Macromolecule crowding effects on the phase separation of semi-flexible polymer in spherical confined space
Current works focus on detecting macromolecule crowding effects on the phase separation of the mixture between semi-flexible polymer and crowders (hydrophilic polymers) in confined space by Monte Carlo simulations. With the increasing addition of crowders into the spherical confined space, the semi-...
Gespeichert in:
Veröffentlicht in: | Journal of biological physics 2020-06, Vol.46 (2), p.223-231 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 231 |
---|---|
container_issue | 2 |
container_start_page | 223 |
container_title | Journal of biological physics |
container_volume | 46 |
creator | Wang, Hongchang Gu, Lingyun Tan, Rongri Ma, Xiaotian Zhou, Xun Liu, Yanhui |
description | Current works focus on detecting macromolecule crowding effects on the phase separation of the mixture between semi-flexible polymer and crowders (hydrophilic polymers) in confined space by Monte Carlo simulations. With the increasing addition of crowders into the spherical confined space, the semi-flexible polymer was first compressed into a condensed state from the initial coil state, and then the condensed conformation expanded and deposited on the inner surface of the spherical confined space with an extended state. The phase diagram in the phase space of the volume fraction of crowders and the scaled radius of spherical confined space by crowder diameter, and the direct conformation transition of semi-flexible polymer have validated the phase transition process successfully. In addition, the deposition of extended conformation on the inner surface of the spherical confined space was qualified by the vertex density, its curve shifted along the radial direction with the increasing volume fraction of crowder. During the phase separation process, the critical volume fraction
φ
∗
relates to the crowder diameter approximately linearly and the relation between the critical volume fraction and the crowder diameter strongly depends on the size of the spherical confined space. |
doi_str_mv | 10.1007/s10867-020-09550-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7334316</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2419779954</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-39becdf8181c92c8a360974478307e012862b4f8872545338fc53132f4d511d43</originalsourceid><addsrcrecordid>eNp9UcuO1DAQtBCIHQZ-gJMlLlwCfsb2BQmtloe0iAucLY_TnvGS2MFOgP17PGQFggOnflWVursQekrJC0qIelkp0b3qCCMdMVKSztxDOyoV70ivzX20I8SwlpP-Aj2q9Ya0WjP5EF1w1lMuRL9DXz44X_KUR_DrCLjl34eYjhhCAL9UnBNeToDnk6uAK8yuuCW2Zg6tmmIXRvgRD4055_F2goJjwnU-QYnejdjnFGKCobWch8foQXBjhSd3cY8-v7n6dPmuu_749v3l6-vOC0mXjpsD-CFoqqk3zGvHe2KUEEpzooBQpnt2EEFrxaSQnOvgJaecBTFISgfB9-jVpjuvhwkGD2kpbrRziZMrtza7aP-epHiyx_zNKs4Fp30TeH4nUPLXFepip1g9jKNLkNdqmaBGUXp-4h49-wd6k9eS2nkbShkjzxuxDdX-W2uB8HsZSuzZS7t5aZuX9peX1jQS30i1gdMRyh_p_7B-AqEtoNo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2419779954</pqid></control><display><type>article</type><title>Macromolecule crowding effects on the phase separation of semi-flexible polymer in spherical confined space</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>SpringerNature Journals</source><source>PubMed Central</source><creator>Wang, Hongchang ; Gu, Lingyun ; Tan, Rongri ; Ma, Xiaotian ; Zhou, Xun ; Liu, Yanhui</creator><creatorcontrib>Wang, Hongchang ; Gu, Lingyun ; Tan, Rongri ; Ma, Xiaotian ; Zhou, Xun ; Liu, Yanhui</creatorcontrib><description>Current works focus on detecting macromolecule crowding effects on the phase separation of the mixture between semi-flexible polymer and crowders (hydrophilic polymers) in confined space by Monte Carlo simulations. With the increasing addition of crowders into the spherical confined space, the semi-flexible polymer was first compressed into a condensed state from the initial coil state, and then the condensed conformation expanded and deposited on the inner surface of the spherical confined space with an extended state. The phase diagram in the phase space of the volume fraction of crowders and the scaled radius of spherical confined space by crowder diameter, and the direct conformation transition of semi-flexible polymer have validated the phase transition process successfully. In addition, the deposition of extended conformation on the inner surface of the spherical confined space was qualified by the vertex density, its curve shifted along the radial direction with the increasing volume fraction of crowder. During the phase separation process, the critical volume fraction
