Impact of β-glycerophosphate on the bioenergetic profile of vascular smooth muscle cells

In chronic kidney disease, hyperphosphatemia is a key pathological factor promoting medial vascular calcification, a common complication associated with cardiovascular events and mortality. This active pathophysiological process involves osteo-/chondrogenic transdifferentiation of vascular smooth mu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of molecular medicine (Berlin, Germany) Germany), 2020-07, Vol.98 (7), p.985-997
Hauptverfasser: Alesutan, Ioana, Moritz, Franco, Haider, Tatjana, Shouxuan, Sun, Gollmann-Tepeköylü, Can, Holfeld, Johannes, Pieske, Burkert, Lang, Florian, Eckardt, Kai-Uwe, Heinzmann, Silke Sophie, Voelkl, Jakob
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 997
container_issue 7
container_start_page 985
container_title Journal of molecular medicine (Berlin, Germany)
container_volume 98
creator Alesutan, Ioana
Moritz, Franco
Haider, Tatjana
Shouxuan, Sun
Gollmann-Tepeköylü, Can
Holfeld, Johannes
Pieske, Burkert
Lang, Florian
Eckardt, Kai-Uwe
Heinzmann, Silke Sophie
Voelkl, Jakob
description In chronic kidney disease, hyperphosphatemia is a key pathological factor promoting medial vascular calcification, a common complication associated with cardiovascular events and mortality. This active pathophysiological process involves osteo-/chondrogenic transdifferentiation of vascular smooth muscle cells (VSMCs) via complex intracellular mechanisms that are still incompletely understood. Little is known about the effects of phosphate on the bioenergetic profile of VSMCs during the onset of this process. Therefore, the present study explored the effects of the phosphate donor β-glycerophosphate on cellular bioenergetics of VSMCs. Mitochondrial and glycolytic functions were determined utilizing extracellular flux analysis in primary human aortic VSMCs following exposure to β-glycerophosphate. In VSMCs, β-glycerophosphate increased basal respiration, mitochondrial ATP production as well as proton leak and decreased spare respiratory capacity and coupling efficiency, but did not modify non-mitochondrial or maximal respiration. β-Glycerophosphate-treated VSMCs had higher ability to increase mitochondrial glutamine and long-chain fatty acid usage as oxidation substrates to meet their energy demand. β-Glycerophosphate did not modify glycolytic function or basal and glycolytic proton efflux rate. In contrast, β-glycerophosphate increased non-glycolytic acidification. β-Glycerophosphate-treated VSMCs had a more oxidative and less glycolytic phenotype, but a reduced ability to respond to stressed conditions via mitochondrial respiration. Moreover, compounds targeting components of mitochondrial respiration modulated β-glycerophosphate-induced oxidative stress, osteo-/chondrogenic signalling and mineralization of VSMCs. In conclusion, β-glycerophosphate modifies key parameters of mitochondrial function and cellular bioenergetics in VSMCs that may contribute to the onset of phenotypical transdifferentiation and calcification. These observations advance the understanding of the role of energy metabolism in VSMC physiology and pathophysiology of vascular calcification during hyperphosphatemia. Key messages β-Glycerophosphate modifies key parameters of mitochondrial respiration in VSMCs. β-Glycerophosphate induces changes in mitochondrial fuel choice in VSMCs. β-Glycerophosphate promotes a more oxidative and less glycolytic phenotype of VSMCs. β-Glycerophosphate triggers mitochondrial-dependent oxidative stress in VSMCs. Bioenergetics impact β-glycerophosphate-induc
doi_str_mv 10.1007/s00109-020-01925-8
