A novel protective role for microRNA-3135b in Golgi apparatus fragmentation induced by chemotherapy via GOLPH3/AKT1/mTOR axis in colorectal cancer cells

Chemotherapy activates a novel cytoplasmic DNA damage response resulting in Golgi apparatus fragmentation and cancer cell survival. This mechanism is regulated by Golgi phosphoprotein-3 (GOLPH3)/Myo18A/F-actin axis. Analyzing the functions of miR-3135b, a small non-coding RNA with unknown functions,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2020-06, Vol.10 (1), p.10555-10555, Article 10555
Hauptverfasser: Núñez-Olvera, Stephanie I., Chávez-Munguía, Bibiana, del Rocío Terrones-Gurrola, María Cruz, Marchat, Laurence A., Puente-Rivera, Jonathan, Ruíz-García, Erika, Campos-Parra, Alma D., Vázquez-Calzada, Carlos, Lizárraga-Verdugo, Erik R., Ramos-Payán, Rosalío, Salinas-Vera, Yarely M., López-Camarillo, César
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10555
container_issue 1
container_start_page 10555
container_title Scientific reports
container_volume 10
creator Núñez-Olvera, Stephanie I.
Chávez-Munguía, Bibiana
del Rocío Terrones-Gurrola, María Cruz
Marchat, Laurence A.
Puente-Rivera, Jonathan
Ruíz-García, Erika
Campos-Parra, Alma D.
Vázquez-Calzada, Carlos
Lizárraga-Verdugo, Erik R.
Ramos-Payán, Rosalío
Salinas-Vera, Yarely M.
López-Camarillo, César
description Chemotherapy activates a novel cytoplasmic DNA damage response resulting in Golgi apparatus fragmentation and cancer cell survival. This mechanism is regulated by Golgi phosphoprotein-3 (GOLPH3)/Myo18A/F-actin axis. Analyzing the functions of miR-3135b, a small non-coding RNA with unknown functions, we found that its forced overexpression attenuates the Golgi apparatus fragmentation induced by chemotherapeutic drugs in colorectal cancer (CRC) cells. First, we found that miR-3135b is downregulated in CRC cell lines and clinical tumors. Bioinformatic predictions showed that miR-3135b could be regulating protein-encoding genes involved in cell survival, resistance to chemotherapy, and Golgi dynamics. In agreement, ectopic transfection of miR-3135b in HCT-15 cancer cells significantly inhibited cell proliferation, sensitized cells to 5-fluoruracil (5-FU), and promoted late apoptosis and necrosis. Also, miR-3135b overexpression impaired the cell cycle progression in HCT-15 and SW-480 cancer cells. Because GOLPH3 , a gene involved in maintenance of Golgi structure, was predicted as a potential target of miR-3135b, we studied their functional relationships in response to DNA damage induced by chemotherapy. Immunofluorescence and cellular ultrastructure experiments using antibodies against TGN38 protein, a trans-Golgi network marker, showed that 5-FU and doxorubicin treatments result in an apoptosis-independent stacks dispersal of the Golgi ribbon structure in both HCT-15 and SW-480 cells. Remarkably, these cellular effects were dramatically hindered by transfection of miR-3135b mimics. In addition, our functional studies confirmed that miR-3135b binds to the 3′-UTR of GOLPH3 proto-oncogene, and also reduces the levels of p-AKT1 (Ser473) and p-mTOR (Ser2448) signaling transducers, which are key in cell survival and autophagy activation. Moreover, we found that after treatment with 5-FU, TGN38 factor coimmunolocalizes with beclin-1 autophagic protein in discrete structures associated with the fragmented Golgi, suggesting that the activation of pro-survival autophagy is linked to loss of Golgi integrity. These cellular effects in autophagy and Golgi dispersal were reversed by miR-3135b. In summary, we provided experimental evidence suggesting for the first time a novel role for miR-3135b in the protection of chemotherapy-induced Golgi fragmentation via GOLPH3/AKT1/mTOR axis and protective autophagy in colorectal cancer cells.
