Oncometabolites suppress DNA repair by disrupting local chromatin signalling

Deregulation of metabolism and disruption of genome integrity are hallmarks of cancer 1 . Increased levels of the metabolites 2-hydroxyglutarate, succinate and fumarate occur in human malignancies owing to somatic mutations in the isocitrate dehydrogenase-1 or -2 ( IDH1 or IDH2 ) genes, or germline...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2020-06, Vol.582 (7813), p.586-591
Hauptverfasser: Sulkowski, Parker L., Oeck, Sebastian, Dow, Jonathan, Economos, Nicholas G., Mirfakhraie, Lily, Liu, Yanfeng, Noronha, Katelyn, Bao, Xun, Li, Jing, Shuch, Brian M., King, Megan C., Bindra, Ranjit S., Glazer, Peter M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 591
container_issue 7813
container_start_page 586
container_title Nature (London)
container_volume 582
creator Sulkowski, Parker L.
Oeck, Sebastian
Dow, Jonathan
Economos, Nicholas G.
Mirfakhraie, Lily
Liu, Yanfeng
Noronha, Katelyn
Bao, Xun
Li, Jing
Shuch, Brian M.
King, Megan C.
Bindra, Ranjit S.
Glazer, Peter M.
description Deregulation of metabolism and disruption of genome integrity are hallmarks of cancer 1 . Increased levels of the metabolites 2-hydroxyglutarate, succinate and fumarate occur in human malignancies owing to somatic mutations in the isocitrate dehydrogenase-1 or -2 ( IDH1 or IDH2 ) genes, or germline mutations in the fumarate hydratase ( FH ) and succinate dehydrogenase genes ( SDHA , SDHB , SDHC and SDHD ), respectively 2 – 4 . Recent work has made an unexpected connection between these metabolites and DNA repair by showing that they suppress the pathway of homology-dependent repair (HDR) 5 , 6 and confer an exquisite sensitivity to inhibitors of poly (ADP-ribose) polymerase (PARP) that are being tested in clinical trials. However, the mechanism by which these oncometabolites inhibit HDR remains poorly understood. Here we determine the pathway by which these metabolites disrupt DNA repair. We show that oncometabolite-induced inhibition of the lysine demethylase KDM4B results in aberrant hypermethylation of histone 3 lysine 9 (H3K9) at loci surrounding DNA breaks, masking a local H3K9 trimethylation signal that is essential for the proper execution of HDR. Consequently, recruitment of TIP60 and ATM, two key proximal HDR factors, is substantially impaired at DNA breaks, with reduced end resection and diminished recruitment of downstream repair factors. These findings provide a mechanistic basis for oncometabolite-induced HDR suppression and may guide effective strategies to exploit these defects for therapeutic gain. Metabolites that are elevated in tumours inhibit the lysine demethylase KDM4B, resulting in aberrant hypermethylation of histone 3 lysine 9 and decreased homology-dependent DNA repair.
doi_str_mv 10.1038/s41586-020-2363-0
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7319896</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A627621639</galeid><sourcerecordid>A627621639</sourcerecordid><originalsourceid>FETCH-LOGICAL-c673t-fb2b70f5faf28a78d5a6052896517e4c891d8a0ba43b985fbd5a746ccbd832253</originalsourceid><addsrcrecordid>eNp1kk1r3DAQhkVpaLZpf0AvxTSnHpTqy7J8KSzpRwJLA016FpIsOQq25Eh2af59FTZNsrBFB6GZZ94ZDS8A7zA6wYiKT5nhWnCICIKEcgrRC7DCrOGQcdG8BCuEiIBIUH4IXud8gxCqccNegUNKWMvKawU2F8HE0c5Kx8HPNld5maZkc66-_FhXyU7Kp0rfVZ3PaZlmH_pqiEYNlblOcVQlUGXfBzUMJfUGHDg1ZPv24T4Cv759vTo9g5uL7-en6w00vKEzdJroBrnaKUeEakRXK45qIlpexrPMiBZ3QiGtGNWtqJ0uQMO4MboTlJCaHoHPW91p0aPtjA1zUoOckh9VupNRebmbCf5a9vG3bChuS5sicPwgkOLtYvMsb-KSyi-yJIzgtsW0Fk9UrwYrfXCxiJnRZyPXnDScYE7bQsE9VG-DLZ1jsM6X8A7_YQ9vJn8rn0Mne6ByOjt6s1f1405BYWb7Z-7VkrM8v_y5y-Ita1LMOVn3uDmM5L2x5NZYshhL3htLolLz_vnKHyv-OakAZAvkkgq9TU8r_b_qXwlD1j0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2421991358</pqid></control><display><type>article</type><title>Oncometabolites suppress DNA repair by disrupting local chromatin signalling</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Sulkowski, Parker L. ; Oeck, Sebastian ; Dow, Jonathan ; Economos, Nicholas G. ; Mirfakhraie, Lily ; Liu, Yanfeng ; Noronha, Katelyn ; Bao, Xun ; Li, Jing ; Shuch, Brian M. ; King, Megan C. ; Bindra, Ranjit S. ; Glazer, Peter M.