Studying O2 pathways in [NiFe]- and [NiFeSe]-hydrogenases
Hydrogenases are efficient biocatalysts for H 2 production and oxidation with various potential biotechnological applications.[NiFe]-class hydrogenases are highly active in both production and oxidation processes—albeit primarily biased to the latter—but suffer from being sensitive to O 2 .[NiFeSe]...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2020-06, Vol.10 (1), p.10540-10540, Article 10540 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10540 |
---|---|
container_issue | 1 |
container_start_page | 10540 |
container_title | Scientific reports |
container_volume | 10 |
creator | Barbosa, Tiago M. Baltazar, Carla S. A. Cruz, Davide R. Lousa, Diana Soares, Cláudio M. |
description | Hydrogenases are efficient biocatalysts for H
2
production and oxidation with various potential biotechnological applications.[NiFe]-class hydrogenases are highly active in both production and oxidation processes—albeit primarily biased to the latter—but suffer from being sensitive to O
2
.[NiFeSe] hydrogenases are a subclass of [NiFe] hydrogenases with, usually, an increased insensitivity to aerobic environments. In this study we aim to understand the structural causes of the low sensitivity of a [NiFeSe]-hydrogenase, when compared with a [NiFe] class enzyme, by studying the diffusion of O
2
. To unravel the differences between the two enzymes, we used computational methods comprising Molecular Dynamics simulations with explicit O
2
and Implicit Ligand Sampling methodologies. With the latter, we were able to map the free energy landscapes for O
2
permeation in both enzymes. We derived pathways from these energy landscapes and selected the kinetically more relevant ones with reactive flux analysis using transition path theory. These studies evidence the existence of quite different pathways in both enzymes and predict a lower permeation efficiency for O
2
in the case of the [NiFeSe]-hydrogenase when compared with the [NiFe] enzyme. These differences can explain the experimentally observed lower inhibition by O
2
on [NiFeSe]-hydrogenases, when compared with [NiFe]-hydrogenases. A comprehensive map of the residues lining the most important O
2
pathways in both enzymes is also presented. |
doi_str_mv | 10.1038/s41598-020-67494-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7324405</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2418450914</sourcerecordid><originalsourceid>FETCH-LOGICAL-c488t-a631c00c36930b7ac1ae129c03a28fb4ccbe48fc07efdf90357cf86f9e047fb03</originalsourceid><addsrcrecordid>eNp9kUtLAzEUhYMoWrR_wNWAGzejN4-ZSTaCFKuC2EV1JRIymaQdaTM1mVH6702d4mthNrmXfPdwbg5CxxjOMFB-HhjOBE-BQJoXTLA020EDAixLCSVk90d9gIYhvEA8GREMi310QEkOmOJ8gMS07ap17WbJhCQr1c7f1ToktUue7uuxeU4T5aq-nsZuvq58MzNOBROO0J5Vi2CG2_sQPY6vHkY36d3k-nZ0eZdqxnmbqpxiDaBpLiiUhdJYGUyEBqoItyXTujSMWw2FsZUVQLNCW55bYYAVtgR6iC563VVXLk2ljWu9WsiVr5fKr2Wjavn7xdVzOWveZEEJY5BFgdOtgG9eOxNauayDNouFcqbpgiTxT4BnnOURPfmDvjSdd3G9DcVZBgKzSJGe0r4JwRv7ZQaD3IQj-3BkDEd-hiM3Lmg_FCLsZsZ_S_8z9QHAwI9u</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2418450914</pqid></control><display><type>article</type><title>Studying O2 pathways in [NiFe]- and [NiFeSe]-hydrogenases</title><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature OA Free Journals</source><creator>Barbosa, Tiago M. ; Baltazar, Carla S. A. ; Cruz, Davide R. ; Lousa, Diana ; Soares, Cláudio M.</creator><creatorcontrib>Barbosa, Tiago M. ; Baltazar, Carla S. A. ; Cruz, Davide R. ; Lousa, Diana ; Soares, Cláudio M.</creatorcontrib><description>Hydrogenases are efficient biocatalysts for H
2
production and oxidation with various potential biotechnological applications.[NiFe]-class hydrogenases are highly active in both production and oxidation processes—albeit primarily biased to the latter—but suffer from being sensitive to O
2
.[NiFeSe] hydrogenases are a subclass of [NiFe] hydrogenases with, usually, an increased insensitivity to aerobic environments. In this study we aim to understand the structural causes of the low sensitivity of a [NiFeSe]-hydrogenase, when compared with a [NiFe] class enzyme, by studying the diffusion of O
2
. To unravel the differences between the two enzymes, we used computational methods comprising Molecular Dynamics simulations with explicit O
2
and Implicit Ligand Sampling methodologies. With the latter, we were able to map the free energy landscapes for O
2
permeation in both enzymes. We derived pathways from these energy landscapes and selected the kinetically more relevant ones with reactive flux analysis using transition path theory. These studies evidence the existence of quite different pathways in both enzymes and predict a lower permeation efficiency for O
