Glycogen as an advantageous polymer carrier in cancer theranostics: Straightforward in vivo evidence

As a natural polysaccharide polymer, glycogen possesses suitable properties for use as a nanoparticle carrier in cancer theranostics. Not only it is inherently biocompatible, it can also be easily chemically modified with various moieties. Synthetic glycogen conjugates can passively accumulate in tu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2020-06, Vol.10 (1), p.10411-10411, Article 10411
Hauptverfasser: Gálisová, Andrea, Jirátová, Markéta, Rabyk, Mariia, Sticová, Eva, Hájek, Milan, Hrubý, Martin, Jirák, Daniel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10411
container_issue 1
container_start_page 10411
container_title Scientific reports
container_volume 10
creator Gálisová, Andrea
Jirátová, Markéta
Rabyk, Mariia
Sticová, Eva
Hájek, Milan
Hrubý, Martin
Jirák, Daniel
description As a natural polysaccharide polymer, glycogen possesses suitable properties for use as a nanoparticle carrier in cancer theranostics. Not only it is inherently biocompatible, it can also be easily chemically modified with various moieties. Synthetic glycogen conjugates can passively accumulate in tumours due to enhanced permeability of tumour vessels and limited lymphatic drainage (the EPR effect). For this study, we developed and examined a glycogen-based carrier containing a gadolinium chelate and near-infrared fluorescent dye. Our aim was to monitor biodistribution and accumulation in tumour-bearing rats using magnetic resonance and fluorescence imaging. Our data clearly show that these conjugates possess suitable imaging and tumour-targeting properties, and are safe under both in vitro and in vivo conditions. Additional modification of glycogen polymers with poly(2-alkyl-2-oxazolines) led to a reduction in the elimination rate and lower uptake in internal organs (lower whole-body background: 45% and 27% lower MRI signals of oxazoline-based conjugates in the liver and kidneys, respectively compared to the unmodified version). Our results highlight the potential of multimodal glycogen-based nanopolymers as a carrier for drug delivery systems in tumour diagnosis and treatment.
doi_str_mv 10.1038/s41598-020-67277-y
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7320016</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2418127514</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-7136257e994d28a5f5afd82d233bf69bf74e757d9014dd052bb8041d81e2b293</originalsourceid><addsrcrecordid>eNp9kcFO3DAQhi1UBAh4AQ5VpF56CbXHdhz3UKlCFCohcYC75cRO1ihrb-1sUN4epwuUcsAHz0jzze8Z_widEXxOMK2_JUa4rEsMuKwECFHOe-gIMOMlUIBPb_JDdJrSA86Hg2REHqBDClwSXokjZK6GuQ299YVOhc63mbQfdW_DNhWbMMxrG4tWx-hydD6nvs3ZuLJR-5BG16bvxd0YtetXYxfio45m4SY3hcJOztjMn6D9Tg_Jnj7HY3T_6_L-4rq8ub36ffHzpmyZYGMpCK2ACyslM1Br3nHdmRoMUNp0lWw6wazgwkhMmDF5m6apMSOmJhYakPQY_djJbrbN2prW-jzXoDbRrXWcVdBO_V_xbqX6MClBAWNSZYGvzwIx_NnaNKq1S60dBu2X_1DASE1AcMIy-uUd-hC20eftFkoIjIEvgrCj2hhSirZ7HYZgtdiodjaqbKP6a6Oac9Pnt2u8tryYlgG6A1Iu-d7Gf29_IPsERZqqWw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2417700256</pqid></control><display><type>article</type><title>Glycogen as an advantageous polymer carrier in cancer theranostics: Straightforward in vivo evidence</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Gálisová, Andrea ; Jirátová, Markéta ; Rabyk, Mariia ; Sticová, Eva ; Hájek, Milan ; Hrubý, Martin ; Jirák, Daniel</creator><creatorcontrib>Gálisová, Andrea ; Jirátová, Markéta ; Rabyk, Mariia ; Sticová, Eva ; Hájek, Milan ; Hrubý, Martin ; Jirák, Daniel</creatorcontrib><description>As a natural polysaccharide polymer, glycogen possesses suitable properties for use as a nanoparticle carrier in cancer theranostics. Not only it is inherently biocompatible, it can also be easily chemically modified with various moieties. Synthetic glycogen conjugates can passively