Multiple Integrated Root Phenotypes Are Associated with Improved Drought Tolerance
To test the hypothesis that multiple integrated root phenotypes would co-optimize drought tolerance, we phenotyped the root anatomy and architecture of 400 mature maize ( ) genotypes under well-watered and water-stressed conditions in the field. We found substantial variation in all 23 root phenes m...
Gespeichert in:
Veröffentlicht in: | Plant physiology (Bethesda) 2020-07, Vol.183 (3), p.1011-1025 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1025 |
---|---|
container_issue | 3 |
container_start_page | 1011 |
container_title | Plant physiology (Bethesda) |
container_volume | 183 |
creator | Klein, Stephanie P Schneider, Hannah M Perkins, Alden C Brown, Kathleen M Lynch, Jonathan P |
description | To test the hypothesis that multiple integrated root phenotypes would co-optimize drought tolerance, we phenotyped the root anatomy and architecture of 400 mature maize (
) genotypes under well-watered and water-stressed conditions in the field. We found substantial variation in all 23 root phenes measured. A phenotypic bulked segregant analysis revealed that bulks representing the best and worst performers in the field displayed distinct root phenotypes. In contrast to the worst bulk, the root phenotype of the best bulk under drought consisted of greater cortical aerenchyma formation, more numerous and narrower metaxylem vessels, and thicker nodal roots. Partition-against-medians clustering revealed several clusters of unique root phenotypes related to plant performance under water stress. Clusters associated with improved drought tolerance consisted of phene states that likely enable greater soil exploration by reallocating internal resources to greater root construction (increased aerenchyma content, larger cortical cells, fewer cortical cell files), restrict uptake of water to conserve soil moisture (reduced hydraulic conductance, narrow metaxylem vessels), and improve penetrability of hard, dry soils (thick roots with a larger proportion of stele, and smaller distal cortical cells). We propose that the most drought-tolerant-integrated phenotypes merit consideration as breeding ideotypes. |
doi_str_mv | 10.1104/pp.20.00211 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7333687</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2394880524</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2961-5e33af4a33d7f2af3ffec1e36c5e6a644a15b8dace64c105e68bf30212a0291e3</originalsourceid><addsrcrecordid>eNpVkUtLAzEQx4Motj5O3mWPgrROMtnt7kUoPguKIvUc0nS2XdluYpJV_PauVYue5vXjPy_GjjgMOQd55txQwBBAcL7F-jxFMRCpzLdZH6DzIc-LHtsL4QUAOHK5y3ooEAUU0GdP920dK1dTMmkiLbyONE-erI3J45IaGz8chWTsKRmHYE21Lr9XcZlMVs7bty669LZdLGMytTV53Rg6YDulrgMd_th99nx9Nb24Hdw93EwuxncDI4qMD1JC1KXUiPNRKXSJZUmGE2YmpUxnUmqezvK5NpRJw6FL5rMSuy2FBlF04D47_9Z17WxFc0NN9LpWzlcr7T-U1ZX6X2mqpVrYNzVCxCwfdQInPwLevrYUolpVwVBd64ZsG5TAQuY5pEJ26Ok3arwNwVO5acNBfX1BOacEqPUXOvr472Qb9vfs-Am6BIRj</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2394880524</pqid></control><display><type>article</type><title>Multiple Integrated Root Phenotypes Are Associated with Improved Drought Tolerance</title><source>MEDLINE</source><source>EZB Electronic Journals Library</source><source>Oxford Journals</source><creator>Klein, Stephanie P ; Schneider, Hannah M ; Perkins, Alden C ; Brown, Kathleen M ; Lynch, Jonathan P</creator><creatorcontrib>Klein, Stephanie P ; Schneider, Hannah M ; Perkins, Alden C ; Brown, Kathleen M ; Lynch, Jonathan P</creatorcontrib><description>To test the hypothesis that multiple integrated root phenotypes would co-optimize drought tolerance, we phenotyped the root anatomy and architecture of 400 mature maize (
) genotypes under well-watered and water-stressed conditions in the field. We found substantial variation in all 23 root phenes measured. A phenotypic bulked segregant analysis revealed that bulks representing the best and worst performers in the field displayed distinct root phenotypes. In contrast to the worst bulk, the root phenotype of the best bulk under drought consisted of greater cortical aerenchyma formation, more numerous and narrower metaxylem vessels, and thicker nodal roots. Partition-against-medians clustering revealed several clusters of unique root phenotypes related to plant performance under water stress. Clusters associated with improved drought tolerance consisted of phene states that likely enable greater soil exploration by reallocating internal resources to greater root construction (increased aerenchyma content, larger cortical cells, fewer cortical cell files), restrict uptake of water to conserve soil moisture (reduced hydraulic conductance, narrow metaxylem vessels), and improve penetrability of hard, dry soils (thick roots with a larger proportion of stele, and smaller distal cortical cells). We propose that the most drought-tolerant-integrated phenotypes merit consideration as breeding ideotypes.