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7343738</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2421245302</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-605c7ae72cd7fe13bb169f95baf8fc60c0f04426c66c9410ea0daa229879b793</originalsourceid><addsrcrecordid>eNp9kc9q3DAQh0VoSLZJXiAnQ89KR38sWZdCCG0TWOgll5yErB2tvdiWK9kLea0-SJ-p3uzS0EtPc5jv983Aj5BbBncMQH_OAAwMBQ4UmOElrc7IiknBKZMSPpAVGKko10xdko857xZcl0ZekEvBZVWVUq3Iy1M_Oj8VMRS_f9Ft9-oxxbGJeWzchEUciqnBom4jDpi2OLW-GFMMbYeHyN5lP3cuFbmPcWqKfs5-2XjsunxNzoPrMt6c5hV5_vb1-eGRrn98f3q4X1MvSzZRBaXXDjX3Gx2QibpmygRT1i5UwSvwEEBKrrxS3kgG6GDjHOem0qbWRlyRL0ftONc9bjwOU3KdHVPbu_Rqo2vtv5uhbew27q0WUmhRLYJPJ0GKP2fMk93FOQ3Ly5ZLzrgsBfCF4kfKp5hzwvD3AgN7aMMe27BLG_atDXtQi2MoL_CwxfSu_k_qDznnjkA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2421245302</pqid></control><display><type>article</type><title>Impact of β-glycerophosphate on the bioenergetic profile of vascular smooth muscle cells</title><source>Springer Nature - Complete Springer Journals</source><creator>Alesutan, Ioana ; Moritz, Franco ; Haider, Tatjana ; Shouxuan, Sun ; Gollmann-Tepeköylü, Can ; Holfeld, Johannes ; Pieske, Burkert ; Lang, Florian ; Eckardt, Kai-Uwe ; Heinzmann, Silke Sophie ; Voelkl, Jakob</creator><creatorcontrib>Alesutan, Ioana ; Moritz, Franco ; Haider, Tatjana ; Shouxuan, Sun ; Gollmann-Tepeköylü, Can ; Holfeld, Johannes ; Pieske, Burkert ; Lang, Florian ; Eckardt, Kai-Uwe ; Heinzmann, Silke Sophie ; Voelkl, Jakob</creatorcontrib><description>In chronic kidney disease, hyperphosphatemia is a key pathological factor promoting medial vascular calcification, a common complication associated with cardiovascular events and mortality. This active pathophysiological process involves osteo-/chondrogenic transdifferentiation of vascular smooth muscle cells (VSMCs) via complex intracellular mechanisms that are still incompletely understood. Little is known about the effects of phosphate on the bioenergetic profile of VSMCs during the onset of this process. Therefore, the present study explored the effects of the phosphate donor β-glycerophosphate on cellular bioenergetics of VSMCs. Mitochondrial and glycolytic functions were determined utilizing extracellular flux analysis in primary human aortic VSMCs following exposure to β-glycerophosphate. In VSMCs, β-glycerophosphate increased basal respiration, mitochondrial ATP production as well as proton leak and decreased spare respiratory capacity and coupling efficiency, but did not modify non-mitochondrial or maximal respiration. β-Glycerophosphate-treated VSMCs had higher ability to increase mitochondrial glutamine and long-chain fatty acid usage as oxidation substrates to meet their energy demand. β-Glycerophosphate did not modify glycolytic function or basal and glycolytic proton efflux rate. In contrast, β-glycerophosphate increased non-glycolytic acidification. β-Glycerophosphate-treated VSMCs had a more oxidative and less glycolytic phenotype, but a reduced ability to respond to stressed conditions via mitochondrial respiration. Moreover, compounds targeting components of mitochondrial respiration modulated β-glycerophosphate-induced oxidative stress, osteo-/chondrogenic signalling and mineralization of VSMCs. In conclusion, β-glycerophosphate modifies key parameters of mitochondrial function and cellular bioenergetics in VSMCs that may contribute to the onset of phenotypical transdifferentiation and calcification. These observations advance the understanding of the role of energy metabolism in VSMC physiology and pathophysiology of vascular calcification during hyperphosphatemia. Key messages β-Glycerophosphate modifies key parameters of mitochondrial respiration in VSMCs. β-Glycerophosphate induces changes in mitochondrial fuel choice in VSMCs. β-Glycerophosphate promotes a more oxidative and less glycolytic phenotype of VSMCs. β-Glycerophosphate triggers mitochondrial-dependent oxidative stress in VSMCs. Bioenergetics impact β-glycerophosphate-induced VSMC calcification.</description><identifier>ISSN: 0946-2716</identifier><identifier>EISSN: 1432-1440</identifier><identifier>DOI: 10.1007/s00109-020-01925-8</identifier><identifier>PMID: 32488546</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Acidification ; Aorta ; b-Glycerophosphoric acid ; Bioenergetics ; Biomedical and Life Sciences ; Biomedicine ; Calcification ; Calcification (ectopic) ; Cardiovascular diseases ; Electron transport ; Energy metabolism ; Glutamine ; Glycolysis ; Human Genetics ; Hyperphosphatemia ; Internal Medicine ; Kidney diseases ; Mineralization ; Mitochondria ; Molecular Medicine ; Original ; Original Article ; Oxidative stress ; Phenotypes ; Respiration ; Smooth muscle</subject><ispartof>Journal