Scatter Corrections in X-Ray Computed Tomography: A Physics-Based Analysis

Fundamental limits for the calculation of scattering corrections within X-ray computed tomography (CT) are found within the independent atom approximation from an analysis of the cross sections, CT geometry, and the Nyquist sampling theorem, suggesting large reductions in computational time compared...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of research of the National Institute of Standards and Technology 2019-01, Vol.124, p.1-23, Article 124013
Hauptverfasser: Levine, Zachary H, Blattner, Timothy J, Peskin, Adele P, Pintar, Adam L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 23
container_issue
container_start_page 1
container_title Journal of research of the National Institute of Standards and Technology
container_volume 124
creator Levine, Zachary H
Blattner, Timothy J
Peskin, Adele P
Pintar, Adam L
description Fundamental limits for the calculation of scattering corrections within X-ray computed tomography (CT) are found within the independent atom approximation from an analysis of the cross sections, CT geometry, and the Nyquist sampling theorem, suggesting large reductions in computational time compared to existing methods. By modifying the scatter by less than 1 %, it is possible to treat some of the elastic scattering in the forward direction as inelastic to achieve a smoother elastic scattering distribution. We present an analysis showing that the number of samples required for the smoother distribution can be greatly reduced. We show that fixed forced detection can be used with many fewer points for inelastic scattering, but that for pure elastic scattering, a standard Monte Carlo calculation is preferred. We use smoothing for both elastic and inelastic scattering because the intrinsic angular resolution is much poorer than can be achieved for projective tomography. Representative numerical examples are given.
doi_str_mv 10.6028/jres.124.013
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7339758</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A593028299</galeid><sourcerecordid>A593028299</sourcerecordid><originalsourceid>FETCH-LOGICAL-c528t-89040de1ee41a7a90d376710231ab330c7e567d9325507cb1a1c0c17ca2670c83</originalsourceid><addsrcrecordid>eNptktuO0zAQhi0EYg9wxwNE4gYkUnxI7IQLpFJxWLQSaHeRuLOmzjR1ldjFdtD27XHZFVBU-8L2zDe_Tz8hzxidScqb15uAccZ4NaNMPCCnnMm6VLyuHv4zPyFnMW5obrJqH5MTUTVKMVmdks_XBlLCUCx8CGiS9S4W1hXfyyvY5eC4nRJ2xY0ffR9gu969KebF1_UuWhPLdxBzbu5gyOv4hDxawRDx6f14Tr59eH-z-FRefvl4sZhflqbmTSqblla0Q4ZYMVDQ0k4oqRjlgsFSCGoU1lJ1reB1TZVZMmCGGqYMcKmoacQ5eXunu52WI3YGXQow6G2wI4Sd9mD1YcbZte79T62EaFW9F3hxLxD8jwlj0qONBocBHPopai5pwyht2jajz_9DN34K-cKZ4kLKJp-x-kv1MKC2buXzvmYvqud1K_Iv8d9a5RGqR4f5kN7hyubwAT87wufe4WjN0YKXBwWZSXibephi1BfXV4fsqzvWBB9jwNWf92NU732l977S2Vc6-0r8Ao8lu0o</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2236685504</pqid></control><display><type>article</type><title>Scatter Corrections in X-Ray Computed Tomography: A Physics-Based Analysis</title><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Levine, Zachary H ; Blattner, Timothy J ; Peskin, Adele P ; Pintar, Adam L</creator><creatorcontrib>Levine, Zachary H ; Blattner, Timothy J ; Peskin, Adele P ; Pintar, Adam L</creatorcontrib><description>Fundamental limits for the calculation of scattering corrections within X-ray computed tomography (CT) are found within the independent atom approximation from an analysis of the cross sections, CT geometry, and the Nyquist sampling theorem, suggesting large reductions in computational time compared to existing methods. By modifying the scatter by less than 1 %, it is possible to treat some of the elastic scattering in the forward direction as inelastic to achieve a smoother elastic scattering distribution. We present an analysis showing that the number of samples required for the smoother distribution can be greatly reduced. We show that fixed forced detection can be used with many fewer points for inelastic scattering, but that for pure elastic scattering, a standard Monte Carlo calculation is preferred. We use smoothing for both elastic and inelastic scattering because the intrinsic angular resolution is much poorer than can be achieved for projective tomography. Representative numerical examples are given.