Atomic-scale electronic structure of the cuprate pair density wave state coexisting with superconductivity

The defining characteristic of hole-doped cuprates is d-wave high temperature superconductivity. However, intense theoretical interest is now focused on whether a pair density wave state (PDW) could coexist with cuprate superconductivity [D. F. Agterberg et al., Annu. Rev. Condens. Matter Phys. 11,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2020-06, Vol.117 (26), p.14805-14811
Hauptverfasser: Choubey, Peayush, Joo, Sang Hyun, Fujita, K., Du, Zengyi, Edkins, S. D., Hamidian, M. H., Eisaki, H., Uchida, S., Mackenzie, A. P., Lee, Jinho, Davis, J. C. Séamus, Hirschfeld, P. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14811
container_issue 26
container_start_page 14805
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 117
creator Choubey, Peayush
Joo, Sang Hyun
Fujita, K.
Du, Zengyi
Edkins, S. D.
Hamidian, M. H.
Eisaki, H.
Uchida, S.
Mackenzie, A. P.
Lee, Jinho
Davis, J. C. Séamus
Hirschfeld, P. J.
description The defining characteristic of hole-doped cuprates is d-wave high temperature superconductivity. However, intense theoretical interest is now focused on whether a pair density wave state (PDW) could coexist with cuprate superconductivity [D. F. Agterberg et al., Annu. Rev. Condens. Matter Phys. 11, 231 (2020)]. Here, we use a strong-coupling mean-field theory of cuprates, to model the atomic-scale electronic structure of an eight-unit-cell periodic, d-symmetry form factor, pair density wave (PDW) state coexisting with d-wave superconductivity (DSC). From this PDW + DSC model, the atomically resolved density of Bogoliubov quasiparticle states N(r, E) is predicted at the terminal BiO surface of Bi₂Sr₂CaCu₂O₈ and compared with high-precision electronic visualization experiments using spectroscopic imaging scanning tunneling microscopy (STM). The PDW + DSC model predictions include the intraunit-cell structure and periodic modulations of N(r, E), the modulations of the coherence peak energy Δ p (r), and the characteristics of Bogoliubov quasiparticle interference in scattering-wavevector space (q – space). Consistency between all these predictions and the corresponding experiments indicates that lightly hole-doped Bi₂Sr₂CaCu₂O₈ does contain a PDW + DSC state. Moreover, in the model the PDW + DSC state becomes unstable to a pure DSC state at a critical hole density p*, with empirically equivalent phenomena occurring in the experiments. All these results are consistent with a picture in which the cuprate translational symmetry-breaking state is a PDW, the observed charge modulations are its consequence, the antinodal pseudogap is that of the PDW state, and the cuprate critical point at p* ≈ 19% occurs due to disappearance of this PDW.
doi_str_mv 10.1073/pnas.2002429117
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7334493</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26935026</jstor_id><sourcerecordid>26935026</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-1b3dd4ef6fb8f55e8c5d1cd511cbf86aca04e898d718014ae78957f33b1006d73</originalsourceid><addsrcrecordid>eNpdkc1v1DAQxS0EokvhzAnJgguXtOPv5IJUVXxJlbjA2fI6k65X2TjYzrb973G0VRGcLI1_82bePELeMrhgYMTlPLl8wQG45B1j5hnZMOhYo2UHz8mm1k3TSi7PyKuc9wDQqRZekjPBldSK6w3ZX5V4CL7J3o1IcURfUpyCp7mkxZclIY0DLTukfpmTK0hnFxLtccqhPNA7d8SKrnUf8T7kEqZbehfKjuZlxuTj1FeZcKzwa_JicGPGN4_vOfn15fPP62_NzY-v36-vbhovpSkN24q-lzjoYdsOSmHrVc98rxjz26HVzjuQ2HZtb1gLTDo0bafMIMSWAejeiHPy6aQ7L9sD9h6nktxo5xQOLj3Y6IL992cKO3sbj9YIIWUnqsD7k0Csdmz2oaDfVSdTPY5lWhqAFfr4OCXF3wvmYg8hexxHN2FcsuWSSQkd1-tCH_5D93FJU71BpTiw1Yiq1OWJ8inmnHB42piBXcO2a9j2b9i1492pY59LTE84151QwLX4A4BcqDI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2420171805</pqid></control><display><type>article</type><title>Atomic-scale electronic structure of the cuprate pair density wave state coexisting with superconductivity</title><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Choubey, Peayush ; Joo, Sang Hyun ; Fujita, K. ; Du, Zengyi ; Edkins, S. D. ; Hamidian, M. H. ; Eisaki, H. ; Uchida, S. ; Mackenzie, A. P. ; Lee, Jinho ; Davis, J. C. Séamus ; Hirschfeld, P. J.