A Unified Model for Stress-Driven Rearrangement Instabilities
A variational model to simultaneously treat Stress-Driven Rearrangement Instabilities, such as boundary discontinuities, internal cracks, external filaments, edge delamination, wetting, and brittle fractures, is introduced. The model is characterized by an energy displaying both elastic and surface...
Gespeichert in:
Veröffentlicht in: | Archive for rational mechanics and analysis 2020-10, Vol.238 (1), p.415-488 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 488 |
---|---|
container_issue | 1 |
container_start_page | 415 |
container_title | Archive for rational mechanics and analysis |
container_volume | 238 |
creator | Kholmatov, Shokhrukh Yu Piovano, Paolo |
description | A variational model to simultaneously treat Stress-Driven Rearrangement Instabilities, such as boundary discontinuities, internal cracks, external filaments, edge delamination, wetting, and brittle fractures, is introduced. The model is characterized by an energy displaying both elastic and surface terms, and allows for a unified treatment of a wide range of settings, from epitaxially-strained thin films to crystalline cavities, and from capillarity problems to fracture models. The existence of minimizing configurations is established by adopting the direct method of the Calculus of Variations. The compactness of energy-equibounded sequences and energy lower semicontinuity are shown with respect to a proper selected topology in a class of admissible configurations that extends the classes previously considered in the literature. In particular, graph-like constraints previously considered for the setting of thin films and crystalline cavities are substituted by the more general assumption that the free crystalline interface is the boundary, consisting of an at most fixed finite number
m
of connected components, of sets of finite perimeter. Finally, it is shown that, as
m
→
∞
, the energy of minimal admissible configurations tends to the minimum energy in the general class of configurations without the bound on the number of connected components for the free interface. |
doi_str_mv | 10.1007/s00205-020-01546-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7343841</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2421246515</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-7ca2320ee95fa719ec18d9ff8c5bd1ecf056703b74c8615cd4ad53843ca0aa613</originalsourceid><addsrcrecordid>eNp9kUtLAzEUhYMoWh9_wNWAGzfRm3dnoSD1CYqgdh3SzB2NTGc0mQr996a2KLowixsu-c7h3hxC9hkcMQBznAA4KJoLBaakpvM1MmBScAraiHUyAABBS8XNFtlO6XXRcqE3yZbgWpdGwICcnBXjNtQBq-Kuq7Ap6i4Wj33ElOh5DB_YFg_oYnTtM06x7YubNvVuEprQB0y7ZKN2TcK91b1DxpcXT6Nrent_dTM6u6VeKtZT4x0XHBBLVTvDSvRsWJV1PfRqUjH0NShtQEyM9EPNlK-kq5QYSuEdOKeZ2CGnS9-32WSKlc-DRNfYtximLs5t54L9_dKGF_vcfVgjZPZZGByuDGL3PsPU22lIHpvGtdjNkuWSy3yElhk9-IO-drPY5vUWFONSK6YyxZeUj11KEevvYRjYRTp2mY7NxX6lY-dZJJailOH8ofHH-h_VJ5eXkVU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2421246515</pqid></control><display><type>article</type><title>A Unified Model for Stress-Driven Rearrangement Instabilities</title><source>Springer Nature - Complete Springer Journals</source><creator>Kholmatov, Shokhrukh Yu ; Piovano, Paolo</creator><creatorcontrib>Kholmatov, Shokhrukh Yu ; Piovano, Paolo</creatorcontrib><description>A variational model to simultaneously treat Stress-Driven Rearrangement Instabilities, such as boundary discontinuities, internal cracks, external filaments, edge delamination, wetting, and brittle fractures, is introduced. The model is characterized by an energy displaying both elastic and surface terms, and allows for a unified treatment of a wide range of settings, from epitaxially-strained thin films to crystalline cavities, and from capillarity problems to fracture models. The existence of minimizing configurations is established by adopting the direct method of the Calculus of Variations. The compactness of energy-equibounded sequences and energy lower semicontinuity are shown with respect to a proper selected topology in a class of admissible configurations that extends the classes previously considered in the literature. In particular, graph-like constraints previously considered for the setting of thin films and crystalline cavities are substituted by the more general assumption that the free crystalline interface is the boundary, consisting of an at most fixed finite number