</creator><creatorcontrib>Sulkowski, Parker L. ; Oeck, Sebastian ; Dow, Jonathan ; Economos, Nicholas G. ; Mirfakhraie, Lily ; Liu, Yanfeng ; Noronha, Katelyn ; Bao, Xun ; Li, Jing ; Shuch, Brian M. ; King, Megan C. ; Bindra, Ranjit S. ; Glazer, Peter M.</creatorcontrib><description>Deregulation of metabolism and disruption of genome integrity are hallmarks of cancer 1 . Increased levels of the metabolites 2-hydroxyglutarate, succinate and fumarate occur in human malignancies owing to somatic mutations in the isocitrate dehydrogenase-1 or -2 ( IDH1 or IDH2 ) genes, or germline mutations in the fumarate hydratase ( FH ) and succinate dehydrogenase genes ( SDHA , SDHB , SDHC and SDHD ), respectively 2 – 4 . Recent work has made an unexpected connection between these metabolites and DNA repair by showing that they suppress the pathway of homology-dependent repair (HDR) 5 , 6 and confer an exquisite sensitivity to inhibitors of poly (ADP-ribose) polymerase (PARP) that are being tested in clinical trials. However, the mechanism by which these oncometabolites inhibit HDR remains poorly understood. Here we determine the pathway by which these metabolites disrupt DNA repair. We show that oncometabolite-induced inhibition of the lysine demethylase KDM4B results in aberrant hypermethylation of histone 3 lysine 9 (H3K9) at loci surrounding DNA breaks, masking a local H3K9 trimethylation signal that is essential for the proper execution of HDR. Consequently, recruitment of TIP60 and ATM, two key proximal HDR factors, is substantially impaired at DNA breaks, with reduced end resection and diminished recruitment of downstream repair factors. These findings provide a mechanistic basis for oncometabolite-induced HDR suppression and may guide effective strategies to exploit these defects for therapeutic gain. Metabolites that are elevated in tumours inhibit the lysine demethylase KDM4B, resulting in aberrant hypermethylation of histone 3 lysine 9 and decreased homology-dependent DNA repair.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-020-2363-0</identifier><identifier>PMID: 32494005</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>14 ; 14/63 ; 38 ; 631/67/1922 ; 631/67/2327 ; 631/67/68/2486 ; Adenosine diphosphate ; Ataxia Telangiectasia Mutated Proteins - metabolism ; Cell cycle ; Cell Line, Tumor ; Chromatin ; Chromatin - drug effects ; Chromatin - metabolism ; Clinical trials ; Control ; Defects ; Dehydrogenase ; Dehydrogenases ; Deoxyribonucleic acid ; Deregulation ; Disruption ; DNA ; DNA Breaks - drug effects ; DNA damage ; DNA repair ; DNA Repair - drug effects ; Fumarase ; Gene expression ; Genes ; Genomes ; Homologous Recombination - drug effects ; Homology ; Humanities and Social Sciences ; Humans ; Influence ; Isocitrate dehydrogenase ; Jumonji Domain-Containing Histone Demethylases - antagonists &amp; inhibitors ; Ligands ; Lysine ; Lysine Acetyltransferase 5 - metabolism ; Masking ; Metabolites ; Methylation - drug effects ; multidisciplinary ; Mutation ; Neoplasms - drug therapy ; Neoplasms - genetics ; Neoplasms - metabolism ; Neoplasms - pathology ; Phosphorylation ; Poly(ADP-ribose) polymerase ; Poly(ADP-ribose) Polymerase Inhibitors - pharmacology ; Recruitment ; Repair ; Ribose ; Science ; Science (multidisciplinary) ; Signal transduction ; Signal Transduction - drug effects ; Succinate dehydrogenase ; Tumors</subject><ispartof>Nature (London), 2020-06, Vol.582 (7813), p.586-591</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><rights>COPYRIGHT 2020 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Jun 25, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c673t-fb2b70f5faf28a78d5a6052896517e4c891d8a0ba43b985fbd5a746ccbd832253</citedby><cites>FETCH-LOGICAL-c673t-fb2b70f5faf28a78d5a6052896517e4c891d8a0ba43b985fbd5a746ccbd832253</cites><orcidid>0000-0001-9695-8771 ; 0000-0003-4691-808X ; 0000-0002-5745-1158 ; 0000-0003-4525-5560 ; 0000-0002-1688-2226 ; 0000-0003-1354-1124</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-020-2363-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-020-2363-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32494005$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sulkowski, Parker L.</creatorcontrib><creatorcontrib>Oeck, Sebastian</creatorcontrib><creatorcontrib>Dow, Jonathan</creatorcontrib><creatorcontrib>Economos, Nicholas G.</creatorcontrib><creatorcontrib>Mirfakhraie, Lily</creatorcontrib><creatorcontrib>Liu, Yanfeng</creatorcontrib><creatorcontrib>Noronha, Katelyn</creatorcontrib><creatorcontrib>Bao, Xun</creatorcontrib><creatorcontrib>Li, Jing</creatorcontrib><creatorcontrib>Shuch, Brian M.</creatorcontrib><creatorcontrib>King, Megan C.</creatorcontrib><creatorcontrib>Bindra, Ranjit S.</creatorcontrib><creatorcontrib>Glazer, Peter M.</creatorcontrib><title>Oncometabolites suppress DNA repair by disrupting local chromatin signalling</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Deregulation of metabolism and disruption of genome integrity are hallmarks of cancer 1 . Increased levels of the metabolites 2-hydroxyglutarate, succinate and fumarate occur in human malignancies owing to somatic mutations in the isocitrate dehydrogenase-1 or -2 ( IDH1 or IDH2 ) genes, or germline mutations in the fumarate hydratase ( FH ) and succinate dehydrogenase genes ( SDHA , SDHB , SDHC and SDHD ), respectively 2 – 4 . Recent work has made an unexpected connection between these metabolites and DNA repair by showing that they suppress the pathway of homology-dependent repair (HDR) 5 , 6 and confer an exquisite sensitivity to inhibitors of poly (ADP-ribose) polymerase (PARP) that are being tested in clinical trials. However, the mechanism by which these oncometabolites inhibit HDR remains poorly understood. Here we determine the pathway by which these metabolites disrupt DNA repair. We show that oncometabolite-induced inhibition of the lysine demethylase KDM4B results in aberrant hypermethylation of histone 3 lysine 9 (H3K9) at loci surrounding DNA breaks, masking a local H3K9 trimethylation signal that is essential for the proper execution of HDR. Consequently, recruitment of TIP60 and ATM, two key proximal HDR factors, is substantially impaired at DNA breaks, with reduced end resection and diminished recruitment of downstream repair factors. These findings provide a mechanistic basis for oncometabolite-induced HDR suppression and may guide effective strategies to exploit these defects for therapeutic gain. Metabolites that are elevated in tumours inhibit the lysine demethylase KDM4B, resulting in aberrant hypermethylation of histone 3 lysine 9 and decreased homology-dependent DNA repair.