Resolving the adsorption of molecular O₂ on the rutile TiO₂(110) surface by noncontact atomic force microscopy
Interaction of molecular oxygen with semiconducting oxide surfaces plays a key role in many technologies. The topic is difficult to approach both by experiment and in theory, mainly due to multiple stable charge states, adsorption configurations, and reaction channels of adsorbed oxygen species. Her...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2020-06, Vol.117 (26), p.14827-14837 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14837 |
---|---|
container_issue | 26 |
container_start_page | 14827 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 117 |
creator | Sokolović, Igor Reticcioli, Michele Čalkovskýa, Martin Wagner, Margareta Schmid, Michael Franchini, Cesare Diebold, Ulrike Setvín, Martin |
description | Interaction of molecular oxygen with semiconducting oxide surfaces plays a key role in many technologies. The topic is difficult to approach both by experiment and in theory, mainly due to multiple stable charge states, adsorption configurations, and reaction channels of adsorbed oxygen species. Here we use a combination of noncontact atomic force microscopy (AFM) and density functional theory (DFT) to resolve O₂ adsorption on the rutile TiO₂(110) surface, which presents a longstanding challenge in the surface chemistry of metal oxides. We show that chemically inert AFM tips terminated by an oxygen adatom provide excellent resolution of both the adsorbed species and the oxygen sublattice of the substrate. Adsorbed O₂ molecules can accept either one or two electron polarons from the surface, forming superoxo or peroxo species. The peroxo state is energetically preferred under any conditions relevant for applications. The possibility of nonintrusive imaging allows us to explain behavior related to electron/hole injection from the tip, interaction with UV light, and the effect of thermal annealing. |
doi_str_mv | 10.1073/pnas.1922452117 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7334520</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26935029</jstor_id><sourcerecordid>26935029</sourcerecordid><originalsourceid>FETCH-LOGICAL-j208t-de1af40644ea5d05a4f5b330768e52f3bda2c9f25fcde652c9ae723b79c6645a3</originalsourceid><addsrcrecordid>eNpdkE1LHjEUhUOx1Fftuish4EYXY2--JpONINIvEISi6yGTSTQvM8mYZIR360_tL2lEEdrVPZzzcLj3IvSFwDkByb4uQedzoijlghIiP6ANAUWalivYQxsAKpuOU76PDnLeAoASHXxC-4wKKjshNyj9tjlOTz7c4_JgsR5zTEvxMeDo8Bwna9ZJJ3zz5_kZV_OFSWvxk8W3_sU8JQTOcF6T08biYYdDDCaGok3BusTZG-xiqlFVKWYTl90R-uj0lO3nt3mI7r5_u7362Vzf_Ph1dXndbCl0pRkt0Y5Dy7nVYgShuRMDYyDbzgrq2DBqapSjwpnRtqJqbSVlg1SmbbnQ7BBdvPYu6zDb0dhQkp76JflZp10fte__TYJ_6O_jUy8Zq--EWnD6VpDi42pz6WefjZ0mHWxcc085oUrVT_KKnvyHbuOaQj2vUhSIJErISh2_UttcYnrfhLaKCaCK_QX_OY_r</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2420171957</pqid></control><display><type>article</type><title>Resolving the adsorption of molecular O₂ on the rutile TiO₂(110) surface by noncontact atomic force microscopy</title><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Sokolović, Igor ; Reticcioli, Michele ; Čalkovskýa, Martin ; Wagner, Margareta ; Schmid, Michael ; Franchini, Cesare ; Diebold, Ulrike ; Setvín, Martin</creator><creatorcontrib>Sokolović, Igor ; Reticcioli, Michele ; Čalkovskýa, Martin ; Wagner, Margareta ; Schmid, Michael ; Franchini, Cesare ; Diebold, Ulrike ; Setvín, Martin</creatorcontrib><description>Interaction of molecular oxygen with semiconducting oxide surfaces plays a key role in many technologies. The topic is difficult to approach both by experiment and in theory, mainly due to multiple stable charge states, adsorption configurations, and reaction channels of adsorbed oxygen species. Here we use a combination of noncontact atomic force microscopy (AFM) and density functional theory (DFT) to resolve O₂ adsorption on the rutile TiO₂(110) surface, which presents a longstanding challenge in the surface chemistry of metal oxides. We show that chemically inert AFM tips terminated by an oxygen adatom provide excellent resolution of both the adsorbed species and the oxygen sublattice of the substrate. Adsorbed O₂ molecules can accept either one or two electron polarons from the surface, forming superoxo or peroxo species. The peroxo state is energetically preferred under any conditions relevant for applications. The possibility of nonintrusive imaging allows us to explain behavior related to electron/hole injection from the tip, interaction with UV light, and the effect of thermal annealing.