H1 linker histones silence repetitive elements by promoting both histone H3K9 methylation and chromatin compaction

Nearly 50% of mouse and human genomes are composed of repetitive sequences. Transcription of these sequences is tightly controlled during development to prevent genomic instability, inappropriate gene activation and other maladaptive processes. Here, we demonstrate an integral role for H1 linker his...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2020-06, Vol.117 (25), p.14251-14258
Hauptverfasser: Healton, Sean E., Pinto, Hugo D., Mishra, Laxmi N., Hamilton, Gregory A., Wheat, Justin C., Swist-Rosowska, Kalina, Shukeir, Nicholas, Dou, Yali, Steidl, Ulrich, Jenuwein, Thomas, Gamble, Matthew J., Skoultchi, Arthur I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14258
container_issue 25
container_start_page 14251
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 117
creator Healton, Sean E.
Pinto, Hugo D.
Mishra, Laxmi N.
Hamilton, Gregory A.
Wheat, Justin C.
Swist-Rosowska, Kalina
Shukeir, Nicholas
Dou, Yali
Steidl, Ulrich
Jenuwein, Thomas
Gamble, Matthew J.
Skoultchi, Arthur I.
description Nearly 50% of mouse and human genomes are composed of repetitive sequences. Transcription of these sequences is tightly controlled during development to prevent genomic instability, inappropriate gene activation and other maladaptive processes. Here, we demonstrate an integral role for H1 linker histones in silencing repetitive elements in mouse embryonic stem cells. Strong H1 depletion causes a profound de-repression of several classes of repetitive sequences, including major satellite, LINE-1, and ERV. Activation of repetitive sequence transcription is accompanied by decreased H3K9 trimethylation of repetitive sequence chromatin. H1 linker histones interact directly with Suv39h1, Suv39h2, and SETDB1, the histone methyltransferases responsible for H3K9 trimethylation of chromatin within these regions, and stimulate their activity toward chromatin in vitro. However, we also implicate chromatin compaction mediated by H1 as an additional, dominant repressive mechanism for silencing of repetitive major satellite sequences. Our findings elucidate two distinct, H1-mediated pathways for silencing heterochromatin.
doi_str_mv 10.1073/pnas.1920725117
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7322038</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26934953</jstor_id><sourcerecordid>26934953</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-37a714713b1d2f7648c89034a187cf744529cff27aaea54f723a05a6cf94bf1c3</originalsourceid><addsrcrecordid>eNpdkc1vEzEQxS0EoiFw5gSyxIXLtuOPXa8vSFUFBFGJC5wtr2N3HXbtxXYq5b_HUdrwcRqN3m-eZuYh9JrAJQHBrpag8yWRFARtCRFP0IqAJE3HJTxFKwAqmp5TfoFe5LwDANn28BxdsEozwegKpQ3Bkw8_bcKjzyUGm3H2kw3G4mQXW3zx9xbbyc42lIyHA15SnGPx4Q4PsYyPY3jDvko82zIeJl18DFiHLTZjhWsbsInzos1ReImeOT1l--qhrtGPTx-_32ya22-fv9xc3zamBVkaJrQgXBA2kC11ouO96SUwrkkvjBOct1Qa56jQ2uqWO0GZhlZ3xkk-OGLYGn04-S77YbZbU_dPelJL8rNOBxW1V_8qwY_qLt6r-hgKrK8G7x8MUvy1t7mo2Wdjp0kHG_dZUU4Iga6rv1yjd_-hu7hPoZ53pAQA55JW6upEmRRzTtadlyGgjnmqY57qT5514u3fN5z5xwAr8OYE7GoK6azTTjIuW8Z-AwVrp6Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2417004492</pqid></control><display><type>article</type><title>H1 linker histones silence repetitive elements by promoting both histone H3K9 methylation and chromatin compaction</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Healton, Sean E. ; Pinto, Hugo D. ; Mishra, Laxmi N. ; Hamilton, Gregory A. ; Wheat, Justin C. ; Swist-Rosowska, Kalina ; Shukeir, Nicholas ; Dou, Yali ; Steidl, Ulrich ; Jenuwein, Thomas ; Gamble, Matthew J. ; Skoultchi, Arthur I.</creator><creatorcontrib>Healton, Sean E. ; Pinto, Hugo D. ; Mishra, Laxmi N. ; Hamilton, Gregory A. ; Wheat, Justin C. ; Swist-Rosowska, Kalina ; Shukeir, Nicholas ; Dou, Yali ; Steidl, Ulrich ; Jenuwein, Thomas ; Gamble, Matthew J. ; Skoultchi, Arthur I.