Macromolecule crowding effects on the phase separation of semi-flexible polymer in spherical confined space

Current works focus on detecting macromolecule crowding effects on the phase separation of the mixture between semi-flexible polymer and crowders (hydrophilic polymers) in confined space by Monte Carlo simulations. With the increasing addition of crowders into the spherical confined space, the semi-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biological physics 2020-06, Vol.46 (2), p.223-231
Hauptverfasser: Wang, Hongchang, Gu, Lingyun, Tan, Rongri, Ma, Xiaotian, Zhou, Xun, Liu, Yanhui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 231
container_issue 2
container_start_page 223
container_title Journal of biological physics
container_volume 46
creator Wang, Hongchang
Gu, Lingyun
Tan, Rongri
Ma, Xiaotian
Zhou, Xun
Liu, Yanhui
description Current works focus on detecting macromolecule crowding effects on the phase separation of the mixture between semi-flexible polymer and crowders (hydrophilic polymers) in confined space by Monte Carlo simulations. With the increasing addition of crowders into the spherical confined space, the semi-flexible polymer was first compressed into a condensed state from the initial coil state, and then the condensed conformation expanded and deposited on the inner surface of the spherical confined space with an extended state. The phase diagram in the phase space of the volume fraction of crowders and the scaled radius of spherical confined space by crowder diameter, and the direct conformation transition of semi-flexible polymer have validated the phase transition process successfully. In addition, the deposition of extended conformation on the inner surface of the spherical confined space was qualified by the vertex density, its curve shifted along the radial direction with the increasing volume fraction of crowder. During the phase separation process, the critical volume fraction φ ∗ relates to the crowder diameter approximately linearly and the relation between the critical volume fraction and the crowder diameter strongly depends on the size of the spherical confined space.
doi_str_mv 10.1007/s10867-020-09550-9
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7334316</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2419779954</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-39becdf8181c92c8a360974478307e012862b4f8872545338fc53132f4d511d43</originalsourceid><addsrcrecordid>eNp9UcuO1DAQtBCIHQZ-gJMlLlwCfsb2BQmtloe0iAucLY_TnvGS2MFOgP17PGQFggOnflWVursQekrJC0qIelkp0b3qCCMdMVKSztxDOyoV70ivzX20I8SwlpP-Aj2q9Ya0WjP5EF1w1lMuRL9DXz44X_KUR_DrCLjl34eYjhhCAL9UnBNeToDnk6uAK8yuuCW2Zg6tmmIXRvgRD4055_F2goJjwnU-QYnejdjnFGKCobWch8foQXBjhSd3cY8-v7n6dPmuu_749v3l6-vOC0mXjpsD-CFoqqk3zGvHe2KUEEpzooBQpnt2EEFrxaSQnOvgJaecBTFISgfB9-jVpjuvhwkGD2kpbrRziZMrtza7aP-epHiyx_zNKs4Fp30TeH4nUPLXFepip1g9jKNLkNdqmaBGUXp-4h49-wd6k9eS2nkbShkjzxuxDdX-W2uB8HsZSuzZS7t5aZuX9peX1jQS30i1gdMRyh_p_7B-AqEtoNo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2419779954</pqid></control><display><type>article</type><title>Macromolecule crowding effects on the phase separation of semi-flexible polymer in spherical confined space</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>SpringerNature Journals</source><source>PubMed Central</source><creator>Wang, Hongchang ; Gu, Lingyun ; Tan, Rongri ; Ma, Xiaotian ; Zhou, Xun ; Liu, Yanhui</creator><creatorcontrib>Wang, Hongchang ; Gu, Lingyun ; Tan, Rongri ; Ma, Xiaotian ; Zhou, Xun ; Liu, Yanhui</creatorcontrib><description>Current works focus on detecting macromolecule crowding effects on the phase separation of the mixture between semi-flexible polymer and crowders (hydrophilic polymers) in confined space by Monte Carlo simulations. With the increasing addition of crowders into the spherical confined space, the semi-flexible polymer was first compressed into a condensed state from the initial coil state, and then the condensed conformation expanded and deposited on the inner surface of the spherical confined space with an extended state. The phase diagram in the phase space of the volume fraction of crowders and the scaled radius of spherical confined space by crowder diameter, and the direct conformation transition of semi-flexible polymer have validated the phase transition process successfully. In addition, the deposition of extended conformation on the inner surface of the spherical confined space was qualified by the vertex density, its curve shifted along the radial direction with the increasing volume fraction of crowder. During the phase separation process, the critical volume fraction φ ∗ relates to the crowder diameter approximately linearly and the relation between the critical volume fraction and the crowder diameter strongly depends on the size of the spherical confined space.