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1922452117</identifier><identifier>PMID: 32527857</identifier><language>eng</language><publisher>Washington: National Academy of Sciences</publisher><subject>Adatoms ; Adsorption ; Atomic force microscopy ; Density functional theory ; Metal oxides ; Microscopy ; Oxygen ; Physical Sciences ; Rutile ; Species ; Substrates ; Surface chemistry ; Titanium dioxide ; Ultraviolet radiation</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2020-06, Vol.117 (26), p.14827-14837</ispartof><rights>Copyright National Academy of Sciences Jun 30, 2020</rights><rights>2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26935029$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26935029$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids></links><search><creatorcontrib>Sokolović, Igor</creatorcontrib><creatorcontrib>Reticcioli, Michele</creatorcontrib><creatorcontrib>Čalkovskýa, Martin</creatorcontrib><creatorcontrib>Wagner, Margareta</creatorcontrib><creatorcontrib>Schmid, Michael</creatorcontrib><creatorcontrib>Franchini, Cesare</creatorcontrib><creatorcontrib>Diebold, Ulrike</creatorcontrib><creatorcontrib>Setvín, Martin</creatorcontrib><title>Resolving the adsorption of molecular O₂ on the rutile TiO₂(110) surface by noncontact atomic force microscopy</title><title>Proceedings of the National Academy of Sciences - PNAS</title><description>Interaction of molecular oxygen with semiconducting oxide surfaces plays a key role in many technologies. The topic is difficult to approach both by experiment and in theory, mainly due to multiple stable charge states, adsorption configurations, and reaction channels of adsorbed oxygen species. Here we use a combination of noncontact atomic force microscopy (AFM) and density functional theory (DFT) to resolve O₂ adsorption on the rutile TiO₂(110) surface, which presents a longstanding challenge in the surface chemistry of metal oxides. We show that chemically inert AFM tips terminated by an oxygen adatom provide excellent resolution of both the adsorbed species and the oxygen sublattice of the substrate. Adsorbed O₂ molecules can accept either one or two electron polarons from the surface, forming superoxo or peroxo species. The peroxo state is energetically preferred under any conditions relevant for applications. The possibility of nonintrusive imaging allows us to explain behavior related to electron/hole injection from the tip, interaction with UV light, and the effect of thermal annealing.</description><subject>Adatoms</subject><subject>Adsorption</subject><subject>Atomic force microscopy</subject><subject>Density functional theory</subject><subject>Metal oxides</subject><subject>Microscopy</subject><subject>Oxygen</subject><subject>Physical Sciences</subject><subject>Rutile</subject><subject>Species</subject><subject>Substrates</subject><subject>Surface chemistry</subject><subject>Titanium dioxide</subject><subject>Ultraviolet radiation</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkE1LHjEUhUOx1Fftuish4EYXY2--JpONINIvEISi6yGTSTQvM8mYZIR360_tL2lEEdrVPZzzcLj3IvSFwDkByb4uQedzoijlghIiP6ANAUWalivYQxsAKpuOU76PDnLeAoASHXxC-4wKKjshNyj9tjlOTz7c4_JgsR5zTEvxMeDo8Bwna9ZJJ3zz5_kZV_OFSWvxk8W3_sU8JQTOcF6T08biYYdDDCaGok3BusTZG-xiqlFVKWYTl90R-uj0lO3nt3mI7r5_u7362Vzf_Ph1dXndbCl0pRkt0Y5Dy7nVYgShuRMDYyDbzgrq2DBqapSjwpnRtqJqbSVlg1SmbbnQ7BBdvPYu6zDb0dhQkp76JflZp10fte__TYJ_6O_jUy8Zq--EWnD6VpDi42pz6WefjZ0mHWxcc085oUrVT_KKnvyHbuOaQj2vUhSIJErISh2_UttcYnrfhLaKCaCK_QX_OY_r</recordid><startdate>20200630</startdate><enddate>20200630</enddate><creator>Sokolović, Igor</creator><creator>Reticcioli, Michele</creator><creator>Čalkovskýa, Martin</creator><creator>Wagner, Margareta</creator><creator>Schmid, Michael</creator><creator>Franchini, Cesare</creator><creator>Diebold, Ulrike</creator><creator>Setvín, Martin</creator><general>National Academy of Sciences</general><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20200630</creationdate><title>Resolving the adsorption of molecular O₂ on the rutile