Mendelian randomization accounting for correlated and uncorrelated pleiotropic effects using genome-wide summary statistics

Mendelian randomization (MR) is a valuable tool for detecting causal effects by using genetic variant associations. Opportunities to apply MR are growing rapidly with the increasing number of genome-wide association studies (GWAS). However, existing MR methods rely on strong assumptions that are oft...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature genetics 2020-07, Vol.52 (7), p.740-747
Hauptverfasser: Morrison, Jean, Knoblauch, Nicholas, Marcus, Joseph H., Stephens, Matthew, He, Xin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 747
container_issue 7
container_start_page 740
container_title Nature genetics
container_volume 52
creator Morrison, Jean
Knoblauch, Nicholas
Marcus, Joseph H.
Stephens, Matthew
He, Xin
description Mendelian randomization (MR) is a valuable tool for detecting causal effects by using genetic variant associations. Opportunities to apply MR are growing rapidly with the increasing number of genome-wide association studies (GWAS). However, existing MR methods rely on strong assumptions that are often violated, leading to false positives. Correlated horizontal pleiotropy, which arises when variants affect both traits through a heritable shared factor, remains a particularly challenging problem. We propose a new MR method, Causal Analysis Using Summary Effect estimates (CAUSE), that accounts for correlated and uncorrelated horizontal pleiotropic effects. We demonstrate, in simulations, that CAUSE avoids more false positives induced by correlated horizontal pleiotropy than other methods. Applied to traits studied in recent GWAS studies, we find that CAUSE detects causal relationships that have strong literature support and avoids identifying most unlikely relationships. Our results suggest that shared heritable factors are common and may lead to many false positives using alternative methods. CAUSE is a new Mendelian randomization method that accounts for correlated and uncorrelated horizontal pleiotropic effects. CAUSE is more robust to correlated pleiotropy than other methods and avoids identifying unlikely causal relationships.
doi_str_mv 10.1038/s41588-020-0631-4
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7343608</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A628784204</galeid><sourcerecordid>A628784204</sourcerecordid><originalsourceid>FETCH-LOGICAL-c605t-fea72698bfd47daa57c4c6112e3f5d86692f12c2b9b180c6dc059da7a3b7719b3</originalsourceid><addsrcrecordid>eNqNkk1vFiEUhSdGY2v1B7gxJG50MRUYhmE2Jk3jR5OaJn5tCQOXkWYGXoHRVv-8TN7a9jWaGBaQe59zgJtTVY8JPiS4ES8SI60QNaa4xrwhNbtT7ZOW8Zp0RNwtZ8xLETd8r3qQ0jnGhDEs7ld7DWUtYa3Yr36-A29gcsqjqLwJs_uhsgseKa3D4rPzI7IhIh1ihEllMKhgaPG3CpsJXMgxbJxGYC3onNCSVuUIPsxQf3cGUFrmWcVLlHK5IGWn08PqnlVTgkdX-0H16fWrj8dv69OzNyfHR6e15rjNtQXVUd6LwRrWGaXaTjPNCaHQ2NYIzntqCdV06AcisOZG47Y3qlPN0HWkH5qD6uXWd7MMMxgNPkc1yU1064NkUE7udrz7IsfwTXYNazgWxeDZlUEMXxdIWc4uaZgm5SEsSVKGec_6tscFffoHeh6W6Mv3CkULyEjf31CjmkA6b8v4lF5N5RGnohOMYlaow79QZRmYnQ4erCv1HcHzHUFhMlzkUS0pyZMP7_-fPfu8y5Itq2NIKYK9nh3Bck2i3CZRliTKNYly1Ty5PfRrxe_oFYBugVRafoR4M6l_u_4CVkbp3w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2422404199</pqid></control><display><type>article</type><title>Mendelian randomization accounting for correlated and uncorrelated pleiotropic effects using genome-wide summary statistics</title><source>MEDLINE</source><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Morrison, Jean ; Knoblauch, Nicholas ; Marcus, Joseph H. ; Stephens, Matthew ; He, Xin</creator><creatorcontrib>Morrison, Jean ; Knoblauch, Nicholas ; Marcus, Joseph H. ; Stephens, Matthew ; He, Xin</creatorcontrib><description>Mendelian randomization (MR) is a valuable tool for detecting causal effects by using genetic variant associations. Opportunities to apply MR are growing rapidly with the increasing number of genome-wide association studies (GWAS). However, existing MR methods rely on strong assumptions that are often violated, leading