</description><identifier>ISSN: 0032-0889</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.20.00211</identifier><identifier>PMID: 32332090</identifier><language>eng</language><publisher>United States: American Society of Plant Biologists</publisher><subject>Crops, Agricultural - anatomy & histology ; Crops, Agricultural - genetics ; Crops, Agricultural - physiology ; Dehydration - genetics ; Dehydration - physiopathology ; Genetic Variation ; Genotype ; Phenotype ; Plant Roots - anatomy & histology ; Plant Roots - genetics ; Plant Roots - physiology ; Zea mays - genetics ; Zea mays - physiology</subject><ispartof>Plant physiology (Bethesda), 2020-07, Vol.183 (3), p.1011-1025</ispartof><rights>2020 American Society of Plant Biologists. All Rights Reserved.</rights><rights>2020 American Society of Plant Biologists. All Rights Reserved. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2961-5e33af4a33d7f2af3ffec1e36c5e6a644a15b8dace64c105e68bf30212a0291e3</citedby><orcidid>0000-0002-7265-9790 ; 0000-0003-4450-6057 ; 0000-0002-4960-5292</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32332090$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Klein, Stephanie P</creatorcontrib><creatorcontrib>Schneider, Hannah M</creatorcontrib><creatorcontrib>Perkins, Alden C</creatorcontrib><creatorcontrib>Brown, Kathleen M</creatorcontrib><creatorcontrib>Lynch, Jonathan P</creatorcontrib><title>Multiple Integrated Root Phenotypes Are Associated with Improved Drought Tolerance</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>To test the hypothesis that multiple integrated root phenotypes would co-optimize drought tolerance, we phenotyped the root anatomy and architecture of 400 mature maize (
) genotypes under well-watered and water-stressed conditions in the field. We found substantial variation in all 23 root phenes measured. A phenotypic bulked segregant analysis revealed that bulks representing the best and worst performers in the field displayed distinct root phenotypes. In contrast to the worst bulk, the root phenotype of the best bulk under drought consisted of greater cortical aerenchyma formation, more numerous and narrower metaxylem vessels, and thicker nodal roots. Partition-against-medians clustering revealed several clusters of unique root phenotypes related to plant performance under water stress. Clusters associated with improved drought tolerance consisted of phene states that likely enable greater soil exploration by reallocating internal resources to greater root construction (increased aerenchyma content, larger cortical cells, fewer cortical cell files), restrict uptake of water to conserve soil moisture (reduced hydraulic conductance, narrow metaxylem vessels), and improve penetrability of hard, dry soils (thick roots with a larger proportion of stele, and smaller distal cortical cells). We propose that the most drought-tolerant-integrated phenotypes merit consideration as breeding ideotypes.</description><subject>Crops, Agricultural - anatomy & histology</subject><subject>Crops, Agricultural - genetics</subject><subject>Crops, Agricultural - physiology</subject><subject>Dehydration - genetics</subject><subject>Dehydration - physiopathology</subject><subject>Genetic Variation</subject><subject>Genotype</subject><subject>Phenotype</subject><subject>Plant Roots - anatomy & histology</subject><subject>Plant Roots - genetics</subject><subject>Plant Roots - physiology</subject><subject>Zea mays - genetics</subject><subject>Zea mays - physiology</subject><issn>0032-0889</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkUtLAzEQx4Motj5O3mWPgrROMtnt7kUoPguKIvUc0nS2XdluYpJV_PauVYue5vXjPy_GjjgMOQd55txQwBBAcL7F-jxFMRCpzLdZH6DzIc-LHtsL4QUAOHK5y3ooEAUU0GdP920dK1dTMmkiLbyONE-erI3J45IaGz8chWTsKRmHYE21Lr9XcZlMVs7bty669LZdLGMytTV53Rg6YDulrgMd_th99nx9Nb24Hdw93EwuxncDI4qMD1JC1KXUiPNRKXSJZUmGE2YmpUxnUmqezvK5NpRJw6FL5rMSuy2FBlF04D47_9Z17WxFc0NN9LpWzlcr7T-U1ZX6X2mqpVrYNzVCxCwfdQInPwLevrYUolpVwVBd64ZsG5TAQuY5pEJ26Ok3arwNwVO5acNBfX1BOacEqPUXOvr472Qb9vfs-Am6BIRj</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Klein, Stephanie P</creator><creator>Schneider, Hannah M</creator><creator>Perkins, Alden C</creator><creator>Brown, Kathleen M</creator><creator>Lynch, Jonathan P</creator><general>American Society of Plant Biologists</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7265-9790</orcidid><orcidid>https://orcid.org/0000-0003-4450-6057</orcidid><orcidid>https://orcid.org/0000-0002-4960-5292</orcidid></search><sort><creationdate>20200701</creationdate><title>Multiple