2
in the case of the [NiFeSe]-hydrogenase when compared with the [NiFe] enzyme. These differences can explain the experimentally observed lower inhibition by O
2
on [NiFeSe]-hydrogenases, when compared with [NiFe]-hydrogenases. A comprehensive map of the residues lining the most important O
2
pathways in both enzymes is also presented.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-67494-5</identifier><identifier>PMID: 32601316</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/114 ; 631/114/2397 ; 631/114/2411 ; 631/114/663 ; 631/535 ; 631/535/1267 ; 631/57 ; 631/57/1464 ; 631/57/2266 ; 631/57/2272 ; 631/57/2272/2273 ; 631/57/2272/951 ; Biocatalysts ; Biotechnology ; Computer applications ; Enzymes ; Free energy ; Humanities and Social Sciences ; Hydrogenase ; multidisciplinary ; Oxidation ; Science ; Science (multidisciplinary)</subject><ispartof>Scientific reports, 2020-06, Vol.10 (1), p.10540-10540, Article 10540</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c488t-a631c00c36930b7ac1ae129c03a28fb4ccbe48fc07efdf90357cf86f9e047fb03</citedby><cites>FETCH-LOGICAL-c488t-a631c00c36930b7ac1ae129c03a28fb4ccbe48fc07efdf90357cf86f9e047fb03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7324405/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7324405/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27903,27904,41099,42168,51554,53769,53771</link.rule.ids></links><search><creatorcontrib>Barbosa, Tiago M.</creatorcontrib><creatorcontrib>Baltazar, Carla S. A.</creatorcontrib><creatorcontrib>Cruz, Davide R.</creatorcontrib><creatorcontrib>Lousa, Diana</creatorcontrib><creatorcontrib>Soares, Cláudio M.</creatorcontrib><title>Studying O2 pathways in [NiFe]- and [NiFeSe]-hydrogenases</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><description>Hydrogenases are efficient biocatalysts for H
2
production and oxidation with various potential biotechnological applications.[NiFe]-class hydrogenases are highly active in both production and oxidation processes—albeit primarily biased to the latter—but suffer from being sensitive to O
2
.[NiFeSe] hydrogenases are a subclass of [NiFe] hydrogenases with, usually, an increased insensitivity to aerobic environments. In this study we aim to understand the structural causes of the low sensitivity of a [NiFeSe]-hydrogenase, when compared with a [NiFe] class enzyme, by studying the diffusion of O
2
. To unravel the differences between the two enzymes, we used computational methods comprising Molecular Dynamics simulations with explicit O
2
and Implicit Ligand Sampling methodologies. With the latter, we were able to map the free energy landscapes for O
2
permeation in both enzymes. We derived pathways from these energy landscapes and selected the kinetically more relevant ones with reactive flux analysis using transition path theory. These studies evidence the existence of quite different pathways in both enzymes and predict a lower permeation efficiency for O
2
in the case of the [NiFeSe]-hydrogenase when compared with the [NiFe] enzyme. These differences can explain the experimentally observed lower inhibition by O
2
on [NiFeSe]-hydrogenases, when compared with [NiFe]-hydrogenases. A comprehensive map of the residues lining the most important O
2
pathways in both enzymes is also presented.</description><subject>631/114</subject><subject>631/114/2397</subject><subject>631/114/2411</subject><subject>631/114/663</subject><subject>631/535</subject><subject>631/535/1267</subject><subject>631/57</subject><subject>631/57/1464</subject><subject>631/57/2266</subject><subject>631/57/2272</subject><subject>631/57/2272/2273</subject><subject>631/57/2272/951</subject><subject>Biocatalysts</subject><subject>Biotechnology</subject><subject>Computer applications</subject><subject>Enzymes</subject><subject>Free energy</subject><subject>Humanities and Social Sciences</subject><subject>Hydrogenase</subject><subject>multidisciplinary</subject><subject>Oxidation</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kUtLAzEUhYMoWrR_wNWAGzejN4-ZSTaCFKuC2EV1JRIymaQdaTM1mVH6702d4mthNrmXfPdwbg5CxxjOMFB-HhjOBE-BQJoXTLA020EDAixLCSVk90d9gIYhvEA8GREMi310QEkOmOJ8gMS07ap17WbJhCQr1c7f1ToktUue7uuxeU4T5aq-nsZuvq58MzNOBROO0J5Vi2CG2_sQPY6vHkY36d3k-nZ0eZdqxnmbqpxiDaBpLiiUhdJYGUyEBqoItyXTujSMWw2FsZUVQLNCW55bYYAVtgR6iC563VVXLk2ljWu9WsiVr5fKr2Wjavn7xdVzOWveZEEJY5BFgdOtgG9eOxNauayDNouFcqbpgiTxT4BnnOURPfmDvjSdd3G9DcVZBgKzSJGe0r4JwRv7ZQaD3IQj-3BkDEd-hiM3Lmg_FCLsZsZ_S_8z9QHAwI9u</recordid><startdate>20200629</startdate><enddate>20200629</enddate><creator>Barbosa, Tiago M.</creator><creator>Baltazar, Carla S. A.</creator><creator>Cruz, Davide R.