</creatorcontrib><description>Nearly 50% of mouse and human genomes are composed of repetitive sequences. Transcription of these sequences is tightly controlled during development to prevent genomic instability, inappropriate gene activation and other maladaptive processes. Here, we demonstrate an integral role for H1 linker histones in silencing repetitive elements in mouse embryonic stem cells. Strong H1 depletion causes a profound de-repression of several classes of repetitive sequences, including major satellite, LINE-1, and ERV. Activation of repetitive sequence transcription is accompanied by decreased H3K9 trimethylation of repetitive sequence chromatin. H1 linker histones interact directly with Suv39h1, Suv39h2, and SETDB1, the histone methyltransferases responsible for H3K9 trimethylation of chromatin within these regions, and stimulate their activity toward chromatin in vitro. However, we also implicate chromatin compaction mediated by H1 as an additional, dominant repressive mechanism for silencing of repetitive major satellite sequences. Our findings elucidate two distinct, H1-mediated pathways for silencing heterochromatin.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1920725117</identifier><identifier>PMID: 32513732</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Biological Sciences ; Chromatin ; Chromatin - metabolism ; Compaction ; Control stability ; Depletion ; DNA methylation ; Embryo cells ; Epigenomics ; Genomes ; Genomic instability ; Heterochromatin ; Heterochromatin - metabolism ; Histone-Lysine N-Methyltransferase - metabolism ; Histones ; Histones - metabolism ; Methylation ; Methyltransferases - metabolism ; Mice ; Mouse Embryonic Stem Cells - metabolism ; Repetitive Sequences, Nucleic Acid - physiology ; Repressor Proteins - metabolism ; Stem cell transplantation ; Stem cells ; Transcription activation</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2020-06, Vol.117 (25), p.14251-14258</ispartof><rights>Copyright National Academy of Sciences Jun 23, 2020</rights><rights>2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-37a714713b1d2f7648c89034a187cf744529cff27aaea54f723a05a6cf94bf1c3</citedby><cites>FETCH-LOGICAL-c509t-37a714713b1d2f7648c89034a187cf744529cff27aaea54f723a05a6cf94bf1c3</cites><orcidid>0000-0003-0018-4981 ; 0000-0003-2506-4185 ; 0000-0002-6970-4693 ; 0000-0002-4040-1429 ; 0000-0002-6596-9651 ; 0000-0002-7864-6958 ; 0000-0002-7844-597X ; 0000-0002-0470-0421 ; 0000-0003-2024-3715 ; 0000-0001-5096-8077</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26934953$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26934953$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32513732$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Healton, Sean E.</creatorcontrib><creatorcontrib>Pinto, Hugo D.</creatorcontrib><creatorcontrib>Mishra, Laxmi N.</creatorcontrib><creatorcontrib>Hamilton, Gregory A.</creatorcontrib><creatorcontrib>Wheat, Justin C.</creatorcontrib><creatorcontrib>Swist-Rosowska, Kalina</creatorcontrib><creatorcontrib>Shukeir, Nicholas</creatorcontrib><creatorcontrib>Dou, Yali</creatorcontrib><creatorcontrib>Steidl, Ulrich</creatorcontrib><creatorcontrib>Jenuwein, Thomas</creatorcontrib><creatorcontrib>Gamble, Matthew J.</creatorcontrib><creatorcontrib>Skoultchi, Arthur I.</creatorcontrib><title>H1 linker histones silence repetitive elements by promoting both histone H3K9 methylation and chromatin compaction</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Nearly 50% of mouse and human genomes are composed of repetitive sequences. Transcription of these sequences is tightly controlled during development to prevent genomic instability, inappropriate gene activation and other maladaptive processes. Here, we demonstrate an integral role for H1 linker histones in silencing repetitive elements in mouse embryonic stem cells. Strong H1 depletion causes a profound de-repression of several classes of repetitive sequences, including major satellite, LINE-1, and ERV. Activation of repetitive sequence transcription is accompanied by decreased H3K9 trimethylation of repetitive sequence chromatin. H1 linker histones interact directly with Suv39h1, Suv39h2, and SETDB1, the histone methyltransferases responsible for H3K9 trimethylation of chromatin within these regions, and stimulate their activity toward chromatin in vitro. However, we also implicate chromatin compaction mediated by H1 as an additional, dominant repressive mechanism for silencing of repetitive major satellite sequences. Our findings elucidate two distinct, H1-mediated pathways for silencing heterochromatin.