Integrated Root Phenotypes Are Associated with Improved Drought Tolerance</title><author>Klein, Stephanie P ; Schneider, Hannah M ; Perkins, Alden C ; Brown, Kathleen M ; Lynch, Jonathan P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2961-5e33af4a33d7f2af3ffec1e36c5e6a644a15b8dace64c105e68bf30212a0291e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Crops, Agricultural - anatomy & histology</topic><topic>Crops, Agricultural - genetics</topic><topic>Crops, Agricultural - physiology</topic><topic>Dehydration - genetics</topic><topic>Dehydration - physiopathology</topic><topic>Genetic Variation</topic><topic>Genotype</topic><topic>Phenotype</topic><topic>Plant Roots - anatomy & histology</topic><topic>Plant Roots - genetics</topic><topic>Plant Roots - physiology</topic><topic>Zea mays - genetics</topic><topic>Zea mays - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Klein, Stephanie P</creatorcontrib><creatorcontrib>Schneider, Hannah M</creatorcontrib><creatorcontrib>Perkins, Alden C</creatorcontrib><creatorcontrib>Brown, Kathleen M</creatorcontrib><creatorcontrib>Lynch, Jonathan P</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Klein, Stephanie P</au><au>Schneider, Hannah M</au><au>Perkins, Alden C</au><au>Brown, Kathleen M</au><au>Lynch, Jonathan P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiple Integrated Root Phenotypes Are Associated with Improved Drought Tolerance</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2020-07-01</date><risdate>2020</risdate><volume>183</volume><issue>3</issue><spage>1011</spage><epage>1025</epage><pages>1011-1025</pages><issn>0032-0889</issn><eissn>1532-2548</eissn><abstract>To test the hypothesis that multiple integrated root phenotypes would co-optimize drought tolerance, we phenotyped the root anatomy and architecture of 400 mature maize (
) genotypes under well-watered and water-stressed conditions in the field. We found substantial variation in all 23 root phenes measured. A phenotypic bulked segregant analysis revealed that bulks representing the best and worst performers in the field displayed distinct root phenotypes. In contrast to the worst bulk, the root phenotype of the best bulk under drought consisted of greater cortical aerenchyma formation, more numerous and narrower metaxylem vessels, and thicker nodal roots. Partition-against-medians clustering revealed several clusters of unique root phenotypes related to plant performance under water stress. Clusters associated with improved drought tolerance consisted of phene states that likely enable greater soil exploration by reallocating internal resources to greater root construction (increased aerenchyma content, larger cortical cells, fewer cortical cell files), restrict uptake of water to conserve soil moisture (reduced hydraulic conductance, narrow metaxylem vessels), and improve penetrability of hard, dry soils (thick roots with a larger proportion of stele, and smaller distal cortical cells). We propose that the most drought-tolerant-integrated phenotypes merit consideration as breeding ideotypes.</abstract><cop>United States</cop><pub>American Society of Plant Biologists</pub><pmid>32332090</pmid><doi>10.1104/pp.20.00211</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-7265-9790</orcidid><orcidid>https://orcid.org/0000-0003-4450-6057</orcidid><orcidid>https://orcid.org/0000-0002-4960-5292</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-0889 |
ispartof | Plant physiology (Bethesda), 2020-07, Vol.183 (3), p.1011-1025 |
issn | 0032-0889 1532-2548 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7333687 |
source | MEDLINE; EZB Electronic Journals Library; Oxford Journals |
subjects | Crops, Agricultural - anatomy & histology Crops, Agricultural - genetics Crops, Agricultural - physiology Dehydration - genetics Dehydration - physiopathology Genetic Variation Genotype Phenotype Plant Roots - anatomy & histology Plant Roots - genetics Plant Roots - physiology Zea mays - genetics Zea mays - physiology |
title | Multiple Integrated Root Phenotypes Are Associated with Improved Drought Tolerance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T18%3A57%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiple%20Integrated%20Root%20Phenotypes%20Are%20Associated%20with%20Improved%20Drought%20Tolerance&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Klein,%20Stephanie%20P&rft.date=2020-07-01&rft.volume=183&rft.issue=3&rft.spage=1011&rft.epage=1025&rft.pages=1011-1025&rft.issn=0032-0889&rft.eissn=1532-2548&rft_id=info:doi/10.1104/pp.20.00211&rft_dat=%3Cproquest_pubme%3E2394880524%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2394880524&rft_id=info:pmid/32332090&rfr_iscdi=true |