Glycogen as an advantageous polymer carrier in cancer theranostics: Straightforward in vivo evidence
As a natural polysaccharide polymer, glycogen possesses suitable properties for use as a nanoparticle carrier in cancer theranostics. Not only it is inherently biocompatible, it can also be easily chemically modified with various moieties. Synthetic glycogen conjugates can passively accumulate in tu...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2020-06, Vol.10 (1), p.10411-10411, Article 10411 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10411 |
---|---|
container_issue | 1 |
container_start_page | 10411 |
container_title | Scientific reports |
container_volume | 10 |
creator | Gálisová, Andrea Jirátová, Markéta Rabyk, Mariia Sticová, Eva Hájek, Milan Hrubý, Martin Jirák, Daniel |
description | As a natural polysaccharide polymer, glycogen possesses suitable properties for use as a nanoparticle carrier in cancer theranostics. Not only it is inherently biocompatible, it can also be easily chemically modified with various moieties. Synthetic glycogen conjugates can passively accumulate in tumours due to enhanced permeability of tumour vessels and limited lymphatic drainage (the EPR effect). For this study, we developed and examined a glycogen-based carrier containing a gadolinium chelate and near-infrared fluorescent dye. Our aim was to monitor biodistribution and accumulation in tumour-bearing rats using magnetic resonance and fluorescence imaging. Our data clearly show that these conjugates possess suitable imaging and tumour-targeting properties, and are safe under both
in vitro
and
in vivo
conditions. Additional modification of glycogen polymers with poly(2-alkyl-2-oxazolines) led to a reduction in the elimination rate and lower uptake in internal organs (lower whole-body background: 45% and 27% lower MRI signals of oxazoline-based conjugates in the liver and kidneys, respectively compared to the unmodified version). Our results highlight the potential of multimodal glycogen-based nanopolymers as a carrier for drug delivery systems in tumour diagnosis and treatment. |
doi_str_mv | 10.1038/s41598-020-67277-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7320016</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2418127514</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-7136257e994d28a5f5afd82d233bf69bf74e757d9014dd052bb8041d81e2b293</originalsourceid><addsrcrecordid>eNp9kcFO3DAQhi1UBAh4AQ5VpF56CbXHdhz3UKlCFCohcYC75cRO1ihrb-1sUN4epwuUcsAHz0jzze8Z_widEXxOMK2_JUa4rEsMuKwECFHOe-gIMOMlUIBPb_JDdJrSA86Hg2REHqBDClwSXokjZK6GuQ299YVOhc63mbQfdW_DNhWbMMxrG4tWx-hydD6nvs3ZuLJR-5BG16bvxd0YtetXYxfio45m4SY3hcJOztjMn6D9Tg_Jnj7HY3T_6_L-4rq8ub36ffHzpmyZYGMpCK2ACyslM1Br3nHdmRoMUNp0lWw6wazgwkhMmDF5m6apMSOmJhYakPQY_djJbrbN2prW-jzXoDbRrXWcVdBO_V_xbqX6MClBAWNSZYGvzwIx_NnaNKq1S60dBu2X_1DASE1AcMIy-uUd-hC20eftFkoIjIEvgrCj2hhSirZ7HYZgtdiodjaqbKP6a6Oac9Pnt2u8tryYlgG6A1Iu-d7Gf29_IPsERZqqWw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2417700256</pqid></control><display><type>article</type><title>Glycogen as an advantageous polymer carrier in cancer theranostics: Straightforward in vivo evidence</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Gálisová, Andrea ; Jirátová, Markéta ; Rabyk, Mariia ; Sticová, Eva ; Hájek, Milan ; Hrubý, Martin ; Jirák, Daniel</creator><creatorcontrib>Gálisová, Andrea ; Jirátová, Markéta ; Rabyk, Mariia ; Sticová, Eva ; Hájek, Milan ; Hrubý, Martin ; Jirák, Daniel</creatorcontrib><description>As a natural polysaccharide polymer, glycogen possesses suitable properties for use as a nanoparticle carrier in cancer theranostics. Not only it is inherently biocompatible, it can also be easily chemically modified with various moieties. Synthetic glycogen conjugates can passively accumulate in tumours due to enhanced permeability of tumour vessels and limited lymphatic drainage (the EPR effect). For this study, we developed and examined a glycogen-based carrier containing a gadolinium chelate and near-infrared fluorescent dye. Our aim was to monitor biodistribution and accumulation in tumour-bearing rats using magnetic resonance and fluorescence imaging. Our data clearly show that these conjugates possess suitable imaging and tumour-targeting properties, and are safe under both