of molecular medicine (Berlin, Germany), 2020-07, Vol.98 (7), p.985-997</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-605c7ae72cd7fe13bb169f95baf8fc60c0f04426c66c9410ea0daa229879b793</citedby><cites>FETCH-LOGICAL-c451t-605c7ae72cd7fe13bb169f95baf8fc60c0f04426c66c9410ea0daa229879b793</cites><orcidid>0000-0002-2145-3653</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00109-020-01925-8$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00109-020-01925-8$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,778,782,883,27911,27912,41475,42544,51306</link.rule.ids></links><search><creatorcontrib>Alesutan, Ioana</creatorcontrib><creatorcontrib>Moritz, Franco</creatorcontrib><creatorcontrib>Haider, Tatjana</creatorcontrib><creatorcontrib>Shouxuan, Sun</creatorcontrib><creatorcontrib>Gollmann-Tepeköylü, Can</creatorcontrib><creatorcontrib>Holfeld, Johannes</creatorcontrib><creatorcontrib>Pieske, Burkert</creatorcontrib><creatorcontrib>Lang, Florian</creatorcontrib><creatorcontrib>Eckardt, Kai-Uwe</creatorcontrib><creatorcontrib>Heinzmann, Silke Sophie</creatorcontrib><creatorcontrib>Voelkl, Jakob</creatorcontrib><title>Impact of β-glycerophosphate on the bioenergetic profile of vascular smooth muscle cells</title><title>Journal of molecular medicine (Berlin, Germany)</title><addtitle>J Mol Med</addtitle><description>In chronic kidney disease, hyperphosphatemia is a key pathological factor promoting medial vascular calcification, a common complication associated with cardiovascular events and mortality. This active pathophysiological process involves osteo-/chondrogenic transdifferentiation of vascular smooth muscle cells (VSMCs) via complex intracellular mechanisms that are still incompletely understood. Little is known about the effects of phosphate on the bioenergetic profile of VSMCs during the onset of this process. Therefore, the present study explored the effects of the phosphate donor β-glycerophosphate on cellular bioenergetics of VSMCs. Mitochondrial and glycolytic functions were determined utilizing extracellular flux analysis in primary human aortic VSMCs following exposure to β-glycerophosphate. In VSMCs, β-glycerophosphate increased basal respiration, mitochondrial ATP production as well as proton leak and decreased spare respiratory capacity and coupling efficiency, but did not modify non-mitochondrial or maximal respiration. β-Glycerophosphate-treated VSMCs had higher ability to increase mitochondrial glutamine and long-chain fatty acid usage as oxidation substrates to meet their energy demand. β-Glycerophosphate did not modify glycolytic function or basal and glycolytic proton efflux rate. In contrast, β-glycerophosphate increased non-glycolytic acidification. β-Glycerophosphate-treated VSMCs had a more oxidative and less glycolytic phenotype, but a reduced ability to respond to stressed conditions via mitochondrial respiration. Moreover, compounds targeting components of mitochondrial respiration modulated β-glycerophosphate-induced oxidative stress, osteo-/chondrogenic signalling and mineralization of VSMCs. In conclusion, β-glycerophosphate modifies key parameters of mitochondrial function and cellular bioenergetics in VSMCs that may contribute to the onset of phenotypical transdifferentiation and calcification. These observations advance the understanding of the role of energy metabolism in VSMC physiology and pathophysiology of vascular calcification during hyperphosphatemia. Key messages β-Glycerophosphate modifies key parameters of mitochondrial respiration in VSMCs. β-Glycerophosphate induces changes in mitochondrial fuel choice in VSMCs. β-Glycerophosphate promotes a more oxidative and less glycolytic phenotype of VSMCs. β-Glycerophosphate triggers mitochondrial-dependent oxidative stress in VSMCs. Bioenergetics impact β-glycerophosphate-induced VSMC calcification.