</creator><creatorcontrib>Choubey, Peayush ; Joo, Sang Hyun ; Fujita, K. ; Du, Zengyi ; Edkins, S. D. ; Hamidian, M. H. ; Eisaki, H. ; Uchida, S. ; Mackenzie, A. P. ; Lee, Jinho ; Davis, J. C. Séamus ; Hirschfeld, P. J. ; Brookhaven National Laboratory (BNL), Upton, NY (United States)</creatorcontrib><description>The defining characteristic of hole-doped cuprates is d-wave high temperature superconductivity. However, intense theoretical interest is now focused on whether a pair density wave state (PDW) could coexist with cuprate superconductivity [D. F. Agterberg et al., Annu. Rev. Condens. Matter Phys. 11, 231 (2020)]. Here, we use a strong-coupling mean-field theory of cuprates, to model the atomic-scale electronic structure of an eight-unit-cell periodic, d-symmetry form factor, pair density wave (PDW) state coexisting with d-wave superconductivity (DSC). From this PDW + DSC model, the atomically resolved density of Bogoliubov quasiparticle states N(r, E) is predicted at the terminal BiO surface of Bi₂Sr₂CaCu₂O₈ and compared with high-precision electronic visualization experiments using spectroscopic imaging scanning tunneling microscopy (STM). The PDW + DSC model predictions include the intraunit-cell structure and periodic modulations of N(r, E), the modulations of the coherence peak energy Δ p (r), and the characteristics of Bogoliubov quasiparticle interference in scattering-wavevector space (q – space). Consistency between all these predictions and the corresponding experiments indicates that lightly hole-doped Bi₂Sr₂CaCu₂O₈ does contain a PDW + DSC state. Moreover, in the model the PDW + DSC state becomes unstable to a pure DSC state at a critical hole density p*, with empirically equivalent phenomena occurring in the experiments. All these results are consistent with a picture in which the cuprate translational symmetry-breaking state is a PDW, the observed charge modulations are its consequence, the antinodal pseudogap is that of the PDW state, and the cuprate critical point at p* ≈ 19% occurs due to disappearance of this PDW.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2002429117</identifier><identifier>PMID: 32546526</identifier><language>eng</language><publisher>Washington: National Academy of Sciences</publisher><subject>Atomic structure ; Broken symmetry ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; Critical point ; cuprate pseudogap ; Cuprates ; Cytology ; Density ; Electronic structure ; Experiments ; Form factors ; High temperature ; Hole density ; Mean field theory ; pair density wave state ; Physical Sciences ; quasiparticle interference ; Scanning tunneling microscopy ; Superconductivity ; Unit cell</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2020-06, Vol.117 (26), p.14805-14811</ispartof><rights>Copyright National Academy of Sciences Jun 30, 2020</rights><rights>Copyright © 2020 the Author(s). Published by PNAS. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-1b3dd4ef6fb8f55e8c5d1cd511cbf86aca04e898d718014ae78957f33b1006d73</citedby><cites>FETCH-LOGICAL-c447t-1b3dd4ef6fb8f55e8c5d1cd511cbf86aca04e898d718014ae78957f33b1006d73</cites><orcidid>0000-0002-2363-7712 ; 0000-0002-1610-1506 ; 0000000223637712 ; 0000000216101506</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26935026$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26935026$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1647003$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Choubey, Peayush</creatorcontrib><creatorcontrib>Joo, Sang Hyun</creatorcontrib><creatorcontrib>Fujita, K.</creatorcontrib><creatorcontrib>Du, Zengyi</creatorcontrib><creatorcontrib>Edkins, S. D.</creatorcontrib><creatorcontrib>Hamidian, M. H.</creatorcontrib><creatorcontrib>Eisaki, H.</creatorcontrib><creatorcontrib>Uchida, S.</creatorcontrib><creatorcontrib>Mackenzie, A. P.</creatorcontrib><creatorcontrib>Lee, Jinho</creatorcontrib><creatorcontrib>Davis, J. C. Séamus</creatorcontrib><creatorcontrib>Hirschfeld, P. J.</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL), Upton, NY (United States)</creatorcontrib><title>Atomic-scale electronic structure of the cuprate pair density wave state coexisting with superconductivity</title><title>Proceedings of the National Academy of Sciences - PNAS</title><description>The defining characteristic of hole-doped cuprates is d-wave high temperature superconductivity. However, intense theoretical interest is now focused on whether a pair density wave state (PDW) could coexist with cuprate superconductivity [D. F. Agterberg et al., Annu. Rev. Condens. Matter Phys. 11, 231 (2020)]. Here, we use a strong-coupling mean-field theory of cuprates, to model the atomic-scale electronic structure of an eight-unit-cell periodic, d-symmetry form factor, pair density wave (PDW) state coexisting with d-wave superconductivity (DSC). From this PDW + DSC model, the atomically resolved density of Bogoliubov quasiparticle states N(r, E) is predicted at the terminal BiO surface of Bi₂Sr₂CaCu₂O₈ and compared with high-precision electronic visualization experiments using spectroscopic imaging scanning tunneling microscopy (STM). The PDW + DSC model predictions include the intraunit-cell structure and periodic modulations of N(r, E), the modulations of the coherence peak energy Δ p (r), and the characteristics of Bogoliubov quasiparticle interference in scattering-wavevector space (q – space). Consistency between all these predictions and the corresponding experiments indicates that lightly hole-doped Bi₂Sr₂CaCu₂O₈ does contain a PDW + DSC state. Moreover, in the model the PDW + DSC state becomes unstable to a pure DSC state at a critical hole density p*, with empirically equivalent phenomena occurring in the experiments. All these results are consistent with a picture in which the cuprate translational symmetry-breaking state is a PDW, the observed charge modulations are its consequence, the antinodal pseudogap is that of the PDW state, and the cuprate critical point at p* ≈ 19% occurs due to disappearance of this PDW.</description><subject>Atomic structure</subject><subject>Broken symmetry</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>Critical point</subject><subject>cuprate pseudogap</subject><subject>Cuprates</subject><subject>Cytology</subject><subject>Density</subject><subject>Electronic structure</subject><subject>Experiments</subject><subject>Form factors</subject><subject>High temperature</subject><subject>Hole density</subject><subject>Mean field theory</subject><subject>pair density wave state</subject><subject>Physical Sciences</subject><subject>quasiparticle interference</subject><subject>Scanning tunneling microscopy</subject><subject>Superconductivity</subject><subject>Unit cell</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkc1v1DAQxS0EokvhzAnJgguXtOPv5IJUVXxJlbjA2fI6k65X2TjYzrb973G0VRGcLI1_82bePELeMrhgYMTlPLl8wQG45B1j5hnZMOhYo2UHz8mm1k3TSi7PyKuc9wDQqRZekjPBldSK6w3ZX5V4CL7J3o1IcURfUpyCp7mkxZclIY0DLTukfpmTK0hnFxLtccqhPNA7d8SKrnUf8T7kEqZbehfKjuZlxuTj1FeZcKzwa_JicGPGN4_vOfn15fPP62_NzY-v36-vbhovpSkN24q-lzjoYdsOSmHrVc98rxjz26HVzjuQ2HZtb1gLTDo0bafMIMSWAejeiHPy6aQ7L9sD9h6nktxo5xQOLj3Y6IL992cKO3sbj9YIIWUnqsD7k0Csdmz2oaDfVSdTPY5lWhqAFfr4OCXF3wvmYg8hexxHN2FcsuWSSQkd1-tCH_5D93FJU71BpTiw1Yiq1OWJ8inmnHB42piBXcO2a9j2b9i1492pY59LTE84151QwLX4A4BcqDI</recordid><startdate>20200630</startdate><enddate>20200630</enddate><creator>Choubey, Peayush</creator><creator>Joo, Sang Hyun</creator><creator>Fujita, K.</creator><creator>Du, Zengyi</creator><creator>Edkins, S. D.</creator><creator>Hamidian, M. H.</creator><creator>Eisaki, H.</creator><creator>Uchida, S.</creator><creator>Mackenzie, A. P.</creator><creator>Lee, Jinho</creator><creator>Davis, J. C. Séamus</creator><creator>Hirschfeld, P. J.</creator><general>National Academy of Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2363-7712</orcidid><orcidid>https://orcid.org/0000-0002-1610-1506</orcidid><orcidid>https://orcid.org/0000000223637712</orcidid><orcidid>https://orcid.org/0000000216101506</orcidid></search><sort><creationdate>20200630</creationdate><title>Atomic-scale electronic structure of the cuprate pair density wave state coexisting with superconductivity</title><author>Choubey, Peayush ; Joo, Sang Hyun ; Fujita, K. ; Du, Zengyi ; Edkins, S. D. ; Hamidian, M. H. ; Eisaki, H. ; Uchida, S. ; Mackenzie, A. P. ; Lee, Jinho ; Davis, J. C. Séamus ; Hirschfeld, P. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-1b3dd4ef6fb8f55e8c5d1cd511cbf86aca04e898d718014ae78957f33b1006d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Atomic structure</topic><topic>Broken symmetry</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>Critical point</topic><topic>cuprate pseudogap</topic><topic>Cuprates</topic><topic>Cytology</topic><topic>Density</topic><topic>Electronic structure</topic><topic>Experiments</topic><topic>Form factors</topic><topic>High temperature</topic><topic>Hole density</topic><topic>Mean field theory</topic><topic>pair density wave state</topic><topic>Physical Sciences</topic><topic>quasiparticle interference</topic><topic>Scanning tunneling microscopy</topic><topic>Superconductivity</topic><topic>Unit cell</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choubey, Peayush</creatorcontrib><creatorcontrib>Joo, Sang Hyun</creatorcontrib><creatorcontrib>Fujita, K.</creatorcontrib><creatorcontrib>Du, Zengyi</creatorcontrib><creatorcontrib>Edkins, S. D.</creatorcontrib><creatorcontrib>Hamidian, M. H.</creatorcontrib><creatorcontrib>Eisaki, H.</creatorcontrib><creatorcontrib>Uchida, S.</creatorcontrib><creatorcontrib>Mackenzie, A. P.