A Unified Model for Stress-Driven Rearrangement Instabilities

A variational model to simultaneously treat Stress-Driven Rearrangement Instabilities, such as boundary discontinuities, internal cracks, external filaments, edge delamination, wetting, and brittle fractures, is introduced. The model is characterized by an energy displaying both elastic and surface...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archive for rational mechanics and analysis 2020-10, Vol.238 (1), p.415-488
Hauptverfasser: Kholmatov, Shokhrukh Yu, Piovano, Paolo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 488
container_issue 1
container_start_page 415
container_title Archive for rational mechanics and analysis
container_volume 238
creator Kholmatov, Shokhrukh Yu
Piovano, Paolo
description A variational model to simultaneously treat Stress-Driven Rearrangement Instabilities, such as boundary discontinuities, internal cracks, external filaments, edge delamination, wetting, and brittle fractures, is introduced. The model is characterized by an energy displaying both elastic and surface terms, and allows for a unified treatment of a wide range of settings, from epitaxially-strained thin films to crystalline cavities, and from capillarity problems to fracture models. The existence of minimizing configurations is established by adopting the direct method of the Calculus of Variations. The compactness of energy-equibounded sequences and energy lower semicontinuity are shown with respect to a proper selected topology in a class of admissible configurations that extends the classes previously considered in the literature. In particular, graph-like constraints previously considered for the setting of thin films and crystalline cavities are substituted by the more general assumption that the free crystalline interface is the boundary, consisting of an at most fixed finite number m of connected components, of sets of finite perimeter. Finally, it is shown that, as m → ∞ , the energy of minimal admissible configurations tends to the minimum energy in the general class of configurations without the bound on the number of connected components for the free interface.
doi_str_mv 10.1007/s00205-020-01546-y
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7343841</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2421246515</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-7ca2320ee95fa719ec18d9ff8c5bd1ecf056703b74c8615cd4ad53843ca0aa613</originalsourceid><addsrcrecordid>eNp9kUtLAzEUhYMoWh9_wNWAGzfRm3dnoSD1CYqgdh3SzB2NTGc0mQr996a2KLowixsu-c7h3hxC9hkcMQBznAA4KJoLBaakpvM1MmBScAraiHUyAABBS8XNFtlO6XXRcqE3yZbgWpdGwICcnBXjNtQBq-Kuq7Ap6i4Wj33ElOh5DB_YFg_oYnTtM06x7YubNvVuEprQB0y7ZKN2TcK91b1DxpcXT6Nrent_dTM6u6VeKtZT4x0XHBBLVTvDSvRsWJV1PfRqUjH0NShtQEyM9EPNlK-kq5QYSuEdOKeZ2CGnS9-32WSKlc-DRNfYtximLs5t54L9_dKGF_vcfVgjZPZZGByuDGL3PsPU22lIHpvGtdjNkuWSy3yElhk9-IO-drPY5vUWFONSK6YyxZeUj11KEevvYRjYRTp2mY7NxX6lY-dZJJailOH8ofHH-h_VJ5eXkVU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2421246515</pqid></control><display><type>article</type><title>A Unified Model for Stress-Driven Rearrangement Instabilities</title><source>Springer Nature - Complete Springer Journals</source><creator>Kholmatov, Shokhrukh Yu ; Piovano, Paolo</creator><creatorcontrib>Kholmatov, Shokhrukh Yu ; Piovano, Paolo</creatorcontrib><description>A variational model to simultaneously treat Stress-Driven Rearrangement Instabilities, such as boundary discontinuities, internal cracks, external filaments, edge delamination, wetting, and brittle fractures, is introduced. The model is characterized by an energy displaying both elastic and surface terms, and allows for a unified treatment of a wide range of settings, from epitaxially-strained thin films to crystalline cavities, and from capillarity problems to fracture models. The existence of minimizing configurations is established by adopting the direct method of the Calculus of Variations. The compactness of energy-equibounded sequences and energy lower semicontinuity are shown with respect to a proper selected topology in a class of admissible configurations that extends the classes previously considered in the literature. In particular, graph-like constraints previously considered for the setting of thin films and crystalline cavities are substituted by the more general assumption that the free crystalline interface is the boundary, consisting of an at most fixed finite number m of connected components, of sets of finite perimeter. Finally, it is shown that, as m → ∞ , the energy of minimal admissible configurations tends to the minimum energy in the general class of configurations without the bound on the number of connected components for the free interface.