doi_str_mv 10.1038/s41598-020-67550-0
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7324564</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2418450032</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-a4b49ab491cfecb1a57234df7b6b3316231a9b67c24d6238484dc9ab51ff2dbc3</originalsourceid><addsrcrecordid>eNp9kU1vEzEQhi0EolXpH-CALHHhssSf-3FBiqqSokYEVeFszXq9iSvverF3I_JP-Lk4TVtKD7Vk2dY8845nXoTeU_KZEl7OoqCyKjPCSJYXUpKMvEKnjAiZMc7Y6yf3E3Qe4y1JS7JK0OotOuEsJ5QX1Sn6M8e93xmHh-BHo0e7Mzh4Z3DrA-6sDv7m-zzjlMsa2x4vvNtYDMMAAcYp4jbApjP9CKP1fQKaSZsG13ust6bz49YEGPZ4ZwEvVssfV3w2v17TWbde3WD4beNBUnvnQ6oMDmvotQlYG-fiO_SmBRfN-f15hn5-vVxfXGXL1eLbxXyZaSnImIGoRQVpU90aXVOQBeOiaYs6rzmnOeMUqjovNBNNepSiFI1OCZK2LWtqzc_Ql6PuMNWdaXRqJoBTQ7AdhL3yYNX_kd5u1cbvVMGZkLlIAp_uBYL_NZk4qs7GQwvQGz9FxdLIScmTEwn9-Ay99VPoU3sHqhSSkDuKHak0_BiDaR8_Q4k6eK-O3qvkvbrzXpGU9OFpG48pD04ngB-BmEL9xoR_tV-Q_QvnA7rl</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2418450032</pqid></control><display><type>article</type><title>A novel protective role for microRNA-3135b in Golgi apparatus fragmentation induced by chemotherapy via GOLPH3/AKT1/mTOR axis in colorectal cancer cells</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Núñez-Olvera, Stephanie I. ; Chávez-Munguía, Bibiana ; del Rocío Terrones-Gurrola, María Cruz ; Marchat, Laurence A. ; Puente-Rivera, Jonathan ; Ruíz-García, Erika ; Campos-Parra, Alma D. ; Vázquez-Calzada, Carlos ; Lizárraga-Verdugo, Erik R. ; Ramos-Payán, Rosalío ; Salinas-Vera, Yarely M. ; López-Camarillo, César</creator><creatorcontrib>Núñez-Olvera, Stephanie I. ; Chávez-Munguía, Bibiana ; del Rocío Terrones-Gurrola, María Cruz ; Marchat, Laurence A. ; Puente-Rivera, Jonathan ; Ruíz-García, Erika ; Campos-Parra, Alma D. ; Vázquez-Calzada, Carlos ; Lizárraga-Verdugo, Erik R. ; Ramos-Payán, Rosalío ; Salinas-Vera, Yarely M. ; López-Camarillo, César</creatorcontrib><description>Chemotherapy activates a novel cytoplasmic DNA damage response resulting in Golgi apparatus fragmentation and cancer cell survival. This mechanism is regulated by Golgi phosphoprotein-3 (GOLPH3)/Myo18A/F-actin axis. Analyzing the functions of miR-3135b, a small non-coding RNA with unknown functions, we found that its forced overexpression attenuates the Golgi apparatus fragmentation induced by chemotherapeutic drugs in colorectal cancer (CRC) cells. First, we found that miR-3135b is downregulated in CRC cell lines and clinical tumors. Bioinformatic predictions showed that miR-3135b could be regulating protein-encoding genes involved in cell survival, resistance to chemotherapy, and Golgi dynamics. In agreement, ectopic transfection of miR-3135b in HCT-15 cancer cells significantly inhibited cell proliferation, sensitized cells to 5-fluoruracil (5-FU), and promoted late apoptosis and necrosis. Also, miR-3135b overexpression impaired the cell cycle progression in HCT-15 and SW-480 cancer cells. Because GOLPH3 , a gene involved in maintenance of Golgi structure, was predicted as a potential target of miR-3135b, we studied their functional relationships in response to DNA damage induced by chemotherapy. Immunofluorescence and cellular ultrastructure experiments using antibodies against TGN38 protein, a trans-Golgi network marker, showed that 5-FU and doxorubicin treatments result in an apoptosis-independent stacks dispersal of the Golgi ribbon structure in both HCT-15 and SW-480 cells. Remarkably, these cellular effects were dramatically hindered by transfection of miR-3135b mimics. In addition, our functional studies confirmed