</description><identifier>ISSN: 2165-7254</identifier><identifier>ISSN: 1044-677X</identifier><identifier>EISSN: 2165-7254</identifier><identifier>DOI: 10.6028/jres.124.013</identifier><identifier>PMID: 34877164</identifier><language>eng</language><publisher>Gaithersburg: National Institute of Standards and Technology</publisher><subject>Algorithms ; Analysis ; Angular resolution ; CAT scans ; Computed tomography ; Computer simulation ; Computing time ; Elastic scattering ; Geometry ; Health physics ; Inelastic scattering ; Mathematical analysis ; Monte Carlo methods ; Monte Carlo simulation ; Physics ; Sensors ; Software ; X-rays</subject><ispartof>Journal of research of the National Institute of Standards and Technology, 2019-01, Vol.124, p.1-23, Article 124013</ispartof><rights>COPYRIGHT 2019 National Institute of Standards and Technology</rights><rights>2019. This work is published under NOCC (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c528t-89040de1ee41a7a90d376710231ab330c7e567d9325507cb1a1c0c17ca2670c83</citedby><cites>FETCH-LOGICAL-c528t-89040de1ee41a7a90d376710231ab330c7e567d9325507cb1a1c0c17ca2670c83</cites><orcidid>0000-0002-5021-2576 ; 0000-0002-9928-276X ; 0000-0003-4913-5566</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7339758/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7339758/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids></links><search><creatorcontrib>Levine, Zachary H</creatorcontrib><creatorcontrib>Blattner, Timothy J</creatorcontrib><creatorcontrib>Peskin, Adele P</creatorcontrib><creatorcontrib>Pintar, Adam L</creatorcontrib><title>Scatter Corrections in X-Ray Computed Tomography: A Physics-Based Analysis</title><title>Journal of research of the National Institute of Standards and Technology</title><description>Fundamental limits for the calculation of scattering corrections within X-ray computed tomography (CT) are found within the independent atom approximation from an analysis of the cross sections, CT geometry, and the Nyquist sampling theorem, suggesting large reductions in computational time compared to existing methods. By modifying the scatter by less than 1 %, it is possible to treat some of the elastic scattering in the forward direction as inelastic to achieve a smoother elastic scattering distribution. We present an analysis showing that the number of samples required for the smoother distribution can be greatly reduced. We show that fixed forced detection can be used with many fewer points for inelastic scattering, but that for pure elastic scattering, a standard Monte Carlo calculation is preferred. We use smoothing for both elastic and inelastic scattering because the intrinsic angular resolution is much poorer than can be achieved for projective tomography. Representative numerical examples are given.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Angular resolution</subject><subject>CAT scans</subject><subject>Computed tomography</subject><subject>Computer simulation</subject><subject>Computing time</subject><subject>Elastic scattering</subject><subject>Geometry</subject><subject>Health physics</subject><subject>Inelastic scattering</subject><subject>Mathematical analysis</subject><subject>Monte Carlo methods</subject><subject>Monte Carlo simulation</subject><subject>Physics</subject><subject>Sensors</subject><subject>Software</subject><subject>X-rays</subject><issn>2165-7254</issn><issn>1044-677X</issn><issn>2165-7254</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptktuO0zAQhi0EYg9wxwNE4gYkUnxI7IQLpFJxWLQSaHeRuLOmzjR1ldjFdtD27XHZFVBU-8L2zDe_Tz8hzxidScqb15uAccZ4NaNMPCCnnMm6VLyuHv4zPyFnMW5obrJqH5MTUTVKMVmdks_XBlLCUCx8CGiS9S4W1hXfyyvY5eC4nRJ2xY0ffR9gu969KebF1_UuWhPLdxBzbu5gyOv4hDxawRDx6f14Tr59eH-z-FRefvl4sZhflqbmTSqblla0Q4ZYMVDQ0k4oqRjlgsFSCGoU1lJ1reB1TZVZMmCGGqYMcKmoacQ5eXunu52WI3YGXQow6G2wI4Sd9mD1YcbZte79T62EaFW9F3hxLxD8jwlj0qONBocBHPopai5pwyht2jajz_9DN34K-cKZ4kLKJp-x-kv1MKC2buXzvmYvqud1K_Iv8d9a5RGqR4f5kN7hyubwAT87wufe4WjN0YKXBwWZSXibephi1BfXV4fsqzvWBB9jwNWf92NU732l977S2Vc6-0r8Ao8lu0o</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Levine, Zachary H</creator><creator>Blattner, Timothy J</creator><creator>Peskin, Adele P</creator><creator>Pintar, Adam L</creator><general>National Institute of Standards and Technology</general><general>Superintendent of Documents</general><general>[Gaithersburg, MD] : U.S. Dept. of Commerce, National Institute of Standards and Technology</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>4S-</scope><scope>4T-</scope><scope>4U-</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>PADUT</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>S0X</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5021-2576</orcidid><orcidid>https://orcid.org/0000-0002-9928-276X</orcidid><orcidid>https://orcid.org/0000-0003-4913-5566</orcidid></search><sort><creationdate>20190101</creationdate><title>Scatter