</description><subject>14</subject><subject>14/63</subject><subject>38</subject><subject>631/67/1922</subject><subject>631/67/2327</subject><subject>631/67/68/2486</subject><subject>Adenosine diphosphate</subject><subject>Ataxia Telangiectasia Mutated Proteins - metabolism</subject><subject>Cell cycle</subject><subject>Cell Line, Tumor</subject><subject>Chromatin</subject><subject>Chromatin - drug effects</subject><subject>Chromatin - metabolism</subject><subject>Clinical trials</subject><subject>Control</subject><subject>Defects</subject><subject>Dehydrogenase</subject><subject>Dehydrogenases</subject><subject>Deoxyribonucleic acid</subject><subject>Deregulation</subject><subject>Disruption</subject><subject>DNA</subject><subject>DNA Breaks - drug effects</subject><subject>DNA damage</subject><subject>DNA repair</subject><subject>DNA Repair - drug effects</subject><subject>Fumarase</subject><subject>Gene expression</subject><subject>Genes</subject><subject>Genomes</subject><subject>Homologous Recombination - drug effects</subject><subject>Homology</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Influence</subject><subject>Isocitrate dehydrogenase</subject><subject>Jumonji Domain-Containing Histone Demethylases - antagonists &amp; inhibitors</subject><subject>Ligands</subject><subject>Lysine</subject><subject>Lysine Acetyltransferase 5 - metabolism</subject><subject>Masking</subject><subject>Metabolites</subject><subject>Methylation - drug effects</subject><subject>multidisciplinary</subject><subject>Mutation</subject><subject>Neoplasms - drug therapy</subject><subject>Neoplasms - genetics</subject><subject>Neoplasms - metabolism</subject><subject>Neoplasms - pathology</subject><subject>Phosphorylation</subject><subject>Poly(ADP-ribose) polymerase</subject><subject>Poly(ADP-ribose) Polymerase Inhibitors - pharmacology</subject><subject>Recruitment</subject><subject>Repair</subject><subject>Ribose</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Signal transduction</subject><subject>Signal Transduction - drug effects</subject><subject>Succinate dehydrogenase</subject><subject>Tumors</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kk1r3DAQhkVpaLZpf0AvxTSnHpTqy7J8KSzpRwJLA016FpIsOQq25Eh2af59FTZNsrBFB6GZZ94ZDS8A7zA6wYiKT5nhWnCICIKEcgrRC7DCrOGQcdG8BCuEiIBIUH4IXud8gxCqccNegUNKWMvKawU2F8HE0c5Kx8HPNld5maZkc66-_FhXyU7Kp0rfVZ3PaZlmH_pqiEYNlblOcVQlUGXfBzUMJfUGHDg1ZPv24T4Cv759vTo9g5uL7-en6w00vKEzdJroBrnaKUeEakRXK45qIlpexrPMiBZ3QiGtGNWtqJ0uQMO4MboTlJCaHoHPW91p0aPtjA1zUoOckh9VupNRebmbCf5a9vG3bChuS5sicPwgkOLtYvMsb-KSyi-yJIzgtsW0Fk9UrwYrfXCxiJnRZyPXnDScYE7bQsE9VG-DLZ1jsM6X8A7_YQ9vJn8rn0Mne6ByOjt6s1f1405BYWb7Z-7VkrM8v_y5y-Ita1LMOVn3uDmM5L2x5NZYshhL3htLolLz_vnKHyv-OakAZAvkkgq9TU8r_b_qXwlD1j0</recordid><startdate>20200625</startdate><enddate>20200625</enddate><creator>Sulkowski, Parker L.</creator><creator>Oeck, Sebastian</creator><creator>Dow, Jonathan</creator><creator>Economos, Nicholas G.</creator><creator>Mirfakhraie, Lily</creator><creator>Liu, Yanfeng</creator><creator>Noronha, Katelyn</creator><creator>Bao, Xun</creator><creator>Li, Jing</creator><creator>Shuch, Brian M.</creator><creator>King, Megan C.</creator><creator>Bindra, Ranjit S.</creator><creator>Glazer, Peter M.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9695-8771</orcidid><orcidid>https://orcid.org/0000-0003-4691-808X</orcidid><orcidid>https://orcid.org/0000-0002-5745-1158</orcidid><orcidid>https://orcid.org/0000-0003-4525-5560</orcidid><orcidid>https://orcid.org/0000-0002-1688-2226</orcidid><orcidid>https://orcid.org/0000-0003-1354-1124</orcidid></search><sort><creationdate>20200625</creationdate><title>Oncometabolites suppress DNA repair by disrupting local chromatin signalling</title><author>Sulkowski, Parker L. ; Oeck, Sebastian ; Dow, Jonathan ; Economos, Nicholas G. ; Mirfakhraie, Lily ; Liu, Yanfeng ; Noronha, Katelyn ; Bao, Xun ; Li, Jing ; Shuch, Brian M. ; King, Megan C. ; Bindra, Ranjit S. ; Glazer, Peter