to false positives. Correlated horizontal pleiotropy, which arises when variants affect both traits through a heritable shared factor, remains a particularly challenging problem. We propose a new MR method, Causal Analysis Using Summary Effect estimates (CAUSE), that accounts for correlated and uncorrelated horizontal pleiotropic effects. We demonstrate, in simulations, that CAUSE avoids more false positives induced by correlated horizontal pleiotropy than other methods. Applied to traits studied in recent GWAS studies, we find that CAUSE detects causal relationships that have strong literature support and avoids identifying most unlikely relationships. Our results suggest that shared heritable factors are common and may lead to many false positives using alternative methods. CAUSE is a new Mendelian randomization method that accounts for correlated and uncorrelated horizontal pleiotropic effects. CAUSE is more robust to correlated pleiotropy than other methods and avoids identifying unlikely causal relationships.</description><identifier>ISSN: 1061-4036</identifier><identifier>EISSN: 1546-1718</identifier><identifier>DOI: 10.1038/s41588-020-0631-4</identifier><identifier>PMID: 32451458</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/114/794 ; 631/208/205/2138 ; 692/308/174 ; Agriculture ; Animal Genetics and Genomics ; Biomedical and Life Sciences ; Biomedicine ; Cancer Research ; Causality ; Computer Simulation ; Disease ; Estimates ; False Positive Reactions ; Gene Function ; Genetic diversity ; Genetic Pleiotropy ; Genetic research ; Genetic variance ; Genome ; Genome-wide association studies ; Genomes ; Genomics ; Human Genetics ; Mendelian Randomization Analysis - methods ; Methods ; Models, Statistical ; Pleiotropy ; Randomization ; Risk Factors ; Statistical analysis ; Statistics</subject><ispartof>Nature genetics, 2020-07, Vol.52 (7), p.740-747</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2020</rights><rights>COPYRIGHT 2020 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Jul 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c605t-fea72698bfd47daa57c4c6112e3f5d86692f12c2b9b180c6dc059da7a3b7719b3</citedby><cites>FETCH-LOGICAL-c605t-fea72698bfd47daa57c4c6112e3f5d86692f12c2b9b180c6dc059da7a3b7719b3</cites><orcidid>0000-0003-4829-8283 ; 0000-0002-0923-9881 ; 0000-0001-5397-9257 ; 0000-0001-9011-5212</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41588-020-0631-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41588-020-0631-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,777,781,882,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32451458$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Morrison, Jean</creatorcontrib><creatorcontrib>Knoblauch, Nicholas</creatorcontrib><creatorcontrib>Marcus, Joseph H.</creatorcontrib><creatorcontrib>Stephens, Matthew</creatorcontrib><creatorcontrib>He, Xin</creatorcontrib><title>Mendelian randomization accounting for correlated and uncorrelated pleiotropic effects using genome-wide summary statistics</title><title>Nature genetics</title><addtitle>Nat Genet</addtitle><addtitle>Nat Genet</addtitle><description>Mendelian randomization (MR) is a valuable tool for detecting causal effects by using genetic variant associations. Opportunities to apply MR are growing rapidly with the increasing number of genome-wide association studies (GWAS). However, existing MR methods rely on strong assumptions that are often violated, leading to false positives. Correlated horizontal pleiotropy, which arises when variants affect both traits through a heritable shared factor, remains a particularly challenging problem. We propose a new MR method, Causal Analysis Using Summary Effect estimates (CAUSE), that accounts for correlated and uncorrelated horizontal pleiotropic effects. We demonstrate, in simulations, that CAUSE avoids more false positives induced by correlated horizontal pleiotropy than other methods. Applied to traits studied in recent GWAS studies, we find that CAUSE detects causal relationships that have strong literature support and avoids identifying most unlikely relationships. Our results suggest that shared heritable factors are common and may lead to many false positives using alternative methods. CAUSE is a new Mendelian randomization method that accounts for correlated and uncorrelated horizontal pleiotropic effects. CAUSE is more robust to correlated pleiotropy than other methods and avoids identifying unlikely causal relationships.