</description><identifier>ISSN: 0092-0606</identifier><identifier>EISSN: 1573-0689</identifier><identifier>DOI: 10.1007/s10867-020-09550-9</identifier><identifier>PMID: 32613446</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Biochemistry ; Biological and Medical Physics ; Biophysics ; Complex Fluids and Microfluidics ; Complex Systems ; Conformation ; Crowding ; Neurosciences ; Original Paper ; Phase transitions ; Physics ; Physics and Astronomy ; Polymers ; Soft and Granular Matter</subject><ispartof>Journal of biological physics, 2020-06, Vol.46 (2), p.223-231</ispartof><rights>Springer Nature B.V. 2020</rights><rights>Springer Nature B.V. 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-39becdf8181c92c8a360974478307e012862b4f8872545338fc53132f4d511d43</citedby><cites>FETCH-LOGICAL-c451t-39becdf8181c92c8a360974478307e012862b4f8872545338fc53132f4d511d43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7334316/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7334316/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,41488,42557,51319,53791,53793</link.rule.ids></links><search><creatorcontrib>Wang, Hongchang</creatorcontrib><creatorcontrib>Gu, Lingyun</creatorcontrib><creatorcontrib>Tan, Rongri</creatorcontrib><creatorcontrib>Ma, Xiaotian</creatorcontrib><creatorcontrib>Zhou, Xun</creatorcontrib><creatorcontrib>Liu, Yanhui</creatorcontrib><title>Macromolecule crowding effects on the phase separation of semi-flexible polymer in spherical confined space</title><title>Journal of biological physics</title><addtitle>J Biol Phys</addtitle><description>Current works focus on detecting macromolecule crowding effects on the phase separation of the mixture between semi-flexible polymer and crowders (hydrophilic polymers) in confined space by Monte Carlo simulations. With the increasing addition of crowders into the spherical confined space, the semi-flexible polymer was first compressed into a condensed state from the initial coil state, and then the condensed conformation expanded and deposited on the inner surface of the spherical confined space with an extended state. The phase diagram in the phase space of the volume fraction of crowders and the scaled radius of spherical confined space by crowder diameter, and the direct conformation transition of semi-flexible polymer have validated the phase transition process successfully. In addition, the deposition of extended conformation on the inner surface of the spherical confined space was qualified by the vertex density, its curve shifted along the radial direction with the increasing volume fraction of crowder. During the phase separation process, the critical volume fraction φ ∗ relates to the crowder diameter approximately linearly and the relation between the critical volume fraction and the crowder diameter strongly depends on the size of the spherical confined space.</description><subject>Biochemistry</subject><subject>Biological and Medical Physics</subject><subject>Biophysics</subject><subject>Complex Fluids and Microfluidics</subject><subject>Complex Systems</subject><subject>Conformation</subject><subject>Crowding</subject><subject>Neurosciences</subject><subject>Original Paper</subject><subject>Phase transitions</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Polymers</subject><subject>Soft and Granular Matter</subject><issn>0092-0606</issn><issn>1573-0689</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9UcuO1DAQtBCIHQZ-gJMlLlwCfsb2BQmtloe0iAucLY_TnvGS2MFOgP17PGQFggOnflWVursQekrJC0qIelkp0b3qCCMdMVKSztxDOyoV70ivzX20I8SwlpP-Aj2q9Ya0WjP5EF1w1lMuRL9DXz44X_KUR_DrCLjl34eYjhhCAL9UnBNeToDnk6uAK8yuuCW2Zg6tmmIXRvgRD4055_F2goJjwnU-QYnejdjnFGKCobWch8foQXBjhSd3cY8-v7n6dPmuu_749v3l6-vOC0mXjpsD-CFoqqk3zGvHe2KUEEpzooBQpnt2EEFrxaSQnOvgJaecBTFISgfB9-jVpjuvhwkGD2kpbrRziZMrtza7aP-epHiyx_zNKs4Fp30TeH4nUPLXFepip1g9jKNLkNdqmaBGUXp-4h49-wd6k9eS2nkbShkjzxuxDdX-W2uB8HsZSuzZS7t5aZuX9peX1jQS30i1gdMRyh_p_7B-AqEtoNo</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Wang, Hongchang</creator><creator>Gu, Lingyun</creator><creator>Tan, Rongri</creator><creator>Ma, Xiaotian</creator><creator>Zhou, Xun</creator><creator>Liu, Yanhui</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20200601</creationdate><title>Macromolecule