</description><subject>Animals</subject><subject>Biological Sciences</subject><subject>Chromatin</subject><subject>Chromatin - metabolism</subject><subject>Compaction</subject><subject>Control stability</subject><subject>Depletion</subject><subject>DNA methylation</subject><subject>Embryo cells</subject><subject>Epigenomics</subject><subject>Genomes</subject><subject>Genomic instability</subject><subject>Heterochromatin</subject><subject>Heterochromatin - metabolism</subject><subject>Histone-Lysine N-Methyltransferase - metabolism</subject><subject>Histones</subject><subject>Histones - metabolism</subject><subject>Methylation</subject><subject>Methyltransferases - metabolism</subject><subject>Mice</subject><subject>Mouse Embryonic Stem Cells - metabolism</subject><subject>Repetitive Sequences, Nucleic Acid - physiology</subject><subject>Repressor Proteins - metabolism</subject><subject>Stem cell transplantation</subject><subject>Stem cells</subject><subject>Transcription activation</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1vEzEQxS0EoiFw5gSyxIXLtuOPXa8vSFUFBFGJC5wtr2N3HXbtxXYq5b_HUdrwcRqN3m-eZuYh9JrAJQHBrpag8yWRFARtCRFP0IqAJE3HJTxFKwAqmp5TfoFe5LwDANn28BxdsEozwegKpQ3Bkw8_bcKjzyUGm3H2kw3G4mQXW3zx9xbbyc42lIyHA15SnGPx4Q4PsYyPY3jDvko82zIeJl18DFiHLTZjhWsbsInzos1ReImeOT1l--qhrtGPTx-_32ya22-fv9xc3zamBVkaJrQgXBA2kC11ouO96SUwrkkvjBOct1Qa56jQ2uqWO0GZhlZ3xkk-OGLYGn04-S77YbZbU_dPelJL8rNOBxW1V_8qwY_qLt6r-hgKrK8G7x8MUvy1t7mo2Wdjp0kHG_dZUU4Iga6rv1yjd_-hu7hPoZ53pAQA55JW6upEmRRzTtadlyGgjnmqY57qT5514u3fN5z5xwAr8OYE7GoK6azTTjIuW8Z-AwVrp6Q</recordid><startdate>20200623</startdate><enddate>20200623</enddate><creator>Healton, Sean E.</creator><creator>Pinto, Hugo D.</creator><creator>Mishra, Laxmi N.</creator><creator>Hamilton, Gregory A.</creator><creator>Wheat, Justin C.</creator><creator>Swist-Rosowska, Kalina</creator><creator>Shukeir, Nicholas</creator><creator>Dou, Yali</creator><creator>Steidl, Ulrich</creator><creator>Jenuwein, Thomas</creator><creator>Gamble, Matthew J.</creator><creator>Skoultchi, Arthur I.</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0018-4981</orcidid><orcidid>https://orcid.org/0000-0003-2506-4185</orcidid><orcidid>https://orcid.org/0000-0002-6970-4693</orcidid><orcidid>https://orcid.org/0000-0002-4040-1429</orcidid><orcidid>https://orcid.org/0000-0002-6596-9651</orcidid><orcidid>https://orcid.org/0000-0002-7864-6958</orcidid><orcidid>https://orcid.org/0000-0002-7844-597X</orcidid><orcidid>https://orcid.org/0000-0002-0470-0421</orcidid><orcidid>https://orcid.org/0000-0003-2024-3715</orcidid><orcidid>https://orcid.org/0000-0001-5096-8077</orcidid></search><sort><creationdate>20200623</creationdate><title>H1 linker histones silence repetitive elements by promoting both histone H3K9 methylation and chromatin compaction</title><author>Healton, Sean E. ; Pinto, Hugo D. ; Mishra, Laxmi N. ; Hamilton, Gregory A. ; Wheat, Justin C. ; Swist-Rosowska, Kalina ; Shukeir, Nicholas ; Dou, Yali ; Steidl, Ulrich ; Jenuwein, Thomas ; Gamble, Matthew J. ; Skoultchi, Arthur I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-37a714713b1d2f7648c89034a187cf744529cff27aaea54f723a05a6cf94bf1c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Biological Sciences</topic><topic>Chromatin</topic><topic>Chromatin - metabolism</topic><topic>Compaction</topic><topic>Control stability</topic><topic>Depletion</topic><topic>DNA methylation</topic><topic>Embryo cells</topic><topic>Epigenomics</topic><topic>Genomes</topic><topic>Genomic instability</topic><topic>Heterochromatin</topic><topic>Heterochromatin - metabolism</topic><topic>Histone-Lysine N-Methyltransferase - metabolism</topic><topic>Histones</topic><topic>Histones - metabolism</topic><topic>Methylation</topic><topic>Methyltransferases - metabolism</topic><topic>Mice</topic><topic>Mouse Embryonic Stem Cells - metabolism</topic><topic>Repetitive Sequences, Nucleic Acid - physiology</topic><topic>Repressor Proteins - metabolism</topic><topic>Stem cell transplantation</topic><topic>Stem cells</topic><topic>Transcription activation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Healton, Sean E.</creatorcontrib><creatorcontrib>Pinto, Hugo D.</creatorcontrib><creatorcontrib>Mishra, Laxmi N.</creatorcontrib><creatorcontrib>Hamilton, Gregory A.</creatorcontrib><creatorcontrib>Wheat, Justin C.