</creator><creator>Lousa, Diana</creator><creator>Soares, Cláudio M.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20200629</creationdate><title>Studying O2 pathways in [NiFe]- and [NiFeSe]-hydrogenases</title><author>Barbosa, Tiago M. ; Baltazar, Carla S. A. ; Cruz, Davide R. ; Lousa, Diana ; Soares, Cláudio M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c488t-a631c00c36930b7ac1ae129c03a28fb4ccbe48fc07efdf90357cf86f9e047fb03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>631/114</topic><topic>631/114/2397</topic><topic>631/114/2411</topic><topic>631/114/663</topic><topic>631/535</topic><topic>631/535/1267</topic><topic>631/57</topic><topic>631/57/1464</topic><topic>631/57/2266</topic><topic>631/57/2272</topic><topic>631/57/2272/2273</topic><topic>631/57/2272/951</topic><topic>Biocatalysts</topic><topic>Biotechnology</topic><topic>Computer applications</topic><topic>Enzymes</topic><topic>Free energy</topic><topic>Humanities and Social Sciences</topic><topic>Hydrogenase</topic><topic>multidisciplinary</topic><topic>Oxidation</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barbosa, Tiago M.</creatorcontrib><creatorcontrib>Baltazar, Carla S. A.</creatorcontrib><creatorcontrib>Cruz, Davide R.</creatorcontrib><creatorcontrib>Lousa, Diana</creatorcontrib><creatorcontrib>Soares, Cláudio M.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barbosa, Tiago M.</au><au>Baltazar, Carla S. A.</au><au>Cruz, Davide R.</au><au>Lousa, Diana</au><au>Soares, Cláudio M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Studying O2 pathways in [NiFe]- and [NiFeSe]-hydrogenases</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><date>2020-06-29</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>10540</spage><epage>10540</epage><pages>10540-10540</pages><artnum>10540</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Hydrogenases are efficient biocatalysts for H
2
production and oxidation with various potential biotechnological applications.[NiFe]-class hydrogenases are highly active in both production and oxidation processes—albeit primarily biased to the latter—but suffer from being sensitive to O
2
.[NiFeSe] hydrogenases are a subclass of [NiFe] hydrogenases with, usually, an increased insensitivity to aerobic environments. In this study we aim to understand the structural causes of the low sensitivity of a [NiFeSe]-hydrogenase, when compared with a [NiFe] class enzyme, by studying the diffusion of O
2
. To unravel the differences between the two enzymes, we used computational methods comprising Molecular Dynamics simulations with explicit O
2
and Implicit Ligand Sampling methodologies. With the latter, we were able to map the free energy landscapes for O
2
permeation in both enzymes. We derived pathways from these energy landscapes and selected the kinetically more relevant ones with reactive flux analysis using transition path theory. These studies evidence the existence of quite different pathways in both enzymes and predict a lower permeation efficiency for O
2
in the case of the [NiFeSe]-hydrogenase when compared with the [NiFe] enzyme. These differences can explain the experimentally observed lower inhibition by O
2
on [NiFeSe]-hydrogenases, when compared with [NiFe]-hydrogenases. A comprehensive map of the residues lining the most important O
2
pathways in both enzymes is also presented.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32601316</pmid><doi>10.1038/s41598-020-67494-5</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2020-06, Vol.10 (1), p.10540-10540, Article 10540 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7324405 |
source | Nature Free; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; Springer Nature OA Free Journals |
subjects | 631/114 631/114/2397 631/114/2411 631/114/663 631/535 631/535/1267 631/57 631/57/1464 631/57/2266 631/57/2272 631/57/2272/2273 631/57/2272/951 Biocatalysts Biotechnology Computer applications Enzymes Free energy Humanities and Social Sciences Hydrogenase multidisciplinary Oxidation Science Science (multidisciplinary) |
title | Studying O2 pathways in [NiFe]- and [NiFeSe]-hydrogenases |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T01%3A19%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Studying%20O2%20pathways%20in%20%5BNiFe%5D-%20and%20%5BNiFeSe%5D-hydrogenases&rft.jtitle=Scientific%20reports&rft.au=Barbosa,%20Tiago%20M.&rft.date=2020-06-29&rft.volume=10&rft.issue=1&rft.spage=10540&rft.epage=10540&rft.pages=10540-10540&rft.artnum=10540&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-67494-5&rft_dat=%3Cproquest_pubme%3E2418450914%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2418450914&rft_id=info:pmid/32601316&rfr_iscdi=true |