Oncometabolites suppress DNA repair by disrupting local chromatin signalling
Deregulation of metabolism and disruption of genome integrity are hallmarks of cancer 1 . Increased levels of the metabolites 2-hydroxyglutarate, succinate and fumarate occur in human malignancies owing to somatic mutations in the isocitrate dehydrogenase-1 or -2 ( IDH1 or IDH2 ) genes, or germline...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2020-06, Vol.582 (7813), p.586-591 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 591 |
---|---|
container_issue | 7813 |
container_start_page | 586 |
container_title | Nature (London) |
container_volume | 582 |
creator | Sulkowski, Parker L. Oeck, Sebastian Dow, Jonathan Economos, Nicholas G. Mirfakhraie, Lily Liu, Yanfeng Noronha, Katelyn Bao, Xun Li, Jing Shuch, Brian M. King, Megan C. Bindra, Ranjit S. Glazer, Peter M. |
description | Deregulation of metabolism and disruption of genome integrity are hallmarks of cancer
1
. Increased levels of the metabolites 2-hydroxyglutarate, succinate and fumarate occur in human malignancies owing to somatic mutations in the isocitrate dehydrogenase-1 or -2 (
IDH1
or
IDH2
) genes, or germline mutations in the fumarate hydratase (
FH
) and succinate dehydrogenase genes (
SDHA
,
SDHB
,
SDHC
and
SDHD
), respectively
2
–
4
. Recent work has made an unexpected connection between these metabolites and DNA repair by showing that they suppress the pathway of homology-dependent repair (HDR)
5
,
6
and confer an exquisite sensitivity to inhibitors of poly (ADP-ribose) polymerase (PARP) that are being tested in clinical trials. However, the mechanism by which these oncometabolites inhibit HDR remains poorly understood. Here we determine the pathway by which these metabolites disrupt DNA repair. We show that oncometabolite-induced inhibition of the lysine demethylase KDM4B results in aberrant hypermethylation of histone 3 lysine 9 (H3K9) at loci surrounding DNA breaks, masking a local H3K9 trimethylation signal that is essential for the proper execution of HDR. Consequently, recruitment of TIP60 and ATM, two key proximal HDR factors, is substantially impaired at DNA breaks, with reduced end resection and diminished recruitment of downstream repair factors. These findings provide a mechanistic basis for oncometabolite-induced HDR suppression and may guide effective strategies to exploit these defects for therapeutic gain.
Metabolites that are elevated in tumours inhibit the lysine demethylase KDM4B, resulting in aberrant hypermethylation of histone 3 lysine 9 and decreased homology-dependent DNA repair. |
doi_str_mv | 10.1038/s41586-020-2363-0 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7319896</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A627621639</galeid><sourcerecordid>A627621639</sourcerecordid><originalsourceid>FETCH-LOGICAL-c673t-fb2b70f5faf28a78d5a6052896517e4c891d8a0ba43b985fbd5a746ccbd832253</originalsourceid><addsrcrecordid>eNp1kk1r3DAQhkVpaLZpf0AvxTSnHpTqy7J8KSzpRwJLA016FpIsOQq25Eh2af59FTZNsrBFB6GZZ94ZDS8A7zA6wYiKT5nhWnCICIKEcgrRC7DCrOGQcdG8BCuEiIBIUH4IXud8gxCqccNegUNKWMvKawU2F8HE0c5Kx8HPNld5maZkc66-_FhXyU7Kp0rfVZ3PaZlmH_pqiEYNlblOcVQlUGXfBzUMJfUGHDg1ZPv24T4Cv759vTo9g5uL7-en6w00vKEzdJroBrnaKUeEakRXK45qIlpexrPMiBZ3QiGtGNWtqJ0uQMO4MboTlJCaHoHPW91p0aPtjA1zUoOckh9VupNRebmbCf5a9vG3bChuS5sicPwgkOLtYvMsb-KSyi-yJIzgtsW0Fk9UrwYrfXCxiJnRZyPXnDScYE7bQsE9VG-DLZ1jsM6X8A7_YQ9vJn8rn0Mne6ByOjt6s1f1405BYWb7Z-7VkrM8v_y5y-Ita1LMOVn3uDmM5L2x5NZYshhL3htLolLz_vnKHyv-OakAZAvkkgq9TU8r_b_qXwlD1j0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2421991358</pqid></control><display><type>article</type><title>Oncometabolites suppress DNA repair by disrupting local chromatin signalling</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Sulkowski, Parker L. ; Oeck, Sebastian ; Dow, Jonathan ; Economos, Nicholas G. ; Mirfakhraie, Lily ; Liu, Yanfeng ; Noronha, Katelyn ; Bao, Xun ; Li, Jing ; Shuch, Brian M. ; King, Megan C. ; Bindra, Ranjit S. ; Glazer, Peter M.