in vitro
and
in vivo
conditions. Additional modification of glycogen polymers with poly(2-alkyl-2-oxazolines) led to a reduction in the elimination rate and lower uptake in internal organs (lower whole-body background: 45% and 27% lower MRI signals of oxazoline-based conjugates in the liver and kidneys, respectively compared to the unmodified version). Our results highlight the potential of multimodal glycogen-based nanopolymers as a carrier for drug delivery systems in tumour diagnosis and treatment.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-67277-y</identifier><identifier>PMID: 32591567</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/154/152 ; 639/925/357/354 ; 692/4028/67/2321 ; Animals ; Antineoplastic Agents - administration & dosage ; Biodistribution ; Cancer ; Cell Line, Tumor ; Contrast agents ; Drug delivery ; Drug Delivery Systems ; Enzymes ; Fluorescent indicators ; Gadolinium ; Glycogen ; Glycogen - administration & dosage ; Humanities and Social Sciences ; Kidneys ; Lymphatic drainage ; Magnetic resonance imaging ; Medicine ; Molecular weight ; multidisciplinary ; Nanoparticles ; Neoplasms - drug therapy ; Permeability ; Polymers ; Polysaccharides ; Precision medicine ; Rats ; Science ; Science (multidisciplinary) ; Theranostic Nanomedicine ; Tumors</subject><ispartof>Scientific reports, 2020-06, Vol.10 (1), p.10411-10411, Article 10411</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-7136257e994d28a5f5afd82d233bf69bf74e757d9014dd052bb8041d81e2b293</citedby><cites>FETCH-LOGICAL-c474t-7136257e994d28a5f5afd82d233bf69bf74e757d9014dd052bb8041d81e2b293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7320016/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7320016/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,41120,42189,51576,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32591567$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gálisová, Andrea</creatorcontrib><creatorcontrib>Jirátová, Markéta</creatorcontrib><creatorcontrib>Rabyk, Mariia</creatorcontrib><creatorcontrib>Sticová, Eva</creatorcontrib><creatorcontrib>Hájek, Milan</creatorcontrib><creatorcontrib>Hrubý, Martin</creatorcontrib><creatorcontrib>Jirák, Daniel</creatorcontrib><title>Glycogen as an advantageous polymer carrier in cancer theranostics: Straightforward in vivo evidence</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>As a natural polysaccharide polymer, glycogen possesses suitable properties for use as a nanoparticle carrier in cancer theranostics. Not only it is inherently biocompatible, it can also be easily chemically modified with various moieties. Synthetic glycogen conjugates can passively accumulate in tumours due to enhanced permeability of tumour vessels and limited lymphatic drainage (the EPR effect). For this study, we developed and examined a glycogen-based carrier containing a gadolinium chelate and near-infrared fluorescent dye. Our aim was to monitor biodistribution and accumulation in tumour-bearing rats using magnetic resonance and fluorescence imaging. Our data clearly show that these conjugates possess suitable imaging and tumour-targeting properties, and are safe under both
in vitro
and
in vivo