</description><subject>631/114/794</subject><subject>631/208/205/2138</subject><subject>692/308/174</subject><subject>Agriculture</subject><subject>Animal Genetics and Genomics</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cancer Research</subject><subject>Causality</subject><subject>Computer Simulation</subject><subject>Disease</subject><subject>Estimates</subject><subject>False Positive Reactions</subject><subject>Gene Function</subject><subject>Genetic diversity</subject><subject>Genetic Pleiotropy</subject><subject>Genetic research</subject><subject>Genetic variance</subject><subject>Genome</subject><subject>Genome-wide association studies</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Human Genetics</subject><subject>Mendelian Randomization Analysis - methods</subject><subject>Methods</subject><subject>Models, Statistical</subject><subject>Pleiotropy</subject><subject>Randomization</subject><subject>Risk Factors</subject><subject>Statistical analysis</subject><subject>Statistics</subject><issn>1061-4036</issn><issn>1546-1718</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkk1vFiEUhSdGY2v1B7gxJG50MRUYhmE2Jk3jR5OaJn5tCQOXkWYGXoHRVv-8TN7a9jWaGBaQe59zgJtTVY8JPiS4ES8SI60QNaa4xrwhNbtT7ZOW8Zp0RNwtZ8xLETd8r3qQ0jnGhDEs7ld7DWUtYa3Yr36-A29gcsqjqLwJs_uhsgseKa3D4rPzI7IhIh1ihEllMKhgaPG3CpsJXMgxbJxGYC3onNCSVuUIPsxQf3cGUFrmWcVLlHK5IGWn08PqnlVTgkdX-0H16fWrj8dv69OzNyfHR6e15rjNtQXVUd6LwRrWGaXaTjPNCaHQ2NYIzntqCdV06AcisOZG47Y3qlPN0HWkH5qD6uXWd7MMMxgNPkc1yU1064NkUE7udrz7IsfwTXYNazgWxeDZlUEMXxdIWc4uaZgm5SEsSVKGec_6tscFffoHeh6W6Mv3CkULyEjf31CjmkA6b8v4lF5N5RGnohOMYlaow79QZRmYnQ4erCv1HcHzHUFhMlzkUS0pyZMP7_-fPfu8y5Itq2NIKYK9nh3Bck2i3CZRliTKNYly1Ty5PfRrxe_oFYBugVRafoR4M6l_u_4CVkbp3w</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Morrison, Jean</creator><creator>Knoblauch, Nicholas</creator><creator>Marcus, Joseph H.</creator><creator>Stephens, Matthew</creator><creator>He, Xin</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4829-8283</orcidid><orcidid>https://orcid.org/0000-0002-0923-9881</orcidid><orcidid>https://orcid.org/0000-0001-5397-9257</orcidid><orcidid>https://orcid.org/0000-0001-9011-5212</orcidid></search><sort><creationdate>20200701</creationdate><title>Mendelian randomization accounting for correlated and uncorrelated pleiotropic effects using genome-wide summary statistics</title><author>Morrison, Jean ; Knoblauch, Nicholas ; Marcus, Joseph H. ; Stephens, Matthew ; He, Xin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c605t-fea72698bfd47daa57c4c6112e3f5d86692f12c2b9b180c6dc059da7a3b7719b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>631/114/794</topic><topic>631/208/205/2138</topic><topic>692/308/174</topic><topic>Agriculture</topic><topic>Animal Genetics and Genomics</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cancer Research</topic><topic>Causality</topic><topic>Computer Simulation</topic><topic>Disease</topic><topic>Estimates</topic><topic>False Positive Reactions</topic><topic>Gene Function</topic><topic>Genetic diversity</topic><topic>Genetic Pleiotropy</topic><topic>Genetic research</topic><topic>Genetic variance</topic><topic>Genome</topic><topic>Genome-wide association studies</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Human Genetics</topic><topic>Mendelian Randomization Analysis - methods</topic><topic>Methods</topic><topic>Models, Statistical</topic><topic>Pleiotropy</topic><topic>Randomization</topic><topic>Risk Factors</topic><topic>Statistical analysis</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morrison, Jean</creatorcontrib><creatorcontrib>Knoblauch, Nicholas</creatorcontrib><creatorcontrib>Marcus, Joseph H.