</creator><creatorcontrib>Sulkowski, Parker L. ; Oeck, Sebastian ; Dow, Jonathan ; Economos, Nicholas G. ; Mirfakhraie, Lily ; Liu, Yanfeng ; Noronha, Katelyn ; Bao, Xun ; Li, Jing ; Shuch, Brian M. ; King, Megan C. ; Bindra, Ranjit S. ; Glazer, Peter M.</creatorcontrib><description>Deregulation of metabolism and disruption of genome integrity are hallmarks of cancer
1
. Increased levels of the metabolites 2-hydroxyglutarate, succinate and fumarate occur in human malignancies owing to somatic mutations in the isocitrate dehydrogenase-1 or -2 (
IDH1
or
IDH2
) genes, or germline mutations in the fumarate hydratase (
FH
) and succinate dehydrogenase genes (
SDHA
,
SDHB
,
SDHC
and
SDHD
), respectively
2
–
4
. Recent work has made an unexpected connection between these metabolites and DNA repair by showing that they suppress the pathway of homology-dependent repair (HDR)
5
,
6
and confer an exquisite sensitivity to inhibitors of poly (ADP-ribose) polymerase (PARP) that are being tested in clinical trials. However, the mechanism by which these oncometabolites inhibit HDR remains poorly understood. Here we determine the pathway by which these metabolites disrupt DNA repair. We show that oncometabolite-induced inhibition of the lysine demethylase KDM4B results in aberrant hypermethylation of histone 3 lysine 9 (H3K9) at loci surrounding DNA breaks, masking a local H3K9 trimethylation signal that is essential for the proper execution of HDR. Consequently, recruitment of TIP60 and ATM, two key proximal HDR factors, is substantially impaired at DNA breaks, with reduced end resection and diminished recruitment of downstream repair factors. These findings provide a mechanistic basis for oncometabolite-induced HDR suppression and may guide effective strategies to exploit these defects for therapeutic gain.
Metabolites that are elevated in tumours inhibit the lysine demethylase KDM4B, resulting in aberrant hypermethylation of histone 3 lysine 9 and decreased homology-dependent DNA repair.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-020-2363-0</identifier><identifier>PMID: 32494005</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>14 ; 14/63 ; 38 ; 631/67/1922 ; 631/67/2327 ; 631/67/68/2486 ; Adenosine diphosphate ; Ataxia Telangiectasia Mutated Proteins - metabolism ; Cell cycle ; Cell Line, Tumor ; Chromatin ; Chromatin - drug effects ; Chromatin - metabolism ; Clinical trials ; Control ; Defects ; Dehydrogenase ; Dehydrogenases ; Deoxyribonucleic acid ; Deregulation ; Disruption ; DNA ; DNA Breaks - drug effects ; DNA damage ; DNA repair ; DNA Repair - drug effects ; Fumarase ; Gene expression ; Genes ; Genomes ; Homologous Recombination - drug effects ; Homology ; Humanities and Social Sciences ; Humans ; Influence ; Isocitrate dehydrogenase ; Jumonji Domain-Containing Histone Demethylases - antagonists & inhibitors ; Ligands ; Lysine ; Lysine Acetyltransferase 5 - metabolism ; Masking ; Metabolites ; Methylation - drug effects ; multidisciplinary ; Mutation ; Neoplasms - drug therapy ; Neoplasms - genetics ; Neoplasms - metabolism ; Neoplasms - pathology ; Phosphorylation ; Poly(ADP-ribose) polymerase ; Poly(ADP-ribose) Polymerase Inhibitors - pharmacology ; Recruitment ; Repair ; Ribose ; Science ; Science (multidisciplinary) ; Signal transduction ; Signal Transduction - drug effects ; Succinate dehydrogenase ; Tumors</subject><ispartof>Nature (London), 2020-06, Vol.582 (7813), p.586-591</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><rights>COPYRIGHT 2020 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Jun 25, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c673t-fb2b70f5faf28a78d5a6052896517e4c891d8a0ba43b985fbd5a746ccbd832253</citedby><cites>FETCH-LOGICAL-c673t-fb2b70f5faf28a78d5a6052896517e4c891d8a0ba43b985fbd5a746ccbd832253</cites><orcidid>0000-0001-9695-8771 ; 0000-0003-4691-808X ; 0000-0002-5745-1158 ; 0000-0003-4525-5560 ; 0000-0002-1688-2226 ; 0000-0003-1354-1124</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-020-2363-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-020-2363-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32494005$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sulkowski, Parker L.</creatorcontrib><creatorcontrib>Oeck, Sebastian</creatorcontrib><creatorcontrib>Dow, Jonathan</creatorcontrib><creatorcontrib>Economos, Nicholas G.</creatorcontrib><creatorcontrib>Mirfakhraie, Lily</creatorcontrib><creatorcontrib>Liu, Yanfeng</creatorcontrib><creatorcontrib>Noronha, Katelyn</creatorcontrib><creatorcontrib>Bao, Xun</creatorcontrib><creatorcontrib>Li, Jing</creatorcontrib><creatorcontrib>Shuch, Brian M.</creatorcontrib><creatorcontrib>King, Megan C.</creatorcontrib><creatorcontrib>Bindra, Ranjit S.</creatorcontrib><creatorcontrib>Glazer, Peter M.</creatorcontrib><title>Oncometabolites suppress DNA repair by disrupting local chromatin signalling</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Deregulation of metabolism and disruption of genome integrity are hallmarks of cancer
1
. Increased levels of the metabolites 2-hydroxyglutarate, succinate and fumarate occur in human malignancies owing to somatic mutations in the isocitrate dehydrogenase-1 or -2 (
IDH1
or
IDH2
) genes, or germline mutations in the fumarate hydratase (
FH
) and succinate dehydrogenase genes (
SDHA
,
SDHB
,
SDHC
and
SDHD
), respectively
2
–
4
. Recent work has made an unexpected connection between these metabolites and DNA repair by showing that they suppress the pathway of homology-dependent repair (HDR)
5
,
6
and confer an exquisite sensitivity to inhibitors of poly (ADP-ribose) polymerase (PARP) that are being tested in clinical trials. However, the mechanism by which these oncometabolites inhibit HDR remains poorly understood. Here we determine the pathway by which these metabolites disrupt DNA repair. We show that oncometabolite-induced inhibition of the lysine demethylase KDM4B results in aberrant hypermethylation of histone 3 lysine 9 (H3K9) at loci surrounding DNA breaks, masking a local H3K9 trimethylation signal that is essential for the proper execution of HDR. Consequently, recruitment of TIP60 and ATM, two key proximal HDR factors, is substantially impaired at DNA breaks, with reduced end resection and diminished recruitment of downstream repair factors. These findings provide a mechanistic basis for oncometabolite-induced HDR suppression and may guide effective strategies to exploit these defects for therapeutic gain.