accumulate in tumours due to enhanced permeability of tumour vessels and limited lymphatic drainage (the EPR effect). For this study, we developed and examined a glycogen-based carrier containing a gadolinium chelate and near-infrared fluorescent dye. Our aim was to monitor biodistribution and accumulation in tumour-bearing rats using magnetic resonance and fluorescence imaging. Our data clearly show that these conjugates possess suitable imaging and tumour-targeting properties, and are safe under both in vitro and in vivo conditions. Additional modification of glycogen polymers with poly(2-alkyl-2-oxazolines) led to a reduction in the elimination rate and lower uptake in internal organs (lower whole-body background: 45% and 27% lower MRI signals of oxazoline-based conjugates in the liver and kidneys, respectively compared to the unmodified version). Our results highlight the potential of multimodal glycogen-based nanopolymers as a carrier for drug delivery systems in tumour diagnosis and treatment.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-67277-y</identifier><identifier>PMID: 32591567</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/154/152 ; 639/925/357/354 ; 692/4028/67/2321 ; Animals ; Antineoplastic Agents - administration &amp; dosage ; Biodistribution ; Cancer ; Cell Line, Tumor ; Contrast agents ; Drug delivery ; Drug Delivery Systems ; Enzymes ; Fluorescent indicators ; Gadolinium ; Glycogen ; Glycogen - administration &amp; dosage ; Humanities and Social Sciences ; Kidneys ; Lymphatic drainage ; Magnetic resonance imaging ; Medicine ; Molecular weight ; multidisciplinary ; Nanoparticles ; Neoplasms - drug therapy ; Permeability ; Polymers ; Polysaccharides ; Precision medicine ; Rats ; Science ; Science (multidisciplinary) ; Theranostic Nanomedicine ; Tumors</subject><ispartof>Scientific reports, 2020-06, Vol.10 (1), p.10411-10411, Article 10411</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-7136257e994d28a5f5afd82d233bf69bf74e757d9014dd052bb8041d81e2b293</citedby><cites>FETCH-LOGICAL-c474t-7136257e994d28a5f5afd82d233bf69bf74e757d9014dd052bb8041d81e2b293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7320016/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7320016/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,41120,42189,51576,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32591567$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gálisová, Andrea</creatorcontrib><creatorcontrib>Jirátová, Markéta</creatorcontrib><creatorcontrib>Rabyk, Mariia</creatorcontrib><creatorcontrib>Sticová, Eva</creatorcontrib><creatorcontrib>Hájek, Milan</creatorcontrib><creatorcontrib>Hrubý, Martin</creatorcontrib><creatorcontrib>Jirák, Daniel</creatorcontrib><title>Glycogen as an advantageous polymer carrier in cancer theranostics: Straightforward in vivo evidence</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>As a natural polysaccharide polymer, glycogen possesses suitable properties for use as a nanoparticle carrier in cancer theranostics. Not only it is inherently biocompatible, it can also be easily chemically modified with various moieties. Synthetic glycogen conjugates can passively accumulate in tumours due to enhanced permeability of tumour vessels and limited lymphatic drainage (the EPR effect). For this study, we developed and examined a glycogen-based carrier containing a gadolinium chelate and near-infrared fluorescent dye. Our aim was to monitor biodistribution and accumulation in tumour-bearing rats using magnetic resonance and fluorescence imaging. Our data clearly show that these conjugates possess suitable imaging and tumour-targeting properties, and are safe under both in vitro and in vivo conditions. Additional modification of glycogen polymers with poly(2-alkyl-2-oxazolines) led to a reduction in the elimination rate and lower uptake in internal organs (lower whole-body background: 45% and 27% lower MRI signals of oxazoline-based conjugates in the liver and kidneys, respectively compared to the unmodified version). Our results highlight the potential of multimodal glycogen-based nanopolymers as a carrier for drug delivery systems in tumour diagnosis and treatment.