Resolving the adsorption of molecular O₂ on the rutile TiO₂(110) surface by noncontact atomic force microscopy

Interaction of molecular oxygen with semiconducting oxide surfaces plays a key role in many technologies. The topic is difficult to approach both by experiment and in theory, mainly due to multiple stable charge states, adsorption configurations, and reaction channels of adsorbed oxygen species. Her...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2020-06, Vol.117 (26), p.14827-14837
Hauptverfasser: Sokolović, Igor, Reticcioli, Michele, Čalkovskýa, Martin, Wagner, Margareta, Schmid, Michael, Franchini, Cesare, Diebold, Ulrike, Setvín, Martin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14837
container_issue 26
container_start_page 14827
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 117
creator Sokolović, Igor
Reticcioli, Michele
Čalkovskýa, Martin
Wagner, Margareta
Schmid, Michael
Franchini, Cesare
Diebold, Ulrike
Setvín, Martin
description Interaction of molecular oxygen with semiconducting oxide surfaces plays a key role in many technologies. The topic is difficult to approach both by experiment and in theory, mainly due to multiple stable charge states, adsorption configurations, and reaction channels of adsorbed oxygen species. Here we use a combination of noncontact atomic force microscopy (AFM) and density functional theory (DFT) to resolve O₂ adsorption on the rutile TiO₂(110) surface, which presents a longstanding challenge in the surface chemistry of metal oxides. We show that chemically inert AFM tips terminated by an oxygen adatom provide excellent resolution of both the adsorbed species and the oxygen sublattice of the substrate. Adsorbed O₂ molecules can accept either one or two electron polarons from the surface, forming superoxo or peroxo species. The peroxo state is energetically preferred under any conditions relevant for applications. The possibility of nonintrusive imaging allows us to explain behavior related to electron/hole injection from the tip, interaction with UV light, and the effect of thermal annealing.
doi_str_mv 10.1073/pnas.1922452117
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7334520</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26935029</jstor_id><sourcerecordid>26935029</sourcerecordid><originalsourceid>FETCH-LOGICAL-j208t-de1af40644ea5d05a4f5b330768e52f3bda2c9f25fcde652c9ae723b79c6645a3</originalsourceid><addsrcrecordid>eNpdkE1LHjEUhUOx1Fftuish4EYXY2--JpONINIvEISi6yGTSTQvM8mYZIR360_tL2lEEdrVPZzzcLj3IvSFwDkByb4uQedzoijlghIiP6ANAUWalivYQxsAKpuOU76PDnLeAoASHXxC-4wKKjshNyj9tjlOTz7c4_JgsR5zTEvxMeDo8Bwna9ZJJ3zz5_kZV_OFSWvxk8W3_sU8JQTOcF6T08biYYdDDCaGok3BusTZG-xiqlFVKWYTl90R-uj0lO3nt3mI7r5_u7362Vzf_Ph1dXndbCl0pRkt0Y5Dy7nVYgShuRMDYyDbzgrq2DBqapSjwpnRtqJqbSVlg1SmbbnQ7BBdvPYu6zDb0dhQkp76JflZp10fte__TYJ_6O_jUy8Zq--EWnD6VpDi42pz6WefjZ0mHWxcc085oUrVT_KKnvyHbuOaQj2vUhSIJErISh2_UttcYnrfhLaKCaCK_QX_OY_r</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2420171957</pqid></control><display><type>article</type><title>Resolving the adsorption of molecular O₂ on the rutile TiO₂(110) surface by noncontact atomic force microscopy</title><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Sokolović, Igor ; Reticcioli, Michele ; Čalkovskýa, Martin ; Wagner, Margareta ; Schmid, Michael ; Franchini, Cesare ; Diebold, Ulrike ; Setvín, Martin</creator><creatorcontrib>Sokolović, Igor ; Reticcioli, Michele ; Čalkovskýa, Martin ; Wagner, Margareta ; Schmid, Michael ; Franchini, Cesare ; Diebold, Ulrike ; Setvín, Martin</creatorcontrib><description>Interaction of molecular oxygen with semiconducting oxide surfaces plays a key role in many technologies. The topic is difficult to approach both by experiment and in theory, mainly due to multiple stable charge states, adsorption configurations, and reaction channels of adsorbed oxygen species. Here we use a combination of noncontact atomic force microscopy (AFM) and density functional theory (DFT) to resolve O₂ adsorption on the rutile TiO₂(110) surface, which presents a longstanding challenge in the surface chemistry of metal oxides. We show that chemically inert AFM tips terminated by an oxygen adatom provide excellent resolution of both the adsorbed species and the oxygen sublattice of the substrate. Adsorbed O₂ molecules can accept either one or two electron polarons from the surface, forming superoxo or peroxo species. The peroxo state is energetically preferred under any conditions relevant for applications. The possibility of nonintrusive imaging allows us to explain behavior related to electron/hole injection from the tip, interaction with UV light, and the effect of thermal annealing.