Corrections in X-Ray Computed Tomography: A Physics-Based Analysis</title><author>Levine, Zachary H ; Blattner, Timothy J ; Peskin, Adele P ; Pintar, Adam L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c528t-89040de1ee41a7a90d376710231ab330c7e567d9325507cb1a1c0c17ca2670c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Angular resolution</topic><topic>CAT scans</topic><topic>Computed tomography</topic><topic>Computer simulation</topic><topic>Computing time</topic><topic>Elastic scattering</topic><topic>Geometry</topic><topic>Health physics</topic><topic>Inelastic scattering</topic><topic>Mathematical analysis</topic><topic>Monte Carlo methods</topic><topic>Monte Carlo simulation</topic><topic>Physics</topic><topic>Sensors</topic><topic>Software</topic><topic>X-rays</topic><toplevel>online_resources</toplevel><creatorcontrib>Levine, Zachary H</creatorcontrib><creatorcontrib>Blattner, Timothy J</creatorcontrib><creatorcontrib>Peskin, Adele P</creatorcontrib><creatorcontrib>Pintar, Adam L</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>BPIR.com Limited</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Research Library China</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of research of the National Institute of Standards and Technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Levine, Zachary H</au><au>Blattner, Timothy J</au><au>Peskin, Adele P</au><au>Pintar, Adam L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scatter Corrections in X-Ray Computed Tomography: A Physics-Based Analysis</atitle><jtitle>Journal of research of the National Institute of Standards and Technology</jtitle><date>2019-01-01</date><risdate>2019</risdate><volume>124</volume><spage>1</spage><epage>23</epage><pages>1-23</pages><artnum>124013</artnum><issn>2165-7254</issn><issn>1044-677X</issn><eissn>2165-7254</eissn><abstract>Fundamental limits for the calculation of scattering corrections within X-ray computed tomography (CT) are found within the independent atom approximation from an analysis of the cross sections, CT geometry, and the Nyquist sampling theorem, suggesting large reductions in computational time compared to existing methods. By modifying the scatter by less than 1 %, it is possible to treat some of the elastic scattering in the forward direction as inelastic to achieve a smoother elastic scattering distribution. We present an analysis showing that the number of samples required for the smoother distribution can be greatly reduced. We show that fixed forced detection can be used with many fewer points for inelastic scattering, but that for pure elastic scattering, a standard Monte Carlo calculation is preferred. We use smoothing for both elastic and inelastic scattering because the intrinsic angular resolution is much poorer than can be achieved for projective tomography. Representative numerical examples are given.</abstract><cop>Gaithersburg</cop><pub>National Institute of Standards and Technology</pub><pmid>34877164</pmid><doi>10.6028/jres.124.013</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0002-5021-2576</orcidid><orcidid>https://orcid.org/0000-0002-9928-276X</orcidid><orcidid>https://orcid.org/0000-0003-4913-5566</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2165-7254
ispartof Journal of research of the National Institute of Standards and Technology, 2019-01, Vol.124, p.1-23, Article 124013
issn 2165-7254
1044-677X
2165-7254
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7339758
source DOAJ Directory of Open Access Journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Algorithms
Analysis
Angular resolution
CAT scans
Computed tomography
Computer simulation
Computing time
Elastic scattering
Geometry
Health physics
Inelastic scattering
Mathematical analysis
Monte Carlo methods
Monte Carlo simulation
Physics
Sensors
Software
X-rays
title Scatter Corrections in X-Ray Computed Tomography: A Physics-Based Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T05%3A41%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scatter%20Corrections%20in%20X-Ray%20Computed%20Tomography:%20A%20Physics-Based%20Analysis&rft.jtitle=Journal%20of%20research%20of%20the%20National%20Institute%20of%20Standards%20and%20Technology&rft.au=Levine,%20Zachary%20H&rft.date=2019-01-01&rft.volume=124&rft.spage=1&rft.epage=23&rft.pages=1-23&rft.artnum=124013&rft.issn=2165-7254&rft.eissn=2165-7254&rft_id=info:doi/10.6028/jres.124.013&rft_dat=%3Cgale_pubme%3EA593028299%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2236685504&rft_id=info:pmid/34877164&rft_galeid=A593028299&rfr_iscdi=true