</description><identifier>ISSN: 0003-9527</identifier><identifier>EISSN: 1432-0673</identifier><identifier>DOI: 10.1007/s00205-020-01546-y</identifier><identifier>PMID: 32669730</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Calculus of variations ; Capillarity ; Classical Mechanics ; Complex Systems ; Configurations ; Crystal structure ; Crystallinity ; Filaments ; Fluid- and Aerodynamics ; Mathematical and Computational Physics ; Physics ; Physics and Astronomy ; Theoretical ; Thin films ; Topology ; Wetting</subject><ispartof>Archive for rational mechanics and analysis, 2020-10, Vol.238 (1), p.415-488</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-7ca2320ee95fa719ec18d9ff8c5bd1ecf056703b74c8615cd4ad53843ca0aa613</citedby><cites>FETCH-LOGICAL-c451t-7ca2320ee95fa719ec18d9ff8c5bd1ecf056703b74c8615cd4ad53843ca0aa613</cites><orcidid>0000-0003-3783-1775</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00205-020-01546-y$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00205-020-01546-y$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Kholmatov, Shokhrukh Yu</creatorcontrib><creatorcontrib>Piovano, Paolo</creatorcontrib><title>A Unified Model for Stress-Driven Rearrangement Instabilities</title><title>Archive for rational mechanics and analysis</title><addtitle>Arch Rational Mech Anal</addtitle><description>A variational model to simultaneously treat Stress-Driven Rearrangement Instabilities, such as boundary discontinuities, internal cracks, external filaments, edge delamination, wetting, and brittle fractures, is introduced. The model is characterized by an energy displaying both elastic and surface terms, and allows for a unified treatment of a wide range of settings, from epitaxially-strained thin films to crystalline cavities, and from capillarity problems to fracture models. The existence of minimizing configurations is established by adopting the direct method of the Calculus of Variations. The compactness of energy-equibounded sequences and energy lower semicontinuity are shown with respect to a proper selected topology in a class of admissible configurations that extends the classes previously considered in the literature. In particular, graph-like constraints previously considered for the setting of thin films and crystalline cavities are substituted by the more general assumption that the free crystalline interface is the boundary, consisting of an at most fixed finite number m of connected components, of sets of finite perimeter. Finally, it is shown that, as m → ∞ , the energy of minimal admissible configurations tends to the minimum energy in the general class of configurations without the bound on the number of connected components for the free interface.</description><subject>Calculus of variations</subject><subject>Capillarity</subject><subject>Classical Mechanics</subject><subject>Complex Systems</subject><subject>Configurations</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Filaments</subject><subject>Fluid- and Aerodynamics</subject><subject>Mathematical and Computational Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Theoretical</subject><subject>Thin films</subject><subject>Topology</subject><subject>Wetting</subject><issn>0003-9527</issn><issn>1432-0673</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kUtLAzEUhYMoWh9_wNWAGzfRm3dnoSD1CYqgdh3SzB2NTGc0mQr996a2KLowixsu-c7h3hxC9hkcMQBznAA4KJoLBaakpvM1MmBScAraiHUyAABBS8XNFtlO6XXRcqE3yZbgWpdGwICcnBXjNtQBq-Kuq7Ap6i4Wj33ElOh5DB_YFg_oYnTtM06x7YubNvVuEprQB0y7ZKN2TcK91b1DxpcXT6Nrent_dTM6u6VeKtZT4x0XHBBLVTvDSvRsWJV1PfRqUjH0NShtQEyM9EPNlK-kq5QYSuEdOKeZ2CGnS9-32WSKlc-DRNfYtximLs5t54L9_dKGF_vcfVgjZPZZGByuDGL3PsPU22lIHpvGtdjNkuWSy3yElhk9-IO-drPY5vUWFONSK6YyxZeUj11KEevvYRjYRTp2mY7NxX6lY-dZJJailOH8ofHH-h_VJ5eXkVU</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Kholmatov, Shokhrukh