel Nitrate as Cooperative Sintering Aids for Yttria-Stabilized Zirconia</title><title>Materials</title><description>The entirely accidental observation of increased sintering performance of nickel-infiltrated yttria-stabilized zirconia (8YSZ) in a molybdenum and oxygen rich atmosphere was explored. Molybdenum and nickel were found to be synergistic sintering aids for 8YSZ. However, sintering had to take place in an atmosphere of flowing oxygen. Samples sintered in air consistently burst. The sintering performance, microstructure, and crystal structure of 8YSZ with additions of both Mo and Ni together are compared to the sintering performance, microstructure, and crystal structure of pure 8YSZ, 8YSZ with only Ni added as a sintering aid, and 8YSZ with only Mo added as a sintering aid. Enhanced densification and grain growth is observed in the Mo–Ni 8YSZ samples when compared to all other sintering samples. Order of magnitude sintering rate increases are observed in the Mo–Ni 8YSZ over that of pure 8YSZ. With a maximum sintering temperature of 1200 °C and a one-hour dwell, sintered densities of 85% theoretical density (5.02 g⁄cm3) are achieved with the Mo–Ni samples: a 57% increase in density over pure 8YSZ sintered with the same sintering profile. EIS results suggest conductivity may not be negatively impacted by the use of these two sintering aids at temperatures above 750 °C. Finally, the spontaneous generation of nickel-molybdenum nano-rods was observed on the 5, and 10 mol.% Mo–Ni infiltrated 8YSZ samples after being left under vacuum in a scanning electron microscope chamber, suggesting evaporation of a possible nickel–molybdenum compound from the sample fracture surfaces.</description><subject>Crystal structure</subject><subject>Densification</subject><subject>Dental implants</subject><subject>Electrolytes</subject><subject>Fracture surfaces</subject><subject>Fuel cells</subject><subject>Grain growth</subject><subject>Microstructure</subject><subject>Molybdenum</subject><subject>Molybdenum compounds</subject><subject>Molybdenum oxides</subject><subject>Nanorods</subject><subject>Nickel</subject><subject>Nitrates</subject><subject>Scanning electron microscopy</subject><subject>Sintering</subject><subject>Sintering aids</subject><subject>Spectrum analysis</subject><subject>Studies</subject><subject>Theoretical density</subject><subject>Yttria-stabilized zirconia</subject><subject>Yttrium oxide</subject><subject>Zirconium dioxide</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkclO3TAUhi1EBYiy4QkssUFIoR6TeIOErpgkCgvaRbsxjn1CDYl9sRMEffr6FkSHsznTp19nQGiXkkPOFfk0GsopY20j19AWVaquqBJi_a94E-3kfE-KcU5bpjbQJmc1EYrJLXT7OQ4vnYMwj_j62TvAJjh85e0DDMVNyUyllPEixiWUxD8BvvFhguTDHT72LuM-JvxtmpI31c1kOj_4n-Dwd59sDN58RB96M2TYefPb6OvpyZfFeXV5fXaxOL6sLG_5VMm6t9CopqXCUFqLhpneKTB91zjXM6KE7ERHO8OsINSB6ISSCqwUivDGSL6Njl51l3M3grMQyuyDXiY_mvSio_H6307wP_RdfNINF0K2bRHYfxNI8XGGPOnRZwvDYALEOWsmyjFpTeQK3fsPvY9zCmW93xRbPYYU6uCVsinmnKB_H4YSvUL0n9_xX8D4iwI</recordid><startdate>20200626</startdate><enddate>20200626</enddate><creator>Hunt, Clay</creator><creator>Allemeier, John Kyle</creator><creator>Driscoll, David</creator><creator>Weisenstein, Adam</creator><creator>Sofie, Stephen</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20200626</creationdate><title>Molybdenum Oxide and Nickel Nitrate as Cooperative Sintering Aids for Yttria-Stabilized Zirconia</title><author>Hunt, Clay ; Allemeier, John Kyle ; Driscoll, David ; Weisenstein, Adam ; Sofie, Stephen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-56fce797814a116472afd9eafb7ddf20945b4b1ba2c401de4b4959ec549037a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Crystal structure</topic><topic>Densification</topic><topic>Dental implants</topic><topic>Electrolytes</topic><topic>Fracture surfaces</topic><topic>Fuel cells</topic><topic>Grain growth</topic><topic>Microstructure</topic><topic>Molybdenum</topic><topic>Molybdenum compounds</topic><topic>Molybdenum oxides</topic><topic>Nanorods</topic><topic>Nickel</topic><topic>Nitrates</topic><topic>Scanning electron