Metabolites that are elevated in tumours inhibit the lysine demethylase KDM4B, resulting in aberrant hypermethylation of histone 3 lysine 9 and decreased homology-dependent DNA repair.</description><subject>14</subject><subject>14/63</subject><subject>38</subject><subject>631/67/1922</subject><subject>631/67/2327</subject><subject>631/67/68/2486</subject><subject>Adenosine diphosphate</subject><subject>Ataxia Telangiectasia Mutated Proteins - metabolism</subject><subject>Cell cycle</subject><subject>Cell Line, Tumor</subject><subject>Chromatin</subject><subject>Chromatin - drug effects</subject><subject>Chromatin - metabolism</subject><subject>Clinical trials</subject><subject>Control</subject><subject>Defects</subject><subject>Dehydrogenase</subject><subject>Dehydrogenases</subject><subject>Deoxyribonucleic acid</subject><subject>Deregulation</subject><subject>Disruption</subject><subject>DNA</subject><subject>DNA Breaks - drug effects</subject><subject>DNA damage</subject><subject>DNA repair</subject><subject>DNA Repair - drug effects</subject><subject>Fumarase</subject><subject>Gene expression</subject><subject>Genes</subject><subject>Genomes</subject><subject>Homologous Recombination - drug effects</subject><subject>Homology</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Influence</subject><subject>Isocitrate dehydrogenase</subject><subject>Jumonji Domain-Containing Histone Demethylases - antagonists & inhibitors</subject><subject>Ligands</subject><subject>Lysine</subject><subject>Lysine Acetyltransferase 5 - metabolism</subject><subject>Masking</subject><subject>Metabolites</subject><subject>Methylation - drug effects</subject><subject>multidisciplinary</subject><subject>Mutation</subject><subject>Neoplasms - drug therapy</subject><subject>Neoplasms - genetics</subject><subject>Neoplasms - metabolism</subject><subject>Neoplasms - pathology</subject><subject>Phosphorylation</subject><subject>Poly(ADP-ribose) polymerase</subject><subject>Poly(ADP-ribose) Polymerase Inhibitors - pharmacology</subject><subject>Recruitment</subject><subject>Repair</subject><subject>Ribose</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Signal transduction</subject><subject>Signal Transduction - drug effects</subject><subject>Succinate dehydrogenase</subject><subject>Tumors</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kk1r3DAQhkVpaLZpf0AvxTSnHpTqy7J8KSzpRwJLA016FpIsOQq25Eh2af59FTZNsrBFB6GZZ94ZDS8A7zA6wYiKT5nhWnCICIKEcgrRC7DCrOGQcdG8BCuEiIBIUH4IXud8gxCqccNegUNKWMvKawU2F8HE0c5Kx8HPNld5maZkc66-_FhXyU7Kp0rfVZ3PaZlmH_pqiEYNlblOcVQlUGXfBzUMJfUGHDg1ZPv24T4Cv759vTo9g5uL7-en6w00vKEzdJroBrnaKUeEakRXK45qIlpexrPMiBZ3QiGtGNWtqJ0uQMO4MboTlJCaHoHPW91p0aPtjA1zUoOckh9VupNRebmbCf5a9vG3bChuS5sicPwgkOLtYvMsb-KSyi-yJIzgtsW0Fk9UrwYrfXCxiJnRZyPXnDScYE7bQsE9VG-DLZ1jsM6X8A7_YQ9vJn8rn0Mne6ByOjt6s1f1405BYWb7Z-7VkrM8v_y5y-Ita1LMOVn3uDmM5L2x5NZYshhL3htLolLz_vnKHyv-OakAZAvkkgq9TU8r_b_qXwlD1j0</recordid><startdate>20200625</startdate><enddate>20200625</enddate><creator>Sulkowski, Parker L.</creator><creator>Oeck, Sebastian</creator><creator>Dow, Jonathan</creator><creator>Economos, Nicholas G.</creator><creator>Mirfakhraie, Lily</creator><creator>Liu, Yanfeng</creator><creator>Noronha, Katelyn</creator><creator>Bao, Xun</creator><creator>Li, Jing</creator><creator>Shuch, Brian M.</creator><creator>King, Megan C.</creator><creator>Bindra, Ranjit S.</creator><creator>Glazer, Peter M.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9695-8771</orcidid><orcidid>https://orcid.org/0000-0003-4691-808X</orcidid><orcidid>https://orcid.org/0000-0002-5745-1158</orcidid><orcidid>https://orcid.org/0000-0003-4525-5560</orcidid><orcidid>https://orcid.org/0000-0002-1688-2226</orcidid><orcidid>https://orcid.org/0000-0003-1354-1124</orcidid></search><sort><creationdate>20200625</creationdate><title>Oncometabolites suppress DNA repair by disrupting local chromatin signalling</title><author>Sulkowski, Parker L. ; Oeck, Sebastian ; Dow, Jonathan ; Economos, Nicholas G. ; Mirfakhraie, Lily ; Liu, Yanfeng ; Noronha, Katelyn ; Bao, Xun ; Li, Jing ; Shuch, Brian M. ; King, Megan