M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c673t-fb2b70f5faf28a78d5a6052896517e4c891d8a0ba43b985fbd5a746ccbd832253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>14</topic><topic>14/63</topic><topic>38</topic><topic>631/67/1922</topic><topic>631/67/2327</topic><topic>631/67/68/2486</topic><topic>Adenosine diphosphate</topic><topic>Ataxia Telangiectasia Mutated Proteins - metabolism</topic><topic>Cell cycle</topic><topic>Cell Line, Tumor</topic><topic>Chromatin</topic><topic>Chromatin - drug effects</topic><topic>Chromatin - metabolism</topic><topic>Clinical trials</topic><topic>Control</topic><topic>Defects</topic><topic>Dehydrogenase</topic><topic>Dehydrogenases</topic><topic>Deoxyribonucleic acid</topic><topic>Deregulation</topic><topic>Disruption</topic><topic>DNA</topic><topic>DNA Breaks - drug effects</topic><topic>DNA damage</topic><topic>DNA repair</topic><topic>DNA Repair - drug effects</topic><topic>Fumarase</topic><topic>Gene expression</topic><topic>Genes</topic><topic>Genomes</topic><topic>Homologous Recombination - drug effects</topic><topic>Homology</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Influence</topic><topic>Isocitrate dehydrogenase</topic><topic>Jumonji Domain-Containing Histone Demethylases - antagonists &amp; inhibitors</topic><topic>Ligands</topic><topic>Lysine</topic><topic>Lysine Acetyltransferase 5 - metabolism</topic><topic>Masking</topic><topic>Metabolites</topic><topic>Methylation - drug effects</topic><topic>multidisciplinary</topic><topic>Mutation</topic><topic>Neoplasms - drug therapy</topic><topic>Neoplasms - genetics</topic><topic>Neoplasms - metabolism</topic><topic>Neoplasms - pathology</topic><topic>Phosphorylation</topic><topic>Poly(ADP-ribose) polymerase</topic><topic>Poly(ADP-ribose) Polymerase Inhibitors - pharmacology</topic><topic>Recruitment</topic><topic>Repair</topic><topic>Ribose</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Signal transduction</topic><topic>Signal Transduction - drug effects</topic><topic>Succinate dehydrogenase</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sulkowski, Parker L.</creatorcontrib><creatorcontrib>Oeck, Sebastian</creatorcontrib><creatorcontrib>Dow, Jonathan</creatorcontrib><creatorcontrib>Economos, Nicholas G.</creatorcontrib><creatorcontrib>Mirfakhraie, Lily</creatorcontrib><creatorcontrib>Liu, Yanfeng</creatorcontrib><creatorcontrib>Noronha, Katelyn</creatorcontrib><creatorcontrib>Bao, Xun</creatorcontrib><creatorcontrib>Li, Jing</creatorcontrib><creatorcontrib>Shuch, Brian M.</creatorcontrib><creatorcontrib>King, Megan C.</creatorcontrib><creatorcontrib>Bindra, Ranjit S.</creatorcontrib><creatorcontrib>Glazer, Peter M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sulkowski, Parker L.</au><au>Oeck, Sebastian</au><au>Dow, Jonathan</au><au>Economos, Nicholas G.</au><au>Mirfakhraie, Lily</au><au>Liu, Yanfeng</au><au>Noronha, Katelyn</au><au>Bao, Xun</au><au>Li, Jing</au><au>Shuch, Brian M.</au><au>King, Megan C.</au><au>Bindra, Ranjit S.</au><au>Glazer, Peter M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oncometabolites suppress DNA repair by disrupting local chromatin signalling</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2020-06-25</date><risdate>2020</risdate><volume>582</volume><issue>7813</issue><spage>586</spage><epage>591</epage><pages>586-591</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>Deregulation of metabolism and disruption of genome integrity are hallmarks of cancer 1 . Increased levels of the metabolites 2-hydroxyglutarate, succinate and fumarate occur in human malignancies owing to somatic mutations in the isocitrate dehydrogenase-1 or -2 ( IDH1 or IDH2 ) genes, or germline mutations in the fumarate hydratase ( FH ) and succinate dehydrogenase genes ( SDHA , SDHB , SDHC and SDHD ), respectively 2 – 4 . Recent work has