that miR-3135b binds to the 3′-UTR of GOLPH3 proto-oncogene, and also reduces the levels of p-AKT1 (Ser473) and p-mTOR (Ser2448) signaling transducers, which are key in cell survival and autophagy activation. Moreover, we found that after treatment with 5-FU, TGN38 factor coimmunolocalizes with beclin-1 autophagic protein in discrete structures associated with the fragmented Golgi, suggesting that the activation of pro-survival autophagy is linked to loss of Golgi integrity. These cellular effects in autophagy and Golgi dispersal were reversed by miR-3135b. In summary, we provided experimental evidence suggesting for the first time a novel role for miR-3135b in the protection of chemotherapy-induced Golgi fragmentation via GOLPH3/AKT1/mTOR axis and protective autophagy in colorectal cancer cells.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-67550-0</identifier><identifier>PMID: 32601379</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>3' Untranslated Regions ; 631/67 ; 692/4028 ; Actin ; AKT1 protein ; Apoptosis ; Apoptosis - physiology ; Autophagy ; Autophagy - physiology ; Cancer ; Cancer therapies ; Cell activation ; Cell cycle ; Cell Line, Tumor ; Cell Proliferation ; Cell survival ; Chemotherapy ; Colorectal cancer ; Colorectal carcinoma ; Colorectal Neoplasms - drug therapy ; Colorectal Neoplasms - genetics ; Colorectal Neoplasms - metabolism ; Colorectal Neoplasms - pathology ; Deoxyribonucleic acid ; Dispersal ; DNA ; DNA Damage ; Doxorubicin ; Golgi Apparatus - metabolism ; Humanities and Social Sciences ; Humans ; Immunofluorescence ; Membrane Proteins - metabolism ; MicroRNAs - genetics ; MicroRNAs - metabolism ; miRNA ; multidisciplinary ; Non-coding RNA ; Phagocytosis ; Proteins ; Proto-Oncogene Proteins c-akt - metabolism ; Science ; Science (multidisciplinary) ; Signal Transduction ; Survival ; TOR protein ; TOR Serine-Threonine Kinases - metabolism ; Transducers ; Transfection ; Tumors ; Ultrastructure</subject><ispartof>Scientific reports, 2020-06, Vol.10 (1), p.10555-10555, Article 10555</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-a4b49ab491cfecb1a57234df7b6b3316231a9b67c24d6238484dc9ab51ff2dbc3</citedby><cites>FETCH-LOGICAL-c540t-a4b49ab491cfecb1a57234df7b6b3316231a9b67c24d6238484dc9ab51ff2dbc3</cites><orcidid>0000-0002-9417-2609 ; 0000-0002-0446-123X ; 0000-0001-7500-7571</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7324564/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7324564/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,41120,42189,51576,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32601379$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Núñez-Olvera, Stephanie I.</creatorcontrib><creatorcontrib>Chávez-Munguía, Bibiana</creatorcontrib><creatorcontrib>del Rocío Terrones-Gurrola, María Cruz</creatorcontrib><creatorcontrib>Marchat, Laurence A.</creatorcontrib><creatorcontrib>Puente-Rivera, Jonathan</creatorcontrib><creatorcontrib>Ruíz-García, Erika</creatorcontrib><creatorcontrib>Campos-Parra, Alma D.</creatorcontrib><creatorcontrib>Vázquez-Calzada, Carlos</creatorcontrib><creatorcontrib>Lizárraga-Verdugo, Erik R.</creatorcontrib><creatorcontrib>Ramos-Payán, Rosalío</creatorcontrib><creatorcontrib>Salinas-Vera, Yarely M.