H1 linker histones silence repetitive elements by promoting both histone H3K9 methylation and chromatin compaction
Nearly 50% of mouse and human genomes are composed of repetitive sequences. Transcription of these sequences is tightly controlled during development to prevent genomic instability, inappropriate gene activation and other maladaptive processes. Here, we demonstrate an integral role for H1 linker his...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2020-06, Vol.117 (25), p.14251-14258 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14258 |
---|---|
container_issue | 25 |
container_start_page | 14251 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 117 |
creator | Healton, Sean E. Pinto, Hugo D. Mishra, Laxmi N. Hamilton, Gregory A. Wheat, Justin C. Swist-Rosowska, Kalina Shukeir, Nicholas Dou, Yali Steidl, Ulrich Jenuwein, Thomas Gamble, Matthew J. Skoultchi, Arthur I. |
description | Nearly 50% of mouse and human genomes are composed of repetitive sequences. Transcription of these sequences is tightly controlled during development to prevent genomic instability, inappropriate gene activation and other maladaptive processes. Here, we demonstrate an integral role for H1 linker histones in silencing repetitive elements in mouse embryonic stem cells. Strong H1 depletion causes a profound de-repression of several classes of repetitive sequences, including major satellite, LINE-1, and ERV. Activation of repetitive sequence transcription is accompanied by decreased H3K9 trimethylation of repetitive sequence chromatin. H1 linker histones interact directly with Suv39h1, Suv39h2, and SETDB1, the histone methyltransferases responsible for H3K9 trimethylation of chromatin within these regions, and stimulate their activity toward chromatin in vitro. However, we also implicate chromatin compaction mediated by H1 as an additional, dominant repressive mechanism for silencing of repetitive major satellite sequences. Our findings elucidate two distinct, H1-mediated pathways for silencing heterochromatin. |
doi_str_mv | 10.1073/pnas.1920725117 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7322038</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26934953</jstor_id><sourcerecordid>26934953</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-37a714713b1d2f7648c89034a187cf744529cff27aaea54f723a05a6cf94bf1c3</originalsourceid><addsrcrecordid>eNpdkc1vEzEQxS0EoiFw5gSyxIXLtuOPXa8vSFUFBFGJC5wtr2N3HXbtxXYq5b_HUdrwcRqN3m-eZuYh9JrAJQHBrpag8yWRFARtCRFP0IqAJE3HJTxFKwAqmp5TfoFe5LwDANn28BxdsEozwegKpQ3Bkw8_bcKjzyUGm3H2kw3G4mQXW3zx9xbbyc42lIyHA15SnGPx4Q4PsYyPY3jDvko82zIeJl18DFiHLTZjhWsbsInzos1ReImeOT1l--qhrtGPTx-_32ya22-fv9xc3zamBVkaJrQgXBA2kC11ouO96SUwrkkvjBOct1Qa56jQ2uqWO0GZhlZ3xkk-OGLYGn04-S77YbZbU_dPelJL8rNOBxW1V_8qwY_qLt6r-hgKrK8G7x8MUvy1t7mo2Wdjp0kHG_dZUU4Iga6rv1yjd_-hu7hPoZ53pAQA55JW6upEmRRzTtadlyGgjnmqY57qT5514u3fN5z5xwAr8OYE7GoK6azTTjIuW8Z-AwVrp6Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2417004492</pqid></control><display><type>article</type><title>H1 linker histones silence repetitive elements by promoting both histone H3K9 methylation and chromatin compaction</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Healton, Sean E. ; Pinto, Hugo D. ; Mishra, Laxmi N. ; Hamilton, Gregory A. ; Wheat, Justin C. ; Swist-Rosowska, Kalina ; Shukeir, Nicholas ; Dou, Yali ; Steidl, Ulrich ; Jenuwein, Thomas ; Gamble, Matthew J. ; Skoultchi, Arthur I.</creator><creatorcontrib>Healton, Sean E. ; Pinto, Hugo D. ; Mishra, Laxmi N. ; Hamilton, Gregory A. ; Wheat, Justin C. ; Swist-Rosowska, Kalina ; Shukeir, Nicholas ; Dou, Yali ; Steidl, Ulrich ; Jenuwein, Thomas ; Gamble, Matthew J. ; Skoultchi, Arthur I.