Yu</creator><creator>Piovano, Paolo</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3783-1775</orcidid></search><sort><creationdate>20201001</creationdate><title>A Unified Model for Stress-Driven Rearrangement Instabilities</title><author>Kholmatov, Shokhrukh Yu ; Piovano, Paolo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-7ca2320ee95fa719ec18d9ff8c5bd1ecf056703b74c8615cd4ad53843ca0aa613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Calculus of variations</topic><topic>Capillarity</topic><topic>Classical Mechanics</topic><topic>Complex Systems</topic><topic>Configurations</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Filaments</topic><topic>Fluid- and Aerodynamics</topic><topic>Mathematical and Computational Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Theoretical</topic><topic>Thin films</topic><topic>Topology</topic><topic>Wetting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kholmatov, Shokhrukh Yu</creatorcontrib><creatorcontrib>Piovano, Paolo</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Archive for rational mechanics and analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kholmatov, Shokhrukh Yu</au><au>Piovano, Paolo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Unified Model for Stress-Driven Rearrangement Instabilities</atitle><jtitle>Archive for rational mechanics and analysis</jtitle><stitle>Arch Rational Mech Anal</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>238</volume><issue>1</issue><spage>415</spage><epage>488</epage><pages>415-488</pages><issn>0003-9527</issn><eissn>1432-0673</eissn><abstract>A variational model to simultaneously treat Stress-Driven Rearrangement Instabilities, such as boundary discontinuities, internal cracks, external filaments, edge delamination, wetting, and brittle fractures, is introduced. The model is characterized by an energy displaying both elastic and surface terms, and allows for a unified treatment of a wide range of settings, from epitaxially-strained thin films to crystalline cavities, and from capillarity problems to fracture models. The existence of minimizing configurations is established by adopting the direct method of the Calculus of Variations. The compactness of energy-equibounded sequences and energy lower semicontinuity are shown with respect to a proper selected topology in a class of admissible configurations that extends the classes previously considered in the literature. In particular, graph-like constraints previously considered for the setting of thin films and crystalline cavities are substituted by the more general assumption that the free crystalline interface is the boundary, consisting of an at most fixed finite number m of connected components, of sets of finite perimeter. Finally, it is shown that, as m → ∞ , the energy of minimal admissible configurations tends to the minimum energy in the general class of configurations without the bound on the number of connected components for the free interface.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>32669730</pmid><doi>10.1007/s00205-020-01546-y</doi><tpages>74</tpages><orcidid>https://orcid.org/0000-0003-3783-1775</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-9527
ispartof Archive for rational mechanics and analysis, 2020-10, Vol.238 (1), p.415-488
issn 0003-9527
1432-0673
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7343841
source Springer Nature - Complete Springer Journals
subjects Calculus of variations
Capillarity
Classical Mechanics
Complex Systems
Configurations
Crystal structure
Crystallinity
Filaments
Fluid- and Aerodynamics
Mathematical and Computational Physics
Physics
Physics and Astronomy
Theoretical
Thin films
Topology
Wetting
title A Unified Model for Stress-Driven Rearrangement Instabilities
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T20%3A08%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Unified%20Model%20for%20Stress-Driven%20Rearrangement%20Instabilities&rft.jtitle=Archive%20for%20rational%20mechanics%20and%20analysis&rft.au=Kholmatov,%20Shokhrukh%20Yu&rft.date=2020-10-01&rft.volume=238&rft.issue=1&rft.spage=415&rft.epage=488&rft.pages=415-488&rft.issn=0003-9527&rft.eissn=1432-0673&rft_id=info:doi/10.1007/s00205-020-01546-y&rft_dat=%3Cproquest_pubme%3E2421246515%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2421246515&rft_id=info:pmid/32669730&rfr_iscdi=true