</description><subject>Acidification</subject><subject>Aorta</subject><subject>b-Glycerophosphoric acid</subject><subject>Bioenergetics</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Calcification</subject><subject>Calcification (ectopic)</subject><subject>Cardiovascular diseases</subject><subject>Electron transport</subject><subject>Energy metabolism</subject><subject>Glutamine</subject><subject>Glycolysis</subject><subject>Human Genetics</subject><subject>Hyperphosphatemia</subject><subject>Internal Medicine</subject><subject>Kidney diseases</subject><subject>Mineralization</subject><subject>Mitochondria</subject><subject>Molecular Medicine</subject><subject>Original</subject><subject>Original Article</subject><subject>Oxidative stress</subject><subject>Phenotypes</subject><subject>Respiration</subject><subject>Smooth muscle</subject><issn>0946-2716</issn><issn>1432-1440</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><recordid>eNp9kc9q3DAQh0VoSLZJXiAnQ89KR38sWZdCCG0TWOgll5yErB2tvdiWK9kLea0-SJ-p3uzS0EtPc5jv983Aj5BbBncMQH_OAAwMBQ4UmOElrc7IiknBKZMSPpAVGKko10xdko857xZcl0ZekEvBZVWVUq3Iy1M_Oj8VMRS_f9Ft9-oxxbGJeWzchEUciqnBom4jDpi2OLW-GFMMbYeHyN5lP3cuFbmPcWqKfs5-2XjsunxNzoPrMt6c5hV5_vb1-eGRrn98f3q4X1MvSzZRBaXXDjX3Gx2QibpmygRT1i5UwSvwEEBKrrxS3kgG6GDjHOem0qbWRlyRL0ftONc9bjwOU3KdHVPbu_Rqo2vtv5uhbew27q0WUmhRLYJPJ0GKP2fMk93FOQ3Ly5ZLzrgsBfCF4kfKp5hzwvD3AgN7aMMe27BLG_atDXtQi2MoL_CwxfSu_k_qDznnjkA</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Alesutan, Ioana</creator><creator>Moritz, Franco</creator><creator>Haider, Tatjana</creator><creator>Shouxuan, Sun</creator><creator>Gollmann-Tepeköylü, Can</creator><creator>Holfeld, Johannes</creator><creator>Pieske, Burkert</creator><creator>Lang, Florian</creator><creator>Eckardt, Kai-Uwe</creator><creator>Heinzmann, Silke Sophie</creator><creator>Voelkl, Jakob</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2145-3653</orcidid></search><sort><creationdate>20200701</creationdate><title>Impact of β-glycerophosphate on the bioenergetic profile of vascular smooth muscle cells</title><author>Alesutan, Ioana ; Moritz, Franco ; Haider, Tatjana ; Shouxuan, Sun ; Gollmann-Tepeköylü, Can ; Holfeld, Johannes ; Pieske, Burkert ; Lang, Florian ; Eckardt, Kai-Uwe ; Heinzmann, Silke Sophie ; Voelkl, Jakob</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-605c7ae72cd7fe13bb169f95baf8fc60c0f04426c66c9410ea0daa229879b793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acidification</topic><topic>Aorta</topic><topic>b-Glycerophosphoric acid</topic><topic>Bioenergetics</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Calcification</topic><topic>Calcification (ectopic)</topic><topic>Cardiovascular diseases</topic><topic>Electron transport</topic><topic>Energy metabolism</topic><topic>Glutamine</topic><topic>Glycolysis</topic><topic>Human Genetics</topic><topic>Hyperphosphatemia</topic><topic>Internal Medicine</topic><topic>Kidney diseases</topic><topic>Mineralization</topic><topic>Mitochondria</topic><topic>Molecular Medicine</topic><topic>Original</topic><topic>Original Article</topic><topic>Oxidative stress</topic><topic>Phenotypes</topic><topic>Respiration</topic><topic>Smooth muscle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alesutan, Ioana</creatorcontrib><creatorcontrib>Moritz, Franco</creatorcontrib><creatorcontrib>Haider, Tatjana</creatorcontrib><creatorcontrib>Shouxuan, Sun</creatorcontrib><creatorcontrib>Gollmann-Tepeköylü, Can</creatorcontrib><creatorcontrib>Holfeld, Johannes</creatorcontrib><creatorcontrib>Pieske, Burkert</creatorcontrib><creatorcontrib>Lang, Florian</creatorcontrib><creatorcontrib>Eckardt, Kai-Uwe</creatorcontrib><creatorcontrib>Heinzmann, Silke Sophie</creatorcontrib><creatorcontrib>Voelkl, Jakob</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of molecular medicine (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alesutan, Ioana</au><au>Moritz, Franco</au><au>Haider, Tatjana</au><au>Shouxuan, Sun</au><au>Gollmann-Tepeköylü, Can</au><au>Holfeld, Johannes</au><au>Pieske, Burkert</au><au>Lang, Florian</au><au>Eckardt, Kai-Uwe</au><au>Heinzmann, Silke Sophie</au><au>Voelkl, Jakob</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impact of β-glycerophosphate on the bioenergetic profile of vascular smooth muscle cells</atitle><jtitle>Journal of molecular medicine (Berlin, Germany)</jtitle><stitle>J Mol Med</stitle><date>2020-07-01</date><risdate>2020</risdate><volume>98</volume><issue>7</issue><spage>985</spage><epage>997</epage><pages>985-997</pages><issn>0946-2716</issn><eissn>1432-1440</eissn><abstract>In