</creatorcontrib><description>Nearly 50% of mouse and human genomes are composed of repetitive sequences. Transcription of these sequences is tightly controlled during development to prevent genomic instability, inappropriate gene activation and other maladaptive processes. Here, we demonstrate an integral role for H1 linker histones in silencing repetitive elements in mouse embryonic stem cells. Strong H1 depletion causes a profound de-repression of several classes of repetitive sequences, including major satellite, LINE-1, and ERV. Activation of repetitive sequence transcription is accompanied by decreased H3K9 trimethylation of repetitive sequence chromatin. H1 linker histones interact directly with Suv39h1, Suv39h2, and SETDB1, the histone methyltransferases responsible for H3K9 trimethylation of chromatin within these regions, and stimulate their activity toward chromatin in vitro. However, we also implicate chromatin compaction mediated by H1 as an additional, dominant repressive mechanism for silencing of repetitive major satellite sequences. Our findings elucidate two distinct, H1-mediated pathways for silencing heterochromatin.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1920725117</identifier><identifier>PMID: 32513732</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Biological Sciences ; Chromatin ; Chromatin - metabolism ; Compaction ; Control stability ; Depletion ; DNA methylation ; Embryo cells ; Epigenomics ; Genomes ; Genomic instability ; Heterochromatin ; Heterochromatin - metabolism ; Histone-Lysine N-Methyltransferase - metabolism ; Histones ; Histones - metabolism ; Methylation ; Methyltransferases - metabolism ; Mice ; Mouse Embryonic Stem Cells - metabolism ; Repetitive Sequences, Nucleic Acid - physiology ; Repressor Proteins - metabolism ; Stem cell transplantation ; Stem cells ; Transcription activation</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2020-06, Vol.117 (25), p.14251-14258</ispartof><rights>Copyright National Academy of Sciences Jun 23, 2020</rights><rights>2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-37a714713b1d2f7648c89034a187cf744529cff27aaea54f723a05a6cf94bf1c3</citedby><cites>FETCH-LOGICAL-c509t-37a714713b1d2f7648c89034a187cf744529cff27aaea54f723a05a6cf94bf1c3</cites><orcidid>0000-0003-0018-4981 ; 0000-0003-2506-4185 ; 0000-0002-6970-4693 ; 0000-0002-4040-1429 ; 0000-0002-6596-9651 ; 0000-0002-7864-6958 ; 0000-0002-7844-597X ; 0000-0002-0470-0421 ; 0000-0003-2024-3715 ; 0000-0001-5096-8077</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26934953$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26934953$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32513732$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Healton, Sean E.</creatorcontrib><creatorcontrib>Pinto, Hugo D.</creatorcontrib><creatorcontrib>Mishra, Laxmi N.</creatorcontrib><creatorcontrib>Hamilton, Gregory A.</creatorcontrib><creatorcontrib>Wheat, Justin C.</creatorcontrib><creatorcontrib>Swist-Rosowska, Kalina</creatorcontrib><creatorcontrib>Shukeir, Nicholas</creatorcontrib><creatorcontrib>Dou, Yali</creatorcontrib><creatorcontrib>Steidl, Ulrich</creatorcontrib><creatorcontrib>Jenuwein, Thomas</creatorcontrib><creatorcontrib>Gamble, Matthew J.</creatorcontrib><creatorcontrib>Skoultchi, Arthur I.</creatorcontrib><title>H1 linker histones silence repetitive elements by promoting both histone H3K9 methylation and chromatin compaction</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Nearly 50% of mouse and human genomes are composed of repetitive sequences. Transcription of these sequences is tightly controlled during development to prevent genomic instability, inappropriate gene activation and other maladaptive processes. Here, we demonstrate an integral role for H1 linker histones in silencing repetitive elements in mouse embryonic stem cells. Strong H1 depletion causes a profound de-repression of several classes of repetitive sequences, including major satellite, LINE-1, and ERV. Activation of repetitive sequence transcription is accompanied by decreased H3K9 trimethylation of repetitive sequence chromatin. H1 linker histones interact directly with Suv39h1, Suv39h2, and SETDB1, the histone methyltransferases responsible for H3K9 trimethylation of chromatin within these regions, and stimulate their activity toward chromatin in vitro. However, we also implicate chromatin compaction mediated by H1 as an additional, dominant repressive mechanism for silencing of repetitive major satellite sequences. Our findings elucidate two distinct, H1-mediated pathways for silencing heterochromatin.