crowding effects on the phase separation of semi-flexible polymer in spherical confined space</title><author>Wang, Hongchang ; Gu, Lingyun ; Tan, Rongri ; Ma, Xiaotian ; Zhou, Xun ; Liu, Yanhui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-39becdf8181c92c8a360974478307e012862b4f8872545338fc53132f4d511d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biochemistry</topic><topic>Biological and Medical Physics</topic><topic>Biophysics</topic><topic>Complex Fluids and Microfluidics</topic><topic>Complex Systems</topic><topic>Conformation</topic><topic>Crowding</topic><topic>Neurosciences</topic><topic>Original Paper</topic><topic>Phase transitions</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Polymers</topic><topic>Soft and Granular Matter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Hongchang</creatorcontrib><creatorcontrib>Gu, Lingyun</creatorcontrib><creatorcontrib>Tan, Rongri</creatorcontrib><creatorcontrib>Ma, Xiaotian</creatorcontrib><creatorcontrib>Zhou, Xun</creatorcontrib><creatorcontrib>Liu, Yanhui</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of biological physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Hongchang</au><au>Gu, Lingyun</au><au>Tan, Rongri</au><au>Ma, Xiaotian</au><au>Zhou, Xun</au><au>Liu, Yanhui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Macromolecule crowding effects on the phase separation of semi-flexible polymer in spherical confined space</atitle><jtitle>Journal of biological physics</jtitle><stitle>J Biol Phys</stitle><date>2020-06-01</date><risdate>2020</risdate><volume>46</volume><issue>2</issue><spage>223</spage><epage>231</epage><pages>223-231</pages><issn>0092-0606</issn><eissn>1573-0689</eissn><abstract>Current works focus on detecting macromolecule crowding effects on the phase separation of the mixture between semi-flexible polymer and crowders (hydrophilic polymers) in confined space by Monte Carlo simulations. With the increasing addition of crowders into the spherical confined space, the semi-flexible polymer was first compressed into a condensed state from the initial coil state, and then the condensed conformation expanded and deposited on the inner surface of the spherical confined space with an extended state. The phase diagram in the phase space of the volume fraction of crowders and the scaled radius of spherical confined space by crowder diameter, and the direct conformation transition of semi-flexible polymer have validated the phase transition process successfully. In addition, the deposition of extended conformation on the inner surface of the spherical confined space was qualified by the vertex density, its curve shifted along the radial direction with the increasing volume fraction of crowder. During the phase separation process, the critical volume fraction φ ∗ relates to the crowder diameter approximately linearly and the relation between the critical volume fraction and the crowder diameter strongly depends on the size of the spherical confined space.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>32613446</pmid><doi>10.1007/s10867-020-09550-9</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0092-0606
ispartof Journal of biological physics, 2020-06, Vol.46 (2), p.223-231
issn 0092-0606
1573-0689
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7334316
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; SpringerNature Journals; PubMed Central
subjects Biochemistry
Biological and Medical Physics
Biophysics
Complex Fluids and Microfluidics
Complex Systems
Conformation
Crowding
Neurosciences
Original Paper
Phase transitions
Physics
Physics and Astronomy
Polymers
Soft and Granular Matter
title Macromolecule crowding effects on the phase separation of semi-flexible polymer in spherical confined space
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T05%3A14%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Macromolecule%20crowding%20effects%20on%20the%20phase%20separation%20of%20semi-flexible%20polymer%20in%20spherical%20confined%20space&rft.jtitle=Journal%20of%20biological%20physics&rft.au=Wang,%20Hongchang&rft.date=2020-06-01&rft.volume=46&rft.issue=2&rft.spage=223&rft.epage=231&rft.pages=223-231&rft.issn=0092-0606&rft.eissn=1573-0689&rft_id=info:doi/10.1007/s10867-020-09550-9&rft_dat=%3Cproquest_pubme%3E2419779954%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2419779954&rft_id=info:pmid/32613446&rfr_iscdi=true