chronic kidney disease, hyperphosphatemia is a key pathological factor promoting medial vascular calcification, a common complication associated with cardiovascular events and mortality. This active pathophysiological process involves osteo-/chondrogenic transdifferentiation of vascular smooth muscle cells (VSMCs) via complex intracellular mechanisms that are still incompletely understood. Little is known about the effects of phosphate on the bioenergetic profile of VSMCs during the onset of this process. Therefore, the present study explored the effects of the phosphate donor β-glycerophosphate on cellular bioenergetics of VSMCs. Mitochondrial and glycolytic functions were determined utilizing extracellular flux analysis in primary human aortic VSMCs following exposure to β-glycerophosphate. In VSMCs, β-glycerophosphate increased basal respiration, mitochondrial ATP production as well as proton leak and decreased spare respiratory capacity and coupling efficiency, but did not modify non-mitochondrial or maximal respiration. β-Glycerophosphate-treated VSMCs had higher ability to increase mitochondrial glutamine and long-chain fatty acid usage as oxidation substrates to meet their energy demand. β-Glycerophosphate did not modify glycolytic function or basal and glycolytic proton efflux rate. In contrast, β-glycerophosphate increased non-glycolytic acidification. β-Glycerophosphate-treated VSMCs had a more oxidative and less glycolytic phenotype, but a reduced ability to respond to stressed conditions via mitochondrial respiration. Moreover, compounds targeting components of mitochondrial respiration modulated β-glycerophosphate-induced oxidative stress, osteo-/chondrogenic signalling and mineralization of VSMCs. In conclusion, β-glycerophosphate modifies key parameters of mitochondrial function and cellular bioenergetics in VSMCs that may contribute to the onset of phenotypical transdifferentiation and calcification. These observations advance the understanding of the role of energy metabolism in VSMC physiology and pathophysiology of vascular calcification during hyperphosphatemia. Key messages β-Glycerophosphate modifies key parameters of mitochondrial respiration in VSMCs. β-Glycerophosphate induces changes in mitochondrial fuel choice in VSMCs. β-Glycerophosphate promotes a more oxidative and less glycolytic phenotype of VSMCs. β-Glycerophosphate triggers mitochondrial-dependent oxidative stress in VSMCs. Bioenergetics impact β-glycerophosphate-induced VSMC calcification.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>32488546</pmid><doi>10.1007/s00109-020-01925-8</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-2145-3653</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0946-2716
ispartof Journal of molecular medicine (Berlin, Germany), 2020-07, Vol.98 (7), p.985-997
issn 0946-2716
1432-1440
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7343738
source Springer Nature - Complete Springer Journals
subjects Acidification
Aorta
b-Glycerophosphoric acid
Bioenergetics
Biomedical and Life Sciences
Biomedicine
Calcification
Calcification (ectopic)
Cardiovascular diseases
Electron transport
Energy metabolism
Glutamine
Glycolysis
Human Genetics
Hyperphosphatemia
Internal Medicine
Kidney diseases
Mineralization
Mitochondria
Molecular Medicine
Original
Original Article
Oxidative stress
Phenotypes
Respiration
Smooth muscle
title Impact of β-glycerophosphate on the bioenergetic profile of vascular smooth muscle cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T13%3A47%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impact%20of%20%CE%B2-glycerophosphate%20on%20the%20bioenergetic%20profile%20of%20vascular%20smooth%20muscle%20cells&rft.jtitle=Journal%20of%20molecular%20medicine%20(Berlin,%20Germany)&rft.au=Alesutan,%20Ioana&rft.date=2020-07-01&rft.volume=98&rft.issue=7&rft.spage=985&rft.epage=997&rft.pages=985-997&rft.issn=0946-2716&rft.eissn=1432-1440&rft_id=info:doi/10.1007/s00109-020-01925-8&rft_dat=%3Cproquest_pubme%3E2421245302%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2421245302&rft_id=info:pmid/32488546&rfr_iscdi=true