</description><subject>631/154/152</subject><subject>639/925/357/354</subject><subject>692/4028/67/2321</subject><subject>Animals</subject><subject>Antineoplastic Agents - administration &amp; dosage</subject><subject>Biodistribution</subject><subject>Cancer</subject><subject>Cell Line, Tumor</subject><subject>Contrast agents</subject><subject>Drug delivery</subject><subject>Drug Delivery Systems</subject><subject>Enzymes</subject><subject>Fluorescent indicators</subject><subject>Gadolinium</subject><subject>Glycogen</subject><subject>Glycogen - administration &amp; dosage</subject><subject>Humanities and Social Sciences</subject><subject>Kidneys</subject><subject>Lymphatic drainage</subject><subject>Magnetic resonance imaging</subject><subject>Medicine</subject><subject>Molecular weight</subject><subject>multidisciplinary</subject><subject>Nanoparticles</subject><subject>Neoplasms - drug therapy</subject><subject>Permeability</subject><subject>Polymers</subject><subject>Polysaccharides</subject><subject>Precision medicine</subject><subject>Rats</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Theranostic Nanomedicine</subject><subject>Tumors</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kcFO3DAQhi1UBAh4AQ5VpF56CbXHdhz3UKlCFCohcYC75cRO1ihrb-1sUN4epwuUcsAHz0jzze8Z_widEXxOMK2_JUa4rEsMuKwECFHOe-gIMOMlUIBPb_JDdJrSA86Hg2REHqBDClwSXokjZK6GuQ299YVOhc63mbQfdW_DNhWbMMxrG4tWx-hydD6nvs3ZuLJR-5BG16bvxd0YtetXYxfio45m4SY3hcJOztjMn6D9Tg_Jnj7HY3T_6_L-4rq8ub36ffHzpmyZYGMpCK2ACyslM1Br3nHdmRoMUNp0lWw6wazgwkhMmDF5m6apMSOmJhYakPQY_djJbrbN2prW-jzXoDbRrXWcVdBO_V_xbqX6MClBAWNSZYGvzwIx_NnaNKq1S60dBu2X_1DASE1AcMIy-uUd-hC20eftFkoIjIEvgrCj2hhSirZ7HYZgtdiodjaqbKP6a6Oac9Pnt2u8tryYlgG6A1Iu-d7Gf29_IPsERZqqWw</recordid><startdate>20200626</startdate><enddate>20200626</enddate><creator>Gálisová, Andrea</creator><creator>Jirátová, Markéta</creator><creator>Rabyk, Mariia</creator><creator>Sticová, Eva</creator><creator>Hájek, Milan</creator><creator>Hrubý, Martin</creator><creator>Jirák, Daniel</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20200626</creationdate><title>Glycogen as an advantageous polymer carrier in cancer theranostics: Straightforward in vivo evidence</title><author>Gálisová, Andrea ; Jirátová, Markéta ; Rabyk, Mariia ; Sticová, Eva ; Hájek, Milan ; Hrubý, Martin ; Jirák, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-7136257e994d28a5f5afd82d233bf69bf74e757d9014dd052bb8041d81e2b293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>631/154/152</topic><topic>639/925/357/354</topic><topic>692/4028/67/2321</topic><topic>Animals</topic><topic>Antineoplastic Agents - administration &amp; dosage</topic><topic>Biodistribution</topic><topic>Cancer</topic><topic>Cell Line, Tumor</topic><topic>Contrast agents</topic><topic>Drug delivery</topic><topic>Drug Delivery Systems</topic><topic>Enzymes</topic><topic>Fluorescent indicators</topic><topic>Gadolinium</topic><topic>Glycogen</topic><topic>Glycogen - administration &amp; dosage</topic><topic>Humanities and Social Sciences</topic><topic>Kidneys</topic><topic>Lymphatic drainage</topic><topic>Magnetic resonance imaging</topic><topic>Medicine</topic><topic>Molecular weight</topic><topic>multidisciplinary</topic><topic>Nanoparticles</topic><topic>Neoplasms - drug therapy</topic><topic>Permeability</topic><topic>Polymers</topic><topic>Polysaccharides</topic><topic>Precision medicine</topic><topic>Rats</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Theranostic