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1922452117</identifier><identifier>PMID: 32527857</identifier><language>eng</language><publisher>Washington: National Academy of Sciences</publisher><subject>Adatoms ; Adsorption ; Atomic force microscopy ; Density functional theory ; Metal oxides ; Microscopy ; Oxygen ; Physical Sciences ; Rutile ; Species ; Substrates ; Surface chemistry ; Titanium dioxide ; Ultraviolet radiation</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2020-06, Vol.117 (26), p.14827-14837</ispartof><rights>Copyright National Academy of Sciences Jun 30, 2020</rights><rights>2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26935029$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26935029$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids></links><search><creatorcontrib>Sokolović, Igor</creatorcontrib><creatorcontrib>Reticcioli, Michele</creatorcontrib><creatorcontrib>Čalkovskýa, Martin</creatorcontrib><creatorcontrib>Wagner, Margareta</creatorcontrib><creatorcontrib>Schmid, Michael</creatorcontrib><creatorcontrib>Franchini, Cesare</creatorcontrib><creatorcontrib>Diebold, Ulrike</creatorcontrib><creatorcontrib>Setvín, Martin</creatorcontrib><title>Resolving the adsorption of molecular O₂ on the rutile TiO₂(110) surface by noncontact atomic force microscopy</title><title>Proceedings of the National Academy of Sciences - PNAS</title><description>Interaction of molecular oxygen with semiconducting oxide surfaces plays a key role in many technologies. The topic is difficult to approach both by experiment and in theory, mainly due to multiple stable charge states, adsorption configurations, and reaction channels of adsorbed oxygen species. Here we use a combination of noncontact atomic force microscopy (AFM) and density functional theory (DFT) to resolve O₂ adsorption on the rutile TiO₂(110) surface, which presents a longstanding challenge in the surface chemistry of metal oxides. We show that chemically inert AFM tips terminated by an oxygen adatom provide excellent resolution of both the adsorbed species and the oxygen sublattice of the substrate. Adsorbed O₂ molecules can accept either one or two electron polarons from the surface, forming superoxo or peroxo species. The peroxo state is energetically preferred under any conditions relevant for applications. The possibility of nonintrusive imaging allows us to explain behavior related to electron/hole injection from the tip, interaction with UV light, and the effect of thermal annealing.</description><subject>Adatoms</subject><subject>Adsorption</subject><subject>Atomic force microscopy</subject><subject>Density functional theory</subject><subject>Metal oxides</subject><subject>Microscopy</subject><subject>Oxygen</subject><subject>Physical Sciences</subject><subject>Rutile</subject><subject>Species</subject><subject>Substrates</subject><subject>Surface chemistry</subject><subject>Titanium dioxide</subject><subject>Ultraviolet radiation</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkE1LHjEUhUOx1Fftuish4EYXY2--JpONINIvEISi6yGTSTQvM8mYZIR360_tL2lEEdrVPZzzcLj3IvSFwDkByb4uQedzoijlghIiP6ANAUWalivYQxsAKpuOU76PDnLeAoASHXxC-4wKKjshNyj9tjlOTz7c4_JgsR5zTEvxMeDo8Bwna9ZJJ3zz5_kZV_OFSWvxk8W3_sU8JQTOcF6T08biYYdDDCaGok3BusTZG-xiqlFVKWYTl90R-uj0lO3nt3mI7r5_u7362Vzf_Ph1dXndbCl0pRkt0Y5Dy7nVYgShuRMDYyDbzgrq2DBqapSjwpnRtqJqbSVlg1SmbbnQ7BBdvPYu6zDb0dhQkp76JflZp10fte__TYJ_6O_jUy8Zq--EWnD6VpDi42pz6WefjZ0mHWxcc085oUrVT_KKnvyHbuOaQj2vUhSIJErISh2_UttcYnrfhLaKCaCK_QX_OY_r</recordid><startdate>20200630</startdate><enddate>20200630</enddate><creator>Sokolović, Igor</creator><creator>Reticcioli, Michele</creator><creator>Čalkovskýa, Martin</creator><creator>Wagner, Margareta</creator><creator>Schmid, Michael</creator><creator>Franchini, Cesare</creator><creator>Diebold, Ulrike</creator><creator>Setvín, Martin</creator><general>National Academy of Sciences</general><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20200630</creationdate><title>Resolving