</creatorcontrib><creatorcontrib>López-Camarillo, César</creatorcontrib><title>A novel protective role for microRNA-3135b in Golgi apparatus fragmentation induced by chemotherapy via GOLPH3/AKT1/mTOR axis in colorectal cancer cells</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Chemotherapy activates a novel cytoplasmic DNA damage response resulting in Golgi apparatus fragmentation and cancer cell survival. This mechanism is regulated by Golgi phosphoprotein-3 (GOLPH3)/Myo18A/F-actin axis. Analyzing the functions of miR-3135b, a small non-coding RNA with unknown functions, we found that its forced overexpression attenuates the Golgi apparatus fragmentation induced by chemotherapeutic drugs in colorectal cancer (CRC) cells. First, we found that miR-3135b is downregulated in CRC cell lines and clinical tumors. Bioinformatic predictions showed that miR-3135b could be regulating protein-encoding genes involved in cell survival, resistance to chemotherapy, and Golgi dynamics. In agreement, ectopic transfection of miR-3135b in HCT-15 cancer cells significantly inhibited cell proliferation, sensitized cells to 5-fluoruracil (5-FU), and promoted late apoptosis and necrosis. Also, miR-3135b overexpression impaired the cell cycle progression in HCT-15 and SW-480 cancer cells. Because GOLPH3 , a gene involved in maintenance of Golgi structure, was predicted as a potential target of miR-3135b, we studied their functional relationships in response to DNA damage induced by chemotherapy. Immunofluorescence and cellular ultrastructure experiments using antibodies against TGN38 protein, a trans-Golgi network marker, showed that 5-FU and doxorubicin treatments result in an apoptosis-independent stacks dispersal of the Golgi ribbon structure in both HCT-15 and SW-480 cells. Remarkably, these cellular effects were dramatically hindered by transfection of miR-3135b mimics. In addition, our functional studies confirmed that miR-3135b binds to the 3′-UTR of GOLPH3 proto-oncogene, and also reduces the levels of p-AKT1 (Ser473) and p-mTOR (Ser2448) signaling transducers, which are key in cell survival and autophagy activation. Moreover, we found that after treatment with 5-FU, TGN38 factor coimmunolocalizes with beclin-1 autophagic protein in discrete structures associated with the fragmented Golgi, suggesting that the activation of pro-survival autophagy is linked to loss of Golgi integrity. These cellular effects in autophagy and Golgi dispersal were reversed by miR-3135b. In summary, we provided experimental evidence suggesting for the first time a novel role for miR-3135b in the protection of chemotherapy-induced Golgi fragmentation via GOLPH3/AKT1/mTOR axis and protective autophagy in colorectal cancer cells.</description><subject>3' Untranslated Regions</subject><subject>631/67</subject><subject>692/4028</subject><subject>Actin</subject><subject>AKT1 protein</subject><subject>Apoptosis</subject><subject>Apoptosis - physiology</subject><subject>Autophagy</subject><subject>Autophagy - physiology</subject><subject>Cancer</subject><subject>Cancer therapies</subject><subject>Cell activation</subject><subject>Cell cycle</subject><subject>Cell Line, Tumor</subject><subject>Cell Proliferation</subject><subject>Cell survival</subject><subject>Chemotherapy</subject><subject>Colorectal cancer</subject><subject>Colorectal carcinoma</subject><subject>Colorectal Neoplasms - drug therapy</subject><subject>Colorectal Neoplasms - genetics</subject><subject>Colorectal Neoplasms - metabolism</subject><subject>Colorectal Neoplasms - pathology</subject><subject>Deoxyribonucleic acid</subject><subject>Dispersal</subject><subject>DNA</subject><subject>DNA Damage</subject><subject>Doxorubicin</subject><subject>Golgi Apparatus - metabolism</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Immunofluorescence</subject><subject>Membrane