φ
∗
relates to the crowder diameter approximately linearly and the relation between the critical volume fraction and the crowder diameter strongly depends on the size of the spherical confined space.</description><identifier>ISSN: 0092-0606</identifier><identifier>EISSN: 1573-0689</identifier><identifier>DOI: 10.1007/s10867-020-09550-9</identifier><identifier>PMID: 32613446</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Biochemistry ; Biological and Medical Physics ; Biophysics ; Complex Fluids and Microfluidics ; Complex Systems ; Conformation ; Crowding ; Neurosciences ; Original Paper ; Phase transitions ; Physics ; Physics and Astronomy ; Polymers ; Soft and Granular Matter</subject><ispartof>Journal of biological physics, 2020-06, Vol.46 (2), p.223-231</ispartof><rights>Springer Nature B.V. 2020</rights><rights>Springer Nature B.V. 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-39becdf8181c92c8a360974478307e012862b4f8872545338fc53132f4d511d43</citedby><cites>FETCH-LOGICAL-c451t-39becdf8181c92c8a360974478307e012862b4f8872545338fc53132f4d511d43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7334316/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7334316/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,41488,42557,51319,53791,53793</link.rule.ids></links><search><creatorcontrib>Wang, Hongchang</creatorcontrib><creatorcontrib>Gu, Lingyun</creatorcontrib><creatorcontrib>Tan, Rongri</creatorcontrib><creatorcontrib>Ma, Xiaotian</creatorcontrib><creatorcontrib>Zhou, Xun</creatorcontrib><creatorcontrib>Liu, Yanhui</creatorcontrib><title>Macromolecule crowding effects on the phase separation of semi-flexible polymer in spherical confined space</title><title>Journal of biological physics</title><addtitle>J Biol Phys</addtitle><description>Current works focus on detecting macromolecule crowding effects on the phase separation of the mixture between semi-flexible polymer and crowders (hydrophilic polymers) in confined space by Monte Carlo simulations. With the increasing addition of crowders into the spherical confined space, the semi-flexible polymer was first compressed into a condensed state from the initial coil state, and then the condensed conformation expanded and deposited on the inner surface of the spherical confined space with an extended state. The phase diagram in the phase space of the volume fraction of crowders and the scaled radius of spherical confined space by crowder diameter, and the direct conformation transition of semi-flexible polymer have validated the phase transition process successfully. In addition, the deposition of extended conformation on the inner surface of the spherical confined space was qualified by the vertex density, its curve shifted along the radial direction with the increasing volume fraction of crowder. During the phase separation process, the critical volume fraction
φ
∗
relates to the crowder diameter approximately linearly and the relation between the critical volume fraction and the crowder diameter strongly depends on the size of the spherical confined space.</description><subject>Biochemistry</subject><subject>Biological and Medical Physics</subject><subject>Biophysics</subject><subject>Complex Fluids and Microfluidics</subject><subject>Complex Systems</subject><subject>Conformation</subject><subject>Crowding</subject><subject>Neurosciences</subject><subject>Original Paper</subject><subject>Phase transitions</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Polymers</subject><subject>Soft and Granular Matter</subject><issn>0092-0606</issn><issn>1573-0689</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9UcuO1DAQtBCIHQZ-gJMlLlwCfsb2BQmtloe0iAucLY_TnvGS2MFOgP17PGQFggOnflWVursQekrJC0qIelkp0b3qCCMdMVKSztxDOyoV70ivzX20I8SwlpP-Aj2q9Ya0WjP5EF1w1lMuRL9DXz44X_KUR_DrCLjl34eYjhhCAL9UnBNeToDnk6uAK8yuuCW2Zg6tmmIXRvgRD4055_F2goJjwnU-QYnejdjnFGKCobWch8foQXBjhSd3cY8-v7n6dPmuu_749v3l6-vOC0mXjpsD-CFoqqk3zGvHe2KUEEpzooBQpnt2EEFrxaSQnOvgJaecBTFISgfB9-jVpjuvhwkGD2kpbrRziZMrtza7aP-epHiyx_zNKs4Fp30TeH4nUPLXFepip1g9jKNLkNdqmaBGUXp-4h49-wd6k9eS2nkbShkjzxuxDdX-W2uB8HsZSuzZS7t5aZuX9peX1jQS30i1gdMRyh_p_7B-AqEtoNo</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Wang, Hongchang</creator><creator>Gu, Lingyun</creator><creator>Tan, Rongri</creator><creator>Ma, Xiaotian</creator><creator>Zhou, Xun</creator><creator>Liu, Yanhui</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20200601</creationdate><title>Macromolecule