</creatorcontrib><creatorcontrib>Stephens, Matthew</creatorcontrib><creatorcontrib>He, Xin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morrison, Jean</au><au>Knoblauch, Nicholas</au><au>Marcus, Joseph H.</au><au>Stephens, Matthew</au><au>He, Xin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mendelian randomization accounting for correlated and uncorrelated pleiotropic effects using genome-wide summary statistics</atitle><jtitle>Nature genetics</jtitle><stitle>Nat Genet</stitle><addtitle>Nat Genet</addtitle><date>2020-07-01</date><risdate>2020</risdate><volume>52</volume><issue>7</issue><spage>740</spage><epage>747</epage><pages>740-747</pages><issn>1061-4036</issn><eissn>1546-1718</eissn><abstract>Mendelian randomization (MR) is a valuable tool for detecting causal effects by using genetic variant associations. Opportunities to apply MR are growing rapidly with the increasing number of genome-wide association studies (GWAS). However, existing MR methods rely on strong assumptions that are often violated, leading to false positives. Correlated horizontal pleiotropy, which arises when variants affect both traits through a heritable shared factor, remains a particularly challenging problem. We propose a new MR method, Causal Analysis Using Summary Effect estimates (CAUSE), that accounts for correlated and uncorrelated horizontal pleiotropic effects. We demonstrate, in simulations, that CAUSE avoids more false positives induced by correlated horizontal pleiotropy than other methods. Applied to traits studied in recent GWAS studies, we find that CAUSE detects causal relationships that have strong literature support and avoids identifying most unlikely relationships. Our results suggest that shared heritable factors are common and may lead to many false positives using alternative methods. CAUSE is a new Mendelian randomization method that accounts for correlated and uncorrelated horizontal pleiotropic effects. CAUSE is more robust to correlated pleiotropy than other methods and avoids identifying unlikely causal relationships.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>32451458</pmid><doi>10.1038/s41588-020-0631-4</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-4829-8283</orcidid><orcidid>https://orcid.org/0000-0002-0923-9881</orcidid><orcidid>https://orcid.org/0000-0001-5397-9257</orcidid><orcidid>https://orcid.org/0000-0001-9011-5212</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1061-4036
ispartof Nature genetics, 2020-07, Vol.52 (7), p.740-747
issn 1061-4036
1546-1718
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7343608
source MEDLINE; Nature Journals Online; SpringerLink Journals - AutoHoldings
subjects 631/114/794
631/208/205/2138
692/308/174
Agriculture
Animal Genetics and Genomics
Biomedical and Life Sciences
Biomedicine
Cancer Research
Causality
Computer Simulation
Disease
Estimates
False Positive Reactions
Gene Function
Genetic diversity
Genetic Pleiotropy
Genetic research
Genetic variance
Genome
Genome-wide association studies
Genomes
Genomics
Human Genetics
Mendelian Randomization Analysis - methods
Methods
Models, Statistical
Pleiotropy
Randomization
Risk Factors
Statistical analysis
Statistics
title Mendelian randomization accounting for correlated and uncorrelated pleiotropic effects using genome-wide summary statistics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T16%3A55%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mendelian%20randomization%20accounting%20for%20correlated%20and%20uncorrelated%20pleiotropic%20effects%20using%20genome-wide%20summary%20statistics&rft.jtitle=Nature%20genetics&rft.au=Morrison,%20Jean&rft.date=2020-07-01&rft.volume=52&rft.issue=7&rft.spage=740&rft.epage=747&rft.pages=740-747&rft.issn=1061-4036&rft.eissn=1546-1718&rft_id=info:doi/10.1038/s41588-020-0631-4&rft_dat=%3Cgale_pubme%3EA628784204%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2422404199&rft_id=info:pmid/32451458&rft_galeid=A628784204&rfr_iscdi=true