Proteins - metabolism</subject><subject>MicroRNAs - genetics</subject><subject>MicroRNAs - metabolism</subject><subject>miRNA</subject><subject>multidisciplinary</subject><subject>Non-coding RNA</subject><subject>Phagocytosis</subject><subject>Proteins</subject><subject>Proto-Oncogene Proteins c-akt - metabolism</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Signal Transduction</subject><subject>Survival</subject><subject>TOR protein</subject><subject>TOR Serine-Threonine Kinases - metabolism</subject><subject>Transducers</subject><subject>Transfection</subject><subject>Tumors</subject><subject>Ultrastructure</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU1vEzEQhi0EolXpH-CALHHhssSf-3FBiqqSokYEVeFszXq9iSvverF3I_JP-Lk4TVtKD7Vk2dY8845nXoTeU_KZEl7OoqCyKjPCSJYXUpKMvEKnjAiZMc7Y6yf3E3Qe4y1JS7JK0OotOuEsJ5QX1Sn6M8e93xmHh-BHo0e7Mzh4Z3DrA-6sDv7m-zzjlMsa2x4vvNtYDMMAAcYp4jbApjP9CKP1fQKaSZsG13ust6bz49YEGPZ4ZwEvVssfV3w2v17TWbde3WD4beNBUnvnQ6oMDmvotQlYG-fiO_SmBRfN-f15hn5-vVxfXGXL1eLbxXyZaSnImIGoRQVpU90aXVOQBeOiaYs6rzmnOeMUqjovNBNNepSiFI1OCZK2LWtqzc_Ql6PuMNWdaXRqJoBTQ7AdhL3yYNX_kd5u1cbvVMGZkLlIAp_uBYL_NZk4qs7GQwvQGz9FxdLIScmTEwn9-Ay99VPoU3sHqhSSkDuKHak0_BiDaR8_Q4k6eK-O3qvkvbrzXpGU9OFpG48pD04ngB-BmEL9xoR_tV-Q_QvnA7rl</recordid><startdate>20200629</startdate><enddate>20200629</enddate><creator>Núñez-Olvera, Stephanie I.</creator><creator>Chávez-Munguía, Bibiana</creator><creator>del Rocío Terrones-Gurrola, María Cruz</creator><creator>Marchat, Laurence A.</creator><creator>Puente-Rivera, Jonathan</creator><creator>Ruíz-García, Erika</creator><creator>Campos-Parra, Alma D.</creator><creator>Vázquez-Calzada, Carlos</creator><creator>Lizárraga-Verdugo, Erik R.</creator><creator>Ramos-Payán, Rosalío</creator><creator>Salinas-Vera, Yarely M.</creator><creator>López-Camarillo, César</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9417-2609</orcidid><orcidid>https://orcid.org/0000-0002-0446-123X</orcidid><orcidid>https://orcid.org/0000-0001-7500-7571</orcidid></search><sort><creationdate>20200629</creationdate><title>A novel protective role for microRNA-3135b in Golgi apparatus fragmentation induced by chemotherapy via GOLPH3/AKT1/mTOR axis in colorectal cancer cells</title><author>Núñez-Olvera, Stephanie I. ; Chávez-Munguía, Bibiana ; del Rocío Terrones-Gurrola, María Cruz ; Marchat, Laurence A. ; Puente-Rivera, Jonathan ; Ruíz-García, Erika ; Campos-Parra, Alma D. ; Vázquez-Calzada, Carlos ; Lizárraga-Verdugo, Erik R. ; Ramos-Payán, Rosalío ; Salinas-Vera, Yarely M. ; López-Camarillo, César</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-a4b49ab491cfecb1a57234df7b6b3316231a9b67c24d6238484dc9ab51ff2dbc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>3' Untranslated Regions</topic><topic>631/67</topic><topic>692/4028</topic><topic>Actin</topic><topic>AKT1 protein</topic><topic>Apoptosis</topic><topic>Apoptosis - physiology</topic><topic>Autophagy</topic><topic>Autophagy - physiology</topic><topic>Cancer</topic><topic>Cancer therapies</topic><topic>Cell activation</topic><topic>Cell cycle</topic><topic>Cell Line, Tumor</topic><topic>Cell Proliferation</topic><topic>Cell survival</topic><topic>Chemotherapy</topic><topic>Colorectal cancer</topic><topic>Colorectal carcinoma</topic><topic>Colorectal Neoplasms - drug therapy</topic><topic>Colorectal Neoplasms - genetics</topic><topic>Colorectal Neoplasms - metabolism</topic><topic>Colorectal Neoplasms - pathology</topic><topic>Deoxyribonucleic acid</topic><topic>Dispersal</topic><topic>DNA</topic><topic>DNA