microscopy</topic><topic>Sintering</topic><topic>Sintering aids</topic><topic>Spectrum analysis</topic><topic>Studies</topic><topic>Theoretical density</topic><topic>Yttria-stabilized zirconia</topic><topic>Yttrium oxide</topic><topic>Zirconium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hunt, Clay</creatorcontrib><creatorcontrib>Allemeier, John Kyle</creatorcontrib><creatorcontrib>Driscoll, David</creatorcontrib><creatorcontrib>Weisenstein, Adam</creatorcontrib><creatorcontrib>Sofie, Stephen</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>ProQuest Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hunt, Clay</au><au>Allemeier, John Kyle</au><au>Driscoll, David</au><au>Weisenstein, Adam</au><au>Sofie, Stephen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molybdenum Oxide and Nickel Nitrate as Cooperative Sintering Aids for Yttria-Stabilized Zirconia</atitle><jtitle>Materials</jtitle><date>2020-06-26</date><risdate>2020</risdate><volume>13</volume><issue>12</issue><spage>2875</spage><pages>2875-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>The entirely accidental observation of increased sintering performance of nickel-infiltrated yttria-stabilized zirconia (8YSZ) in a molybdenum and oxygen rich atmosphere was explored. Molybdenum and nickel were found to be synergistic sintering aids for 8YSZ. However, sintering had to take place in an atmosphere of flowing oxygen. Samples sintered in air consistently burst. The sintering performance, microstructure, and crystal structure of 8YSZ with additions of both Mo and Ni together are compared to the sintering performance, microstructure, and crystal structure of pure 8YSZ, 8YSZ with only Ni added as a sintering aid, and 8YSZ with only Mo added as a sintering aid. Enhanced densification and grain growth is observed in the Mo–Ni 8YSZ samples when compared to all other sintering samples. Order of magnitude sintering rate increases are observed in the Mo–Ni 8YSZ over that of pure 8YSZ. With a maximum sintering temperature of 1200 °C and a one-hour dwell, sintered densities of 85% theoretical density (5.02 g⁄cm3) are achieved with the Mo–Ni samples: a 57% increase in density over pure 8YSZ sintered with the same sintering profile. EIS results suggest conductivity may not be negatively impacted by the use of these two sintering aids at temperatures above 750 °C. Finally, the spontaneous generation of nickel-molybdenum nano-rods was observed on the 5, and 10 mol.% Mo–Ni infiltrated 8YSZ samples after being left under vacuum in a scanning electron microscope chamber, suggesting evaporation of a possible nickel–molybdenum compound from the sample fracture surfaces.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>32604925</pmid><doi>10.3390/ma13122875</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2020-06, Vol.13 (12), p.2875 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7344588 |
source | MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central; Free Full-Text Journals in Chemistry; EZB Electronic Journals Library; PubMed Central Open Access |
subjects | Crystal structure Densification Dental implants Electrolytes Fracture surfaces Fuel cells Grain growth Microstructure Molybdenum Molybdenum compounds Molybdenum oxides Nanorods Nickel Nitrates Scanning electron microscopy Sintering Sintering aids Spectrum analysis Studies Theoretical density Yttria-stabilized zirconia Yttrium oxide Zirconium dioxide |
title | Molybdenum Oxide and Nickel Nitrate as Cooperative Sintering Aids for Yttria-Stabilized Zirconia |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A40%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molybdenum%20Oxide%20and%20Nickel%20Nitrate%20as%20Cooperative%20Sintering%20Aids%20for%20Yttria-Stabilized%20Zirconia&rft.jtitle=Materials&rft.au=Hunt,%20Clay&rft.date=2020-06-26&rft.volume=13&rft.issue=12&rft.spage=2875&rft.pages=2875-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma13122875&rft_dat=%3Cproquest_pubme%3E2419416058%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2419233900&rft_id=info:pmid/32604925&rfr_iscdi=true |