</description><subject>Animals</subject><subject>Biological Sciences</subject><subject>Chromatin</subject><subject>Chromatin - metabolism</subject><subject>Compaction</subject><subject>Control stability</subject><subject>Depletion</subject><subject>DNA methylation</subject><subject>Embryo cells</subject><subject>Epigenomics</subject><subject>Genomes</subject><subject>Genomic instability</subject><subject>Heterochromatin</subject><subject>Heterochromatin - metabolism</subject><subject>Histone-Lysine N-Methyltransferase - metabolism</subject><subject>Histones</subject><subject>Histones - metabolism</subject><subject>Methylation</subject><subject>Methyltransferases - metabolism</subject><subject>Mice</subject><subject>Mouse Embryonic Stem Cells - metabolism</subject><subject>Repetitive Sequences, Nucleic Acid - physiology</subject><subject>Repressor Proteins - metabolism</subject><subject>Stem cell transplantation</subject><subject>Stem cells</subject><subject>Transcription activation</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1vEzEQxS0EoiFw5gSyxIXLtuOPXa8vSFUFBFGJC5wtr2N3HXbtxXYq5b_HUdrwcRqN3m-eZuYh9JrAJQHBrpag8yWRFARtCRFP0IqAJE3HJTxFKwAqmp5TfoFe5LwDANn28BxdsEozwegKpQ3Bkw8_bcKjzyUGm3H2kw3G4mQXW3zx9xbbyc42lIyHA15SnGPx4Q4PsYyPY3jDvko82zIeJl18DFiHLTZjhWsbsInzos1ReImeOT1l--qhrtGPTx-_32ya22-fv9xc3zamBVkaJrQgXBA2kC11ouO96SUwrkkvjBOct1Qa56jQ2uqWO0GZhlZ3xkk-OGLYGn04-S77YbZbU_dPelJL8rNOBxW1V_8qwY_qLt6r-hgKrK8G7x8MUvy1t7mo2Wdjp0kHG_dZUU4Iga6rv1yjd_-hu7hPoZ53pAQA55JW6upEmRRzTtadlyGgjnmqY57qT5514u3fN5z5xwAr8OYE7GoK6azTTjIuW8Z-AwVrp6Q</recordid><startdate>20200623</startdate><enddate>20200623</enddate><creator>Healton, Sean E.</creator><creator>Pinto, Hugo D.</creator><creator>Mishra, Laxmi N.</creator><creator>Hamilton, Gregory A.</creator><creator>Wheat, Justin C.</creator><creator>Swist-Rosowska, Kalina</creator><creator>Shukeir, Nicholas</creator><creator>Dou, Yali</creator><creator>Steidl, Ulrich</creator><creator>Jenuwein, Thomas</creator><creator>Gamble, Matthew J.</creator><creator>Skoultchi, Arthur I.</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0018-4981</orcidid><orcidid>https://orcid.org/0000-0003-2506-4185</orcidid><orcidid>https://orcid.org/0000-0002-6970-4693</orcidid><orcidid>https://orcid.org/0000-0002-4040-1429</orcidid><orcidid>https://orcid.org/0000-0002-6596-9651</orcidid><orcidid>https://orcid.org/0000-0002-7864-6958</orcidid><orcidid>https://orcid.org/0000-0002-7844-597X</orcidid><orcidid>https://orcid.org/0000-0002-0470-0421</orcidid><orcidid>https://orcid.org/0000-0003-2024-3715</orcidid><orcidid>https://orcid.org/0000-0001-5096-8077</orcidid></search><sort><creationdate>20200623</creationdate><title>H1 linker histones silence repetitive elements by promoting both histone H3K9 methylation and chromatin compaction</title><author>Healton, Sean E. ; Pinto, Hugo D. ; Mishra, Laxmi N. ; Hamilton, Gregory A. ; Wheat, Justin C. ; Swist-Rosowska, Kalina ; Shukeir, Nicholas ; Dou, Yali ; Steidl, Ulrich ; Jenuwein, Thomas ; Gamble, Matthew J. ; Skoultchi, Arthur I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-37a714713b1d2f7648c89034a187cf744529cff27aaea54f723a05a6cf94bf1c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Biological Sciences</topic><topic>Chromatin</topic><topic>Chromatin - metabolism</topic><topic>Compaction</topic><topic>Control stability</topic><topic>Depletion</topic><topic>DNA methylation</topic><topic>Embryo cells</topic><topic>Epigenomics</topic><topic>Genomes</topic><topic>Genomic instability</topic><topic>Heterochromatin</topic><topic>Heterochromatin - metabolism</topic><topic>Histone-Lysine N-Methyltransferase - metabolism</topic><topic>Histones</topic><topic>Histones - metabolism</topic><topic>Methylation</topic><topic>Methyltransferases - metabolism</topic><topic>Mice</topic><topic>Mouse Embryonic Stem Cells - metabolism</topic><topic>Repetitive Sequences, Nucleic Acid - physiology</topic><topic>Repressor Proteins - metabolism</topic><topic>Stem cell transplantation</topic><topic>Stem cells</topic><topic>Transcription activation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Healton, Sean E.</creatorcontrib><creatorcontrib>Pinto, Hugo D.</creatorcontrib><creatorcontrib>Mishra, Laxmi N.</creatorcontrib><creatorcontrib>Hamilton, Gregory A.</creatorcontrib><creatorcontrib>Wheat, Justin C.</creatorcontrib><creatorcontrib>Swist-Rosowska, Kalina</creatorcontrib><creatorcontrib>Shukeir, Nicholas</creatorcontrib><creatorcontrib>Dou, Yali</creatorcontrib><creatorcontrib>Steidl, Ulrich</creatorcontrib><creatorcontrib>Jenuwein, Thomas</creatorcontrib><creatorcontrib>Gamble, Matthew J.