Damage</topic><topic>Doxorubicin</topic><topic>Golgi Apparatus - metabolism</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Immunofluorescence</topic><topic>Membrane Proteins - metabolism</topic><topic>MicroRNAs - genetics</topic><topic>MicroRNAs - metabolism</topic><topic>miRNA</topic><topic>multidisciplinary</topic><topic>Non-coding RNA</topic><topic>Phagocytosis</topic><topic>Proteins</topic><topic>Proto-Oncogene Proteins c-akt - metabolism</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Signal Transduction</topic><topic>Survival</topic><topic>TOR protein</topic><topic>TOR Serine-Threonine Kinases - metabolism</topic><topic>Transducers</topic><topic>Transfection</topic><topic>Tumors</topic><topic>Ultrastructure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Núñez-Olvera, Stephanie I.</creatorcontrib><creatorcontrib>Chávez-Munguía, Bibiana</creatorcontrib><creatorcontrib>del Rocío Terrones-Gurrola, María Cruz</creatorcontrib><creatorcontrib>Marchat, Laurence A.</creatorcontrib><creatorcontrib>Puente-Rivera, Jonathan</creatorcontrib><creatorcontrib>Ruíz-García, Erika</creatorcontrib><creatorcontrib>Campos-Parra, Alma D.</creatorcontrib><creatorcontrib>Vázquez-Calzada, Carlos</creatorcontrib><creatorcontrib>Lizárraga-Verdugo, Erik R.</creatorcontrib><creatorcontrib>Ramos-Payán, Rosalío</creatorcontrib><creatorcontrib>Salinas-Vera, Yarely M.</creatorcontrib><creatorcontrib>López-Camarillo, César</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Núñez-Olvera, Stephanie I.</au><au>Chávez-Munguía, Bibiana</au><au>del Rocío Terrones-Gurrola, María Cruz</au><au>Marchat, Laurence A.</au><au>Puente-Rivera, Jonathan</au><au>Ruíz-García, Erika</au><au>Campos-Parra, Alma D.</au><au>Vázquez-Calzada, Carlos</au><au>Lizárraga-Verdugo, Erik R.</au><au>Ramos-Payán, Rosalío</au><au>Salinas-Vera, Yarely M.</au><au>López-Camarillo, César</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel protective role for microRNA-3135b in Golgi apparatus fragmentation induced by chemotherapy via GOLPH3/AKT1/mTOR axis in colorectal cancer cells</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2020-06-29</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>10555</spage><epage>10555</epage><pages>10555-10555</pages><artnum>10555</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Chemotherapy activates a novel cytoplasmic DNA damage response resulting in Golgi apparatus fragmentation and cancer cell survival. This mechanism is regulated by Golgi phosphoprotein-3 (GOLPH3)/Myo18A/F-actin axis. Analyzing the functions of miR-3135b, a small non-coding RNA with unknown functions, we found that its forced overexpression attenuates the Golgi apparatus fragmentation induced by chemotherapeutic drugs in colorectal cancer (CRC) cells. First, we found that miR-3135b is downregulated in CRC cell lines and clinical tumors. Bioinformatic predictions showed that miR-3135b could be regulating protein-encoding genes involved in cell survival, resistance to chemotherapy, and Golgi dynamics. In agreement, ectopic transfection of miR-3135b in HCT-15 cancer cells significantly inhibited cell proliferation, sensitized cells to 5-fluoruracil (5-FU), and promoted late apoptosis and necrosis. Also, miR-3135b overexpression impaired the cell cycle progression in HCT-15 and SW-480 cancer cells. Because GOLPH3 , a gene involved in maintenance of Golgi structure, was predicted as a potential target of miR-3135b, we studied their functional relationships in response to DNA