conditions. Additional modification of glycogen polymers with poly(2-alkyl-2-oxazolines) led to a reduction in the elimination rate and lower uptake in internal organs (lower whole-body background: 45% and 27% lower MRI signals of oxazoline-based conjugates in the liver and kidneys, respectively compared to the unmodified version). Our results highlight the potential of multimodal glycogen-based nanopolymers as a carrier for drug delivery systems in tumour diagnosis and treatment.</description><subject>631/154/152</subject><subject>639/925/357/354</subject><subject>692/4028/67/2321</subject><subject>Animals</subject><subject>Antineoplastic Agents - administration & dosage</subject><subject>Biodistribution</subject><subject>Cancer</subject><subject>Cell Line, Tumor</subject><subject>Contrast agents</subject><subject>Drug delivery</subject><subject>Drug Delivery Systems</subject><subject>Enzymes</subject><subject>Fluorescent indicators</subject><subject>Gadolinium</subject><subject>Glycogen</subject><subject>Glycogen - administration & dosage</subject><subject>Humanities and Social Sciences</subject><subject>Kidneys</subject><subject>Lymphatic drainage</subject><subject>Magnetic resonance imaging</subject><subject>Medicine</subject><subject>Molecular weight</subject><subject>multidisciplinary</subject><subject>Nanoparticles</subject><subject>Neoplasms - drug therapy</subject><subject>Permeability</subject><subject>Polymers</subject><subject>Polysaccharides</subject><subject>Precision medicine</subject><subject>Rats</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Theranostic Nanomedicine</subject><subject>Tumors</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kcFO3DAQhi1UBAh4AQ5VpF56CbXHdhz3UKlCFCohcYC75cRO1ihrb-1sUN4epwuUcsAHz0jzze8Z_widEXxOMK2_JUa4rEsMuKwECFHOe-gIMOMlUIBPb_JDdJrSA86Hg2REHqBDClwSXokjZK6GuQ299YVOhc63mbQfdW_DNhWbMMxrG4tWx-hydD6nvs3ZuLJR-5BG16bvxd0YtetXYxfio45m4SY3hcJOztjMn6D9Tg_Jnj7HY3T_6_L-4rq8ub36ffHzpmyZYGMpCK2ACyslM1Br3nHdmRoMUNp0lWw6wazgwkhMmDF5m6apMSOmJhYakPQY_djJbrbN2prW-jzXoDbRrXWcVdBO_V_xbqX6MClBAWNSZYGvzwIx_NnaNKq1S60dBu2X_1DASE1AcMIy-uUd-hC20eftFkoIjIEvgrCj2hhSirZ7HYZgtdiodjaqbKP6a6Oac9Pnt2u8tryYlgG6A1Iu-d7Gf29_IPsERZqqWw</recordid><startdate>20200626</startdate><enddate>20200626</enddate><creator>Gálisová, Andrea</creator><creator>Jirátová, Markéta</creator><creator>Rabyk, Mariia</creator><creator>Sticová, Eva</creator><creator>Hájek, Milan</creator><creator>Hrubý, Martin</creator><creator>Jirák, Daniel</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20200626</creationdate><title>Glycogen as an advantageous polymer carrier in cancer theranostics: Straightforward in vivo evidence</title><author>Gálisová, Andrea ; Jirátová, Markéta ; Rabyk, Mariia ; Sticová, Eva ; Hájek, Milan ; Hrubý, Martin ; Jirák, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-7136257e994d28a5f5afd82d233bf69bf74e757d9014dd052bb8041d81e2b293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>631/154/152</topic><topic>639/925/357/354</topic><topic>692/4028/67/2321</topic><topic>Animals</topic><topic>Antineoplastic Agents - administration & dosage</topic><topic>Biodistribution</topic><topic>Cancer</topic><topic>Cell Line, Tumor</topic><topic>Contrast agents</topic><topic>Drug delivery</topic><topic>Drug Delivery Systems</topic><topic>Enzymes</topic><topic>Fluorescent indicators</topic><topic>Gadolinium</topic><topic>Glycogen</topic><topic>Glycogen - administration & dosage</topic><topic>Humanities and Social Sciences</topic><topic>Kidneys</topic><topic>Lymphatic drainage</topic><topic>Magnetic resonance imaging</topic><topic>Medicine</topic><topic>Molecular weight</topic><topic>multidisciplinary</topic><topic>Nanoparticles</topic><topic>Neoplasms - drug therapy</topic><topic>Permeability</topic><topic>Polymers</topic><topic>Polysaccharides</topic><topic>Precision medicine</topic><topic>Rats</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Theranostic