made an unexpected connection between these metabolites and DNA repair by showing that they suppress the pathway of homology-dependent repair (HDR) 5 , 6 and confer an exquisite sensitivity to inhibitors of poly (ADP-ribose) polymerase (PARP) that are being tested in clinical trials. However, the mechanism by which these oncometabolites inhibit HDR remains poorly understood. Here we determine the pathway by which these metabolites disrupt DNA repair. We show that oncometabolite-induced inhibition of the lysine demethylase KDM4B results in aberrant hypermethylation of histone 3 lysine 9 (H3K9) at loci surrounding DNA breaks, masking a local H3K9 trimethylation signal that is essential for the proper execution of HDR. Consequently, recruitment of TIP60 and ATM, two key proximal HDR factors, is substantially impaired at DNA breaks, with reduced end resection and diminished recruitment of downstream repair factors. These findings provide a mechanistic basis for oncometabolite-induced HDR suppression and may guide effective strategies to exploit these defects for therapeutic gain. Metabolites that are elevated in tumours inhibit the lysine demethylase KDM4B, resulting in aberrant hypermethylation of histone 3 lysine 9 and decreased homology-dependent DNA repair.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32494005</pmid><doi>10.1038/s41586-020-2363-0</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-9695-8771</orcidid><orcidid>https://orcid.org/0000-0003-4691-808X</orcidid><orcidid>https://orcid.org/0000-0002-5745-1158</orcidid><orcidid>https://orcid.org/0000-0003-4525-5560</orcidid><orcidid>https://orcid.org/0000-0002-1688-2226</orcidid><orcidid>https://orcid.org/0000-0003-1354-1124</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2020-06, Vol.582 (7813), p.586-591
issn 0028-0836
1476-4687
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7319896
source MEDLINE; SpringerLink Journals; Nature Journals Online
subjects 14
14/63
38
631/67/1922
631/67/2327
631/67/68/2486
Adenosine diphosphate
Ataxia Telangiectasia Mutated Proteins - metabolism
Cell cycle
Cell Line, Tumor
Chromatin
Chromatin - drug effects
Chromatin - metabolism
Clinical trials
Control
Defects
Dehydrogenase
Dehydrogenases
Deoxyribonucleic acid
Deregulation
Disruption
DNA
DNA Breaks - drug effects
DNA damage
DNA repair
DNA Repair - drug effects
Fumarase
Gene expression
Genes
Genomes
Homologous Recombination - drug effects
Homology
Humanities and Social Sciences
Humans
Influence
Isocitrate dehydrogenase
Jumonji Domain-Containing Histone Demethylases - antagonists & inhibitors
Ligands
Lysine
Lysine Acetyltransferase 5 - metabolism
Masking
Metabolites
Methylation - drug effects
multidisciplinary
Mutation
Neoplasms - drug therapy
Neoplasms - genetics
Neoplasms - metabolism
Neoplasms - pathology
Phosphorylation
Poly(ADP-ribose) polymerase
Poly(ADP-ribose) Polymerase Inhibitors - pharmacology
Recruitment
Repair
Ribose
Science
Science (multidisciplinary)
Signal transduction
Signal Transduction - drug effects
Succinate dehydrogenase
Tumors
title Oncometabolites suppress DNA repair by disrupting local chromatin signalling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T07%3A56%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oncometabolites%20suppress%20DNA%20repair%20by%20disrupting%20local%20chromatin%20signalling&rft.jtitle=Nature%20(London)&rft.au=Sulkowski,%20Parker%20L.&rft.date=2020-06-25&rft.volume=582&rft.issue=7813&rft.spage=586&rft.epage=591&rft.pages=586-591&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-020-2363-0&rft_dat=%3Cgale_pubme%3EA627621639%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2421991358&rft_id=info:pmid/32494005&rft_galeid=A627621639&rfr_iscdi=true