damage induced by chemotherapy. Immunofluorescence and cellular ultrastructure experiments using antibodies against TGN38 protein, a trans-Golgi network marker, showed that 5-FU and doxorubicin treatments result in an apoptosis-independent stacks dispersal of the Golgi ribbon structure in both HCT-15 and SW-480 cells. Remarkably, these cellular effects were dramatically hindered by transfection of miR-3135b mimics. In addition, our functional studies confirmed that miR-3135b binds to the 3′-UTR of GOLPH3 proto-oncogene, and also reduces the levels of p-AKT1 (Ser473) and p-mTOR (Ser2448) signaling transducers, which are key in cell survival and autophagy activation. Moreover, we found that after treatment with 5-FU, TGN38 factor coimmunolocalizes with beclin-1 autophagic protein in discrete structures associated with the fragmented Golgi, suggesting that the activation of pro-survival autophagy is linked to loss of Golgi integrity. These cellular effects in autophagy and Golgi dispersal were reversed by miR-3135b. In summary, we provided experimental evidence suggesting for the first time a novel role for miR-3135b in the protection of chemotherapy-induced Golgi fragmentation via GOLPH3/AKT1/mTOR axis and protective autophagy in colorectal cancer cells.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32601379</pmid><doi>10.1038/s41598-020-67550-0</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-9417-2609</orcidid><orcidid>https://orcid.org/0000-0002-0446-123X</orcidid><orcidid>https://orcid.org/0000-0001-7500-7571</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2020-06, Vol.10 (1), p.10555-10555, Article 10555
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7324564
source MEDLINE; DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects 3' Untranslated Regions
631/67
692/4028
Actin
AKT1 protein
Apoptosis
Apoptosis - physiology
Autophagy
Autophagy - physiology
Cancer
Cancer therapies
Cell activation
Cell cycle
Cell Line, Tumor
Cell Proliferation
Cell survival
Chemotherapy
Colorectal cancer
Colorectal carcinoma
Colorectal Neoplasms - drug therapy
Colorectal Neoplasms - genetics
Colorectal Neoplasms - metabolism
Colorectal Neoplasms - pathology
Deoxyribonucleic acid
Dispersal
DNA
DNA Damage
Doxorubicin
Golgi Apparatus - metabolism
Humanities and Social Sciences
Humans
Immunofluorescence
Membrane Proteins - metabolism
MicroRNAs - genetics
MicroRNAs - metabolism
miRNA
multidisciplinary
Non-coding RNA
Phagocytosis
Proteins
Proto-Oncogene Proteins c-akt - metabolism
Science
Science (multidisciplinary)
Signal Transduction
Survival
TOR protein
TOR Serine-Threonine Kinases - metabolism
Transducers
Transfection
Tumors
Ultrastructure
title A novel protective role for microRNA-3135b in Golgi apparatus fragmentation induced by chemotherapy via GOLPH3/AKT1/mTOR axis in colorectal cancer cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T08%3A19%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20protective%20role%20for%20microRNA-3135b%20in%20Golgi%20apparatus%20fragmentation%20induced%20by%20chemotherapy%20via%20GOLPH3/AKT1/mTOR%20axis%20in%20colorectal%20cancer%20cells&rft.jtitle=Scientific%20reports&rft.au=N%C3%BA%C3%B1ez-Olvera,%20Stephanie%20I.&rft.date=2020-06-29&rft.volume=10&rft.issue=1&rft.spage=10555&rft.epage=10555&rft.pages=10555-10555&rft.artnum=10555&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-67550-0&rft_dat=%3Cproquest_pubme%3E2418450032%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2418450032&rft_id=info:pmid/32601379&rfr_iscdi=true