m
of connected components, of sets of finite perimeter. Finally, it is shown that, as
m
→
∞
, the energy of minimal admissible configurations tends to the minimum energy in the general class of configurations without the bound on the number of connected components for the free interface.</description><identifier>ISSN: 0003-9527</identifier><identifier>EISSN: 1432-0673</identifier><identifier>DOI: 10.1007/s00205-020-01546-y</identifier><identifier>PMID: 32669730</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Calculus of variations ; Capillarity ; Classical Mechanics ; Complex Systems ; Configurations ; Crystal structure ; Crystallinity ; Filaments ; Fluid- and Aerodynamics ; Mathematical and Computational Physics ; Physics ; Physics and Astronomy ; Theoretical ; Thin films ; Topology ; Wetting</subject><ispartof>Archive for rational mechanics and analysis, 2020-10, Vol.238 (1), p.415-488</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-7ca2320ee95fa719ec18d9ff8c5bd1ecf056703b74c8615cd4ad53843ca0aa613</citedby><cites>FETCH-LOGICAL-c451t-7ca2320ee95fa719ec18d9ff8c5bd1ecf056703b74c8615cd4ad53843ca0aa613</cites><orcidid>0000-0003-3783-1775</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00205-020-01546-y$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00205-020-01546-y$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Kholmatov, Shokhrukh Yu</creatorcontrib><creatorcontrib>Piovano, Paolo</creatorcontrib><title>A Unified Model for Stress-Driven Rearrangement Instabilities</title><title>Archive for rational mechanics and analysis</title><addtitle>Arch Rational Mech Anal</addtitle><description>A variational model to simultaneously treat Stress-Driven Rearrangement Instabilities, such as boundary discontinuities, internal cracks, external filaments, edge delamination, wetting, and brittle fractures, is introduced. The model is characterized by an energy displaying both elastic and surface terms, and allows for a unified treatment of a wide range of settings, from epitaxially-strained thin films to crystalline cavities, and from capillarity problems to fracture models. The existence of minimizing configurations is established by adopting the direct method of the Calculus of Variations. The compactness of energy-equibounded sequences and energy lower semicontinuity are shown with respect to a proper selected topology in a class of admissible configurations that extends the classes previously considered in the literature. In particular, graph-like constraints previously considered for the setting of thin films and crystalline cavities are substituted by the more general assumption that the free crystalline interface is the boundary, consisting of an at most fixed finite number
m
of connected components, of sets of finite perimeter. Finally, it is shown that, as
m
→
∞
, the energy of minimal admissible configurations tends to the minimum energy in the general class of configurations without the bound on the number of connected components for the free interface.</description><subject>Calculus of variations</subject><subject>Capillarity</subject><subject>Classical Mechanics</subject><subject>Complex Systems</subject><subject>Configurations</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Filaments</subject><subject>Fluid- and Aerodynamics</subject><subject>Mathematical and Computational Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Theoretical</subject><subject>Thin films</subject><subject>Topology</subject><subject>Wetting</subject><issn>0003-9527</issn><issn>1432-0673</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kUtLAzEUhYMoWh9_wNWAGzfRm3dnoSD1CYqgdh3SzB2NTGc0mQr996a2KLowixsu-c7h3hxC9hkcMQBznAA4KJoLBaakpvM1MmBScAraiHUyAABBS8XNFtlO6XXRcqE3yZbgWpdGwICcnBXjNtQBq-Kuq7Ap6i4Wj33ElOh5DB_YFg_oYnTtM06x7YubNvVuEprQB0y7ZKN2TcK91b1DxpcXT6Nrent_dTM6u6VeKtZT4x0XHBBLVTvDSvRsWJV1PfRqUjH0NShtQEyM9EPNlK-kq5QYSuEdOKeZ2CGnS9-32WSKlc-DRNfYtximLs5t54L9_dKGF_vcfVgjZPZZGByuDGL3PsPU22lIHpvGtdjNkuWSy3yElhk9-IO-drPY5vUWFONSK6YyxZeUj11KEevvYRjYRTp2mY7NxX6lY-dZJJailOH8ofHH-h_VJ5eXkVU</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Kholmatov, Shokhrukh Yu</creator><creator>Piovano, Paolo</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3783-1775</orcidid></search><sort><creationdate>20201001</creationdate><title>A