TiO₂(110) surface by noncontact atomic force microscopy</title><author>Sokolović, Igor ; Reticcioli, Michele ; Čalkovskýa, Martin ; Wagner, Margareta ; Schmid, Michael ; Franchini, Cesare ; Diebold, Ulrike ; Setvín, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j208t-de1af40644ea5d05a4f5b330768e52f3bda2c9f25fcde652c9ae723b79c6645a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adatoms</topic><topic>Adsorption</topic><topic>Atomic force microscopy</topic><topic>Density functional theory</topic><topic>Metal oxides</topic><topic>Microscopy</topic><topic>Oxygen</topic><topic>Physical Sciences</topic><topic>Rutile</topic><topic>Species</topic><topic>Substrates</topic><topic>Surface chemistry</topic><topic>Titanium dioxide</topic><topic>Ultraviolet radiation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sokolović, Igor</creatorcontrib><creatorcontrib>Reticcioli, Michele</creatorcontrib><creatorcontrib>Čalkovskýa, Martin</creatorcontrib><creatorcontrib>Wagner, Margareta</creatorcontrib><creatorcontrib>Schmid, Michael</creatorcontrib><creatorcontrib>Franchini, Cesare</creatorcontrib><creatorcontrib>Diebold, Ulrike</creatorcontrib><creatorcontrib>Setvín, Martin</creatorcontrib><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sokolović, Igor</au><au>Reticcioli, Michele</au><au>Čalkovskýa, Martin</au><au>Wagner, Margareta</au><au>Schmid, Michael</au><au>Franchini, Cesare</au><au>Diebold, Ulrike</au><au>Setvín, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Resolving the adsorption of molecular O₂ on the rutile TiO₂(110) surface by noncontact atomic force microscopy</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><date>2020-06-30</date><risdate>2020</risdate><volume>117</volume><issue>26</issue><spage>14827</spage><epage>14837</epage><pages>14827-14837</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Interaction of molecular oxygen with semiconducting oxide surfaces plays a key role in many technologies. The topic is difficult to approach both by experiment and in theory, mainly due to multiple stable charge states, adsorption configurations, and reaction channels of adsorbed oxygen species. Here we use a combination of noncontact atomic force microscopy (AFM) and density functional theory (DFT) to resolve O₂ adsorption on the rutile TiO₂(110) surface, which presents a longstanding challenge in the surface chemistry of metal oxides. We show that chemically inert AFM tips terminated by an oxygen adatom provide excellent resolution of both the adsorbed species and the oxygen sublattice of the substrate. Adsorbed O₂ molecules can accept either one or two electron polarons from the surface, forming superoxo or peroxo species. The peroxo state is energetically preferred under any conditions relevant for applications. The possibility of nonintrusive imaging allows us to explain behavior related to electron/hole injection from the tip, interaction with UV light, and the effect of thermal annealing.</abstract><cop>Washington</cop><pub>National Academy of Sciences</pub><pmid>32527857</pmid><doi>10.1073/pnas.1922452117</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2020-06, Vol.117 (26), p.14827-14837 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7334520 |
source | JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Adatoms Adsorption Atomic force microscopy Density functional theory Metal oxides Microscopy Oxygen Physical Sciences Rutile Species Substrates Surface chemistry Titanium dioxide Ultraviolet radiation |
title | Resolving the adsorption of molecular O₂ on the rutile TiO₂(110) surface by noncontact atomic force microscopy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T05%3A27%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Resolving%20the%20adsorption%20of%20molecular%20O%E2%82%82%20on%20the%20rutile%20TiO%E2%82%82(110)%20surface%20by%20noncontact%20atomic%20force%20microscopy&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Sokolovi%C4%87,%20Igor&rft.date=2020-06-30&rft.volume=117&rft.issue=26&rft.spage=14827&rft.epage=14837&rft.pages=14827-14837&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1922452117&rft_dat=%3Cjstor_pubme%3E26935029%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2420171957&rft_id=info:pmid/32527857&rft_jstor_id=26935029&rfr_iscdi=true |