</creatorcontrib><creatorcontrib>Skoultchi, Arthur I.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Healton, Sean E.</au><au>Pinto, Hugo D.</au><au>Mishra, Laxmi N.</au><au>Hamilton, Gregory A.</au><au>Wheat, Justin C.</au><au>Swist-Rosowska, Kalina</au><au>Shukeir, Nicholas</au><au>Dou, Yali</au><au>Steidl, Ulrich</au><au>Jenuwein, Thomas</au><au>Gamble, Matthew J.</au><au>Skoultchi, Arthur I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>H1 linker histones silence repetitive elements by promoting both histone H3K9 methylation and chromatin compaction</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2020-06-23</date><risdate>2020</risdate><volume>117</volume><issue>25</issue><spage>14251</spage><epage>14258</epage><pages>14251-14258</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Nearly 50% of mouse and human genomes are composed of repetitive sequences. Transcription of these sequences is tightly controlled during development to prevent genomic instability, inappropriate gene activation and other maladaptive processes. Here, we demonstrate an integral role for H1 linker histones in silencing repetitive elements in mouse embryonic stem cells. Strong H1 depletion causes a profound de-repression of several classes of repetitive sequences, including major satellite, LINE-1, and ERV. Activation of repetitive sequence transcription is accompanied by decreased H3K9 trimethylation of repetitive sequence chromatin. H1 linker histones interact directly with Suv39h1, Suv39h2, and SETDB1, the histone methyltransferases responsible for H3K9 trimethylation of chromatin within these regions, and stimulate their activity toward chromatin in vitro. However, we also implicate chromatin compaction mediated by H1 as an additional, dominant repressive mechanism for silencing of repetitive major satellite sequences. Our findings elucidate two distinct, H1-mediated pathways for silencing heterochromatin.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>32513732</pmid><doi>10.1073/pnas.1920725117</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-0018-4981</orcidid><orcidid>https://orcid.org/0000-0003-2506-4185</orcidid><orcidid>https://orcid.org/0000-0002-6970-4693</orcidid><orcidid>https://orcid.org/0000-0002-4040-1429</orcidid><orcidid>https://orcid.org/0000-0002-6596-9651</orcidid><orcidid>https://orcid.org/0000-0002-7864-6958</orcidid><orcidid>https://orcid.org/0000-0002-7844-597X</orcidid><orcidid>https://orcid.org/0000-0002-0470-0421</orcidid><orcidid>https://orcid.org/0000-0003-2024-3715</orcidid><orcidid>https://orcid.org/0000-0001-5096-8077</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2020-06, Vol.117 (25), p.14251-14258 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7322038 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Animals Biological Sciences Chromatin Chromatin - metabolism Compaction Control stability Depletion DNA methylation Embryo cells Epigenomics Genomes Genomic instability Heterochromatin Heterochromatin - metabolism Histone-Lysine N-Methyltransferase - metabolism Histones Histones - metabolism Methylation Methyltransferases - metabolism Mice Mouse Embryonic Stem Cells - metabolism Repetitive Sequences, Nucleic Acid - physiology Repressor Proteins - metabolism Stem cell transplantation Stem cells Transcription activation |
title | H1 linker histones silence repetitive elements by promoting both histone H3K9 methylation and chromatin compaction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T06%3A06%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=H1%20linker%20histones%20silence%20repetitive%20elements%20by%20promoting%20both%20histone%20H3K9%20methylation%20and%20chromatin%20compaction&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Healton,%20Sean%20E.&rft.date=2020-06-23&rft.volume=117&rft.issue=25&rft.spage=14251&rft.epage=14258&rft.pages=14251-14258&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1920725117&rft_dat=%3Cjstor_pubme%3E26934953%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2417004492&rft_id=info:pmid/32513732&rft_jstor_id=26934953&rfr_iscdi=true |