Nanomedicine</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gálisová, Andrea</creatorcontrib><creatorcontrib>Jirátová, Markéta</creatorcontrib><creatorcontrib>Rabyk, Mariia</creatorcontrib><creatorcontrib>Sticová, Eva</creatorcontrib><creatorcontrib>Hájek, Milan</creatorcontrib><creatorcontrib>Hrubý, Martin</creatorcontrib><creatorcontrib>Jirák, Daniel</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gálisová, Andrea</au><au>Jirátová, Markéta</au><au>Rabyk, Mariia</au><au>Sticová, Eva</au><au>Hájek, Milan</au><au>Hrubý, Martin</au><au>Jirák, Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Glycogen as an advantageous polymer carrier in cancer theranostics: Straightforward in vivo evidence</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2020-06-26</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>10411</spage><epage>10411</epage><pages>10411-10411</pages><artnum>10411</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>As a natural polysaccharide polymer, glycogen possesses suitable properties for use as a nanoparticle carrier in cancer theranostics. Not only it is inherently biocompatible, it can also be easily chemically modified with various moieties. Synthetic glycogen conjugates can passively accumulate in tumours due to enhanced permeability of tumour vessels and limited lymphatic drainage (the EPR effect). For this study, we developed and examined a glycogen-based carrier containing a gadolinium chelate and near-infrared fluorescent dye. Our aim was to monitor biodistribution and accumulation in tumour-bearing rats using magnetic resonance and fluorescence imaging. Our data clearly show that these conjugates possess suitable imaging and tumour-targeting properties, and are safe under both in vitro and in vivo conditions. Additional modification of glycogen polymers with poly(2-alkyl-2-oxazolines) led to a reduction in the elimination rate and lower uptake in internal organs (lower whole-body background: 45% and 27% lower MRI signals of oxazoline-based conjugates in the liver and kidneys, respectively compared to the unmodified version). Our results highlight the potential of multimodal glycogen-based nanopolymers as a carrier for drug delivery systems in tumour diagnosis and treatment.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32591567</pmid><doi>10.1038/s41598-020-67277-y</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2020-06, Vol.10 (1), p.10411-10411, Article 10411
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7320016
source MEDLINE; DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects 631/154/152
639/925/357/354
692/4028/67/2321
Animals
Antineoplastic Agents - administration & dosage
Biodistribution
Cancer
Cell Line, Tumor
Contrast agents
Drug delivery
Drug Delivery Systems
Enzymes
Fluorescent indicators
Gadolinium
Glycogen
Glycogen - administration & dosage
Humanities and Social Sciences
Kidneys
Lymphatic drainage
Magnetic resonance imaging
Medicine
Molecular weight
multidisciplinary
Nanoparticles
Neoplasms - drug therapy
Permeability
Polymers
Polysaccharides
Precision medicine
Rats
Science
Science (multidisciplinary)
Theranostic Nanomedicine
Tumors
title Glycogen as an advantageous polymer carrier in cancer theranostics: Straightforward in vivo evidence
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T14%3A09%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Glycogen%20as%20an%20advantageous%20polymer%20carrier%20in%20cancer%20theranostics:%20Straightforward%20in%20vivo%20evidence&rft.jtitle=Scientific%20reports&rft.au=G%C3%A1lisov%C3%A1,%20Andrea&rft.date=2020-06-26&rft.volume=10&rft.issue=1&rft.spage=10411&rft.epage=10411&rft.pages=10411-10411&rft.artnum=10411&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-67277-y&rft_dat=%3Cproquest_pubme%3E2418127514%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2417700256&rft_id=info:pmid/32591567&rfr_iscdi=true