</creatorcontrib><creatorcontrib>Lee, Jinho</creatorcontrib><creatorcontrib>Davis, J. C. Séamus</creatorcontrib><creatorcontrib>Hirschfeld, P. J.</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL), Upton, NY (United States)</creatorcontrib><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choubey, Peayush</au><au>Joo, Sang Hyun</au><au>Fujita, K.</au><au>Du, Zengyi</au><au>Edkins, S. D.</au><au>Hamidian, M. H.</au><au>Eisaki, H.</au><au>Uchida, S.</au><au>Mackenzie, A. P.</au><au>Lee, Jinho</au><au>Davis, J. C. Séamus</au><au>Hirschfeld, P. J.</au><aucorp>Brookhaven National Laboratory (BNL), Upton, NY (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atomic-scale electronic structure of the cuprate pair density wave state coexisting with superconductivity</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><date>2020-06-30</date><risdate>2020</risdate><volume>117</volume><issue>26</issue><spage>14805</spage><epage>14811</epage><pages>14805-14811</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The defining characteristic of hole-doped cuprates is d-wave high temperature superconductivity. However, intense theoretical interest is now focused on whether a pair density wave state (PDW) could coexist with cuprate superconductivity [D. F. Agterberg et al., Annu. Rev. Condens. Matter Phys. 11, 231 (2020)]. Here, we use a strong-coupling mean-field theory of cuprates, to model the atomic-scale electronic structure of an eight-unit-cell periodic, d-symmetry form factor, pair density wave (PDW) state coexisting with d-wave superconductivity (DSC). From this PDW + DSC model, the atomically resolved density of Bogoliubov quasiparticle states N(r, E) is predicted at the terminal BiO surface of Bi₂Sr₂CaCu₂O₈ and compared with high-precision electronic visualization experiments using spectroscopic imaging scanning tunneling microscopy (STM). The PDW + DSC model predictions include the intraunit-cell structure and periodic modulations of N(r, E), the modulations of the coherence peak energy Δ p (r), and the characteristics of Bogoliubov quasiparticle interference in scattering-wavevector space (q – space). Consistency between all these predictions and the corresponding experiments indicates that lightly hole-doped Bi₂Sr₂CaCu₂O₈ does contain a PDW + DSC state. Moreover, in the model the PDW + DSC state becomes unstable to a pure DSC state at a critical hole density p*, with empirically equivalent phenomena occurring in the experiments. All these results are consistent with a picture in which the cuprate translational symmetry-breaking state is a PDW, the observed charge modulations are its consequence, the antinodal pseudogap is that of the PDW state, and the cuprate critical point at p* ≈ 19% occurs due to disappearance of this PDW.</abstract><cop>Washington</cop><pub>National Academy of Sciences</pub><pmid>32546526</pmid><doi>10.1073/pnas.2002429117</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-2363-7712</orcidid><orcidid>https://orcid.org/0000-0002-1610-1506</orcidid><orcidid>https://orcid.org/0000000223637712</orcidid><orcidid>https://orcid.org/0000000216101506</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2020-06, Vol.117 (26), p.14805-14811
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7334493
source Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Atomic structure
Broken symmetry
CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
Critical point
cuprate pseudogap
Cuprates
Cytology
Density
Electronic structure
Experiments
Form factors
High temperature
Hole density
Mean field theory
pair density wave state
Physical Sciences
quasiparticle interference
Scanning tunneling microscopy
Superconductivity
Unit cell
title Atomic-scale electronic structure of the cuprate pair density wave state coexisting with superconductivity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T19%3A19%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atomic-scale%20electronic%20structure%20of%20the%20cuprate%20pair%20density%20wave%20state%20coexisting%20with%20superconductivity&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Choubey,%20Peayush&rft.aucorp=Brookhaven%20National%20Laboratory%20(BNL),%20Upton,%20NY%20(United%20States)&rft.date=2020-06-30&rft.volume=117&rft.issue=26&rft.spage=14805&rft.epage=14811&rft.pages=14805-14811&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2002429117&rft_dat=%3Cjstor_pubme%3E26935026%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2420171805&rft_id=info:pmid/32546526&rft_jstor_id=26935026&rfr_iscdi=true