Nanomedicine</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gálisová, Andrea</creatorcontrib><creatorcontrib>Jirátová, Markéta</creatorcontrib><creatorcontrib>Rabyk, Mariia</creatorcontrib><creatorcontrib>Sticová, Eva</creatorcontrib><creatorcontrib>Hájek, Milan</creatorcontrib><creatorcontrib>Hrubý, Martin</creatorcontrib><creatorcontrib>Jirák, Daniel</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gálisová, Andrea</au><au>Jirátová, Markéta</au><au>Rabyk, Mariia</au><au>Sticová, Eva</au><au>Hájek, Milan</au><au>Hrubý, Martin</au><au>Jirák, Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Glycogen as an advantageous polymer carrier in cancer theranostics: Straightforward in vivo evidence</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2020-06-26</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>10411</spage><epage>10411</epage><pages>10411-10411</pages><artnum>10411</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>As a natural polysaccharide polymer, glycogen possesses suitable properties for use as a nanoparticle carrier in cancer theranostics. Not only it is inherently biocompatible, it can also be easily chemically modified with various moieties. Synthetic glycogen conjugates can passively accumulate in tumours due to enhanced permeability of tumour vessels and limited lymphatic drainage (the EPR effect). For this study, we developed and examined a glycogen-based carrier containing a gadolinium chelate and near-infrared fluorescent dye. Our aim was to monitor biodistribution and accumulation in tumour-bearing rats using magnetic resonance and fluorescence imaging. Our data clearly show that these conjugates possess suitable imaging and tumour-targeting properties, and are safe under both
in vitro
and
in vivo
conditions. Additional modification of glycogen polymers with poly(2-alkyl-2-oxazolines) led to a reduction in the elimination rate and lower uptake in internal organs (lower whole-body background: 45% and 27% lower MRI signals of oxazoline-based conjugates in the liver and kidneys, respectively compared to the unmodified version). Our results highlight the potential of multimodal glycogen-based nanopolymers as a carrier for drug delivery systems in tumour diagnosis and treatment.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32591567</pmid><doi>10.1038/s41598-020-67277-y</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2020-06, Vol.10 (1), p.10411-10411, Article 10411 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7320016 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | 631/154/152 639/925/357/354 692/4028/67/2321 Animals Antineoplastic Agents - administration & dosage Biodistribution Cancer Cell Line, Tumor Contrast agents Drug delivery Drug Delivery Systems Enzymes Fluorescent indicators Gadolinium Glycogen Glycogen - administration & dosage Humanities and Social Sciences Kidneys Lymphatic drainage Magnetic resonance imaging Medicine Molecular weight multidisciplinary Nanoparticles Neoplasms - drug therapy Permeability Polymers Polysaccharides Precision medicine Rats Science Science (multidisciplinary) Theranostic Nanomedicine Tumors |
title | Glycogen as an advantageous polymer carrier in cancer theranostics: Straightforward in vivo evidence |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T14%3A09%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Glycogen%20as%20an%20advantageous%20polymer%20carrier%20in%20cancer%20theranostics:%20Straightforward%20in%20vivo%20evidence&rft.jtitle=Scientific%20reports&rft.au=G%C3%A1lisov%C3%A1,%20Andrea&rft.date=2020-06-26&rft.volume=10&rft.issue=1&rft.spage=10411&rft.epage=10411&rft.pages=10411-10411&rft.artnum=10411&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-67277-y&rft_dat=%3Cproquest_pubme%3E2418127514%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2417700256&rft_id=info:pmid/32591567&rfr_iscdi=true |