the adsorption of molecular O₂ on the rutile TiO₂(110) surface by noncontact atomic force microscopy</title><author>Sokolović, Igor ; Reticcioli, Michele ; Čalkovskýa, Martin ; Wagner, Margareta ; Schmid, Michael ; Franchini, Cesare ; Diebold, Ulrike ; Setvín, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j208t-de1af40644ea5d05a4f5b330768e52f3bda2c9f25fcde652c9ae723b79c6645a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adatoms</topic><topic>Adsorption</topic><topic>Atomic force microscopy</topic><topic>Density functional theory</topic><topic>Metal oxides</topic><topic>Microscopy</topic><topic>Oxygen</topic><topic>Physical Sciences</topic><topic>Rutile</topic><topic>Species</topic><topic>Substrates</topic><topic>Surface chemistry</topic><topic>Titanium dioxide</topic><topic>Ultraviolet radiation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sokolović, Igor</creatorcontrib><creatorcontrib>Reticcioli, Michele</creatorcontrib><creatorcontrib>Čalkovskýa, Martin</creatorcontrib><creatorcontrib>Wagner, Margareta</creatorcontrib><creatorcontrib>Schmid, Michael</creatorcontrib><creatorcontrib>Franchini, Cesare</creatorcontrib><creatorcontrib>Diebold, Ulrike</creatorcontrib><creatorcontrib>Setvín, Martin</creatorcontrib><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sokolović, Igor</au><au>Reticcioli, Michele</au><au>Čalkovskýa, Martin</au><au>Wagner, Margareta</au><au>Schmid, Michael</au><au>Franchini, Cesare</au><au>Diebold, Ulrike</au><au>Setvín, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Resolving the adsorption of molecular O₂ on the rutile TiO₂(110) surface by noncontact atomic force microscopy</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><date>2020-06-30</date><risdate>2020</risdate><volume>117</volume><issue>26</issue><spage>14827</spage><epage>14837</epage><pages>14827-14837</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Interaction of molecular oxygen with semiconducting oxide surfaces plays a key role in many technologies. The topic is difficult to approach both by experiment and in theory, mainly due to multiple stable charge states, adsorption configurations, and reaction channels of adsorbed oxygen species. Here we use a combination of noncontact atomic force microscopy (AFM) and density functional theory (DFT) to resolve O₂ adsorption on the rutile TiO₂(110) surface, which presents a longstanding challenge in the surface chemistry of metal oxides. We show that chemically inert AFM tips terminated by an oxygen adatom provide excellent resolution of both the adsorbed species and the oxygen sublattice of the substrate. Adsorbed O₂ molecules can accept either one or two electron polarons from the surface, forming superoxo or peroxo species. The peroxo state is energetically preferred under any conditions relevant for applications. The possibility of nonintrusive imaging allows us to explain behavior related to electron/hole injection from the tip, interaction with UV light, and the effect of thermal annealing.</abstract><cop>Washington</cop><pub>National Academy of Sciences</pub><pmid>32527857</pmid><doi>10.1073/pnas.1922452117</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2020-06, Vol.117 (26), p.14827-14837
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7334520
source JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Adatoms
Adsorption
Atomic force microscopy
Density functional theory
Metal oxides
Microscopy
Oxygen
Physical Sciences
Rutile
Species
Substrates
Surface chemistry
Titanium dioxide
Ultraviolet radiation
title Resolving the adsorption of molecular O₂ on the rutile TiO₂(110) surface by noncontact atomic force microscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T05%3A27%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Resolving%20the%20adsorption%20of%20molecular%20O%E2%82%82%20on%20the%20rutile%20TiO%E2%82%82(110)%20surface%20by%20noncontact%20atomic%20force%20microscopy&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Sokolovi%C4%87,%20Igor&rft.date=2020-06-30&rft.volume=117&rft.issue=26&rft.spage=14827&rft.epage=14837&rft.pages=14827-14837&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1922452117&rft_dat=%3Cjstor_pubme%3E26935029%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2420171957&rft_id=info:pmid/32527857&rft_jstor_id=26935029&rfr_iscdi=true