crowding effects on the phase separation of semi-flexible polymer in spherical confined space</title><author>Wang, Hongchang ; Gu, Lingyun ; Tan, Rongri ; Ma, Xiaotian ; Zhou, Xun ; Liu, Yanhui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-39becdf8181c92c8a360974478307e012862b4f8872545338fc53132f4d511d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biochemistry</topic><topic>Biological and Medical Physics</topic><topic>Biophysics</topic><topic>Complex Fluids and Microfluidics</topic><topic>Complex Systems</topic><topic>Conformation</topic><topic>Crowding</topic><topic>Neurosciences</topic><topic>Original Paper</topic><topic>Phase transitions</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Polymers</topic><topic>Soft and Granular Matter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Hongchang</creatorcontrib><creatorcontrib>Gu, Lingyun</creatorcontrib><creatorcontrib>Tan, Rongri</creatorcontrib><creatorcontrib>Ma, Xiaotian</creatorcontrib><creatorcontrib>Zhou, Xun</creatorcontrib><creatorcontrib>Liu, Yanhui</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of biological physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Hongchang</au><au>Gu, Lingyun</au><au>Tan, Rongri</au><au>Ma, Xiaotian</au><au>Zhou, Xun</au><au>Liu, Yanhui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Macromolecule crowding effects on the phase separation of semi-flexible polymer in spherical confined space</atitle><jtitle>Journal of biological physics</jtitle><stitle>J Biol Phys</stitle><date>2020-06-01</date><risdate>2020</risdate><volume>46</volume><issue>2</issue><spage>223</spage><epage>231</epage><pages>223-231</pages><issn>0092-0606</issn><eissn>1573-0689</eissn><abstract>Current works focus on detecting macromolecule crowding effects on the phase separation of the mixture between semi-flexible polymer and crowders (hydrophilic polymers) in confined space by Monte Carlo simulations. With the increasing addition of crowders into the spherical confined space, the semi-flexible polymer was first compressed into a condensed state from the initial coil state, and then the condensed conformation expanded and deposited on the inner surface of the spherical confined space with an extended state. The phase diagram in the phase space of the volume fraction of crowders and the scaled radius of spherical confined space by crowder diameter, and the direct conformation transition of semi-flexible polymer have validated the phase transition process successfully. In addition, the deposition of extended conformation on the inner surface of the spherical confined space was qualified by the vertex density, its curve shifted along the radial direction with the increasing volume fraction of crowder. During the phase separation process, the critical volume fraction
φ
∗
relates to the crowder diameter approximately linearly and the relation between the critical volume fraction and the crowder diameter strongly depends on the size of the spherical confined space.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>32613446</pmid><doi>10.1007/s10867-020-09550-9</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0092-0606 |
ispartof | Journal of biological physics, 2020-06, Vol.46 (2), p.223-231 |
issn | 0092-0606 1573-0689 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7334316 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; SpringerNature Journals; PubMed Central |
subjects | Biochemistry Biological and Medical Physics Biophysics Complex Fluids and Microfluidics Complex Systems Conformation Crowding Neurosciences Original Paper Phase transitions Physics Physics and Astronomy Polymers Soft and Granular Matter |
title | Macromolecule crowding effects on the phase separation of semi-flexible polymer in spherical confined space |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T05%3A14%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Macromolecule%20crowding%20effects%20on%20the%20phase%20separation%20of%20semi-flexible%20polymer%20in%20spherical%20confined%20space&rft.jtitle=Journal%20of%20biological%20physics&rft.au=Wang,%20Hongchang&rft.date=2020-06-01&rft.volume=46&rft.issue=2&rft.spage=223&rft.epage=231&rft.pages=223-231&rft.issn=0092-0606&rft.eissn=1573-0689&rft_id=info:doi/10.1007/s10867-020-09550-9&rft_dat=%3Cproquest_pubme%3E2419779954%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2419779954&rft_id=info:pmid/32613446&rfr_iscdi=true |