</creatorcontrib><creatorcontrib>Swist-Rosowska, Kalina</creatorcontrib><creatorcontrib>Shukeir, Nicholas</creatorcontrib><creatorcontrib>Dou, Yali</creatorcontrib><creatorcontrib>Steidl, Ulrich</creatorcontrib><creatorcontrib>Jenuwein, Thomas</creatorcontrib><creatorcontrib>Gamble, Matthew J.</creatorcontrib><creatorcontrib>Skoultchi, Arthur I.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Healton, Sean E.</au><au>Pinto, Hugo D.</au><au>Mishra, Laxmi N.</au><au>Hamilton, Gregory A.</au><au>Wheat, Justin C.</au><au>Swist-Rosowska, Kalina</au><au>Shukeir, Nicholas</au><au>Dou, Yali</au><au>Steidl, Ulrich</au><au>Jenuwein, Thomas</au><au>Gamble, Matthew J.</au><au>Skoultchi, Arthur I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>H1 linker histones silence repetitive elements by promoting both histone H3K9 methylation and chromatin compaction</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2020-06-23</date><risdate>2020</risdate><volume>117</volume><issue>25</issue><spage>14251</spage><epage>14258</epage><pages>14251-14258</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Nearly 50% of mouse and human genomes are composed of repetitive sequences. Transcription of these sequences is tightly controlled during development to prevent genomic instability, inappropriate gene activation and other maladaptive processes. Here, we demonstrate an integral role for H1 linker histones in silencing repetitive elements in mouse embryonic stem cells. Strong H1 depletion causes a profound de-repression of several classes of repetitive sequences, including major satellite, LINE-1, and ERV. Activation of repetitive sequence transcription is accompanied by decreased H3K9 trimethylation of repetitive sequence chromatin. H1 linker histones interact directly with Suv39h1, Suv39h2, and SETDB1, the histone methyltransferases responsible for H3K9 trimethylation of chromatin within these regions, and stimulate their activity toward chromatin in vitro. However, we also implicate chromatin compaction mediated by H1 as an additional, dominant repressive mechanism for silencing of repetitive major satellite sequences. Our findings elucidate two distinct, H1-mediated pathways for silencing heterochromatin.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>32513732</pmid><doi>10.1073/pnas.1920725117</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-0018-4981</orcidid><orcidid>https://orcid.org/0000-0003-2506-4185</orcidid><orcidid>https://orcid.org/0000-0002-6970-4693</orcidid><orcidid>https://orcid.org/0000-0002-4040-1429</orcidid><orcidid>https://orcid.org/0000-0002-6596-9651</orcidid><orcidid>https://orcid.org/0000-0002-7864-6958</orcidid><orcidid>https://orcid.org/0000-0002-7844-597X</orcidid><orcidid>https://orcid.org/0000-0002-0470-0421</orcidid><orcidid>https://orcid.org/0000-0003-2024-3715</orcidid><orcidid>https://orcid.org/0000-0001-5096-8077</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2020-06, Vol.117 (25), p.14251-14258
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7322038
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Animals
Biological Sciences
Chromatin
Chromatin - metabolism
Compaction
Control stability
Depletion
DNA methylation
Embryo cells
Epigenomics
Genomes
Genomic instability
Heterochromatin
Heterochromatin - metabolism
Histone-Lysine N-Methyltransferase - metabolism
Histones
Histones - metabolism
Methylation
Methyltransferases - metabolism
Mice
Mouse Embryonic Stem Cells - metabolism
Repetitive Sequences, Nucleic Acid - physiology
Repressor Proteins - metabolism
Stem cell transplantation
Stem cells
Transcription activation
title H1 linker histones silence repetitive elements by promoting both histone H3K9 methylation and chromatin compaction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T06%3A06%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=H1%20linker%20histones%20silence%20repetitive%20elements%20by%20promoting%20both%20histone%20H3K9%20methylation%20and%20chromatin%20compaction&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Healton,%20Sean%20E.&rft.date=2020-06-23&rft.volume=117&rft.issue=25&rft.spage=14251&rft.epage=14258&rft.pages=14251-14258&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1920725117&rft_dat=%3Cjstor_pubme%3E26934953%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2417004492&rft_id=info:pmid/32513732&rft_jstor_id=26934953&rfr_iscdi=true