Unified Model for Stress-Driven Rearrangement Instabilities</title><author>Kholmatov, Shokhrukh Yu ; Piovano, Paolo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-7ca2320ee95fa719ec18d9ff8c5bd1ecf056703b74c8615cd4ad53843ca0aa613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Calculus of variations</topic><topic>Capillarity</topic><topic>Classical Mechanics</topic><topic>Complex Systems</topic><topic>Configurations</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Filaments</topic><topic>Fluid- and Aerodynamics</topic><topic>Mathematical and Computational Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Theoretical</topic><topic>Thin films</topic><topic>Topology</topic><topic>Wetting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kholmatov, Shokhrukh Yu</creatorcontrib><creatorcontrib>Piovano, Paolo</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Archive for rational mechanics and analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kholmatov, Shokhrukh Yu</au><au>Piovano, Paolo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Unified Model for Stress-Driven Rearrangement Instabilities</atitle><jtitle>Archive for rational mechanics and analysis</jtitle><stitle>Arch Rational Mech Anal</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>238</volume><issue>1</issue><spage>415</spage><epage>488</epage><pages>415-488</pages><issn>0003-9527</issn><eissn>1432-0673</eissn><abstract>A variational model to simultaneously treat Stress-Driven Rearrangement Instabilities, such as boundary discontinuities, internal cracks, external filaments, edge delamination, wetting, and brittle fractures, is introduced. The model is characterized by an energy displaying both elastic and surface terms, and allows for a unified treatment of a wide range of settings, from epitaxially-strained thin films to crystalline cavities, and from capillarity problems to fracture models. The existence of minimizing configurations is established by adopting the direct method of the Calculus of Variations. The compactness of energy-equibounded sequences and energy lower semicontinuity are shown with respect to a proper selected topology in a class of admissible configurations that extends the classes previously considered in the literature. In particular, graph-like constraints previously considered for the setting of thin films and crystalline cavities are substituted by the more general assumption that the free crystalline interface is the boundary, consisting of an at most fixed finite number
m
of connected components, of sets of finite perimeter. Finally, it is shown that, as
m
→
∞
, the energy of minimal admissible configurations tends to the minimum energy in the general class of configurations without the bound on the number of connected components for the free interface.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>32669730</pmid><doi>10.1007/s00205-020-01546-y</doi><tpages>74</tpages><orcidid>https://orcid.org/0000-0003-3783-1775</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-9527 |
ispartof | Archive for rational mechanics and analysis, 2020-10, Vol.238 (1), p.415-488 |
issn | 0003-9527 1432-0673 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7343841 |
source | Springer Nature - Complete Springer Journals |
subjects | Calculus of variations Capillarity Classical Mechanics Complex Systems Configurations Crystal structure Crystallinity Filaments Fluid- and Aerodynamics Mathematical and Computational Physics Physics Physics and Astronomy Theoretical Thin films Topology Wetting |
title | A Unified Model for Stress-Driven Rearrangement Instabilities |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T20%3A08%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Unified%20Model%20for%20Stress-Driven%20Rearrangement%20Instabilities&rft.jtitle=Archive%20for%20rational%20mechanics%20and%20analysis&rft.au=Kholmatov,%20Shokhrukh%20Yu&rft.date=2020-10-01&rft.volume=238&rft.issue=1&rft.spage=415&rft.epage=488&rft.pages=415-488&rft.issn=0003-9527&rft.eissn=1432-0673&rft_id=info:doi/10.1007/s00205-020-01546-y&rft_dat=%3Cproquest_pubme%3E2421246515%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2421246515&rft_id=info:pmid/32669730&rfr_iscdi=true |