C. ; Bindra, Ranjit S. ; Glazer, Peter M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c673t-fb2b70f5faf28a78d5a6052896517e4c891d8a0ba43b985fbd5a746ccbd832253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>14</topic><topic>14/63</topic><topic>38</topic><topic>631/67/1922</topic><topic>631/67/2327</topic><topic>631/67/68/2486</topic><topic>Adenosine diphosphate</topic><topic>Ataxia Telangiectasia Mutated Proteins - metabolism</topic><topic>Cell cycle</topic><topic>Cell Line, Tumor</topic><topic>Chromatin</topic><topic>Chromatin - drug effects</topic><topic>Chromatin - metabolism</topic><topic>Clinical trials</topic><topic>Control</topic><topic>Defects</topic><topic>Dehydrogenase</topic><topic>Dehydrogenases</topic><topic>Deoxyribonucleic acid</topic><topic>Deregulation</topic><topic>Disruption</topic><topic>DNA</topic><topic>DNA Breaks - drug effects</topic><topic>DNA damage</topic><topic>DNA repair</topic><topic>DNA Repair - drug effects</topic><topic>Fumarase</topic><topic>Gene expression</topic><topic>Genes</topic><topic>Genomes</topic><topic>Homologous Recombination - drug effects</topic><topic>Homology</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Influence</topic><topic>Isocitrate dehydrogenase</topic><topic>Jumonji Domain-Containing Histone Demethylases - antagonists & inhibitors</topic><topic>Ligands</topic><topic>Lysine</topic><topic>Lysine Acetyltransferase 5 - metabolism</topic><topic>Masking</topic><topic>Metabolites</topic><topic>Methylation - drug effects</topic><topic>multidisciplinary</topic><topic>Mutation</topic><topic>Neoplasms - drug therapy</topic><topic>Neoplasms - genetics</topic><topic>Neoplasms - metabolism</topic><topic>Neoplasms - pathology</topic><topic>Phosphorylation</topic><topic>Poly(ADP-ribose) polymerase</topic><topic>Poly(ADP-ribose) Polymerase Inhibitors - pharmacology</topic><topic>Recruitment</topic><topic>Repair</topic><topic>Ribose</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Signal transduction</topic><topic>Signal Transduction - drug effects</topic><topic>Succinate dehydrogenase</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sulkowski, Parker L.</creatorcontrib><creatorcontrib>Oeck, Sebastian</creatorcontrib><creatorcontrib>Dow, Jonathan</creatorcontrib><creatorcontrib>Economos, Nicholas G.</creatorcontrib><creatorcontrib>Mirfakhraie, Lily</creatorcontrib><creatorcontrib>Liu, Yanfeng</creatorcontrib><creatorcontrib>Noronha, Katelyn</creatorcontrib><creatorcontrib>Bao, Xun</creatorcontrib><creatorcontrib>Li, Jing</creatorcontrib><creatorcontrib>Shuch, Brian M.</creatorcontrib><creatorcontrib>King, Megan C.</creatorcontrib><creatorcontrib>Bindra, Ranjit S.</creatorcontrib><creatorcontrib>Glazer, Peter M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sulkowski, Parker L.</au><au>Oeck, Sebastian</au><au>Dow, Jonathan</au><au>Economos, Nicholas G.</au><au>Mirfakhraie, Lily</au><au>Liu, Yanfeng</au><au>Noronha, Katelyn</au><au>Bao, Xun</au><au>Li, Jing</au><au>Shuch, Brian M.</au><au>King, Megan C.</au><au>Bindra, Ranjit S.</au><au>Glazer, Peter M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oncometabolites suppress DNA repair by disrupting local chromatin signalling</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2020-06-25</date><risdate>2020</risdate><volume>582</volume><issue>7813</issue><spage>586</spage><epage>591</epage><pages>586-591</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>Deregulation of metabolism and disruption of genome integrity are hallmarks of cancer
1
. Increased levels of the metabolites 2-hydroxyglutarate, succinate and fumarate occur in human malignancies owing to somatic mutations in the isocitrate dehydrogenase-1 or -2 (
IDH1
or
IDH2
) genes, or germline mutations in the fumarate hydratase (
FH
) and succinate dehydrogenase genes (
SDHA
,
SDHB
,
SDHC
and
SDHD
), respectively
2
–
4
. Recent work has made an unexpected connection between these metabolites and DNA repair by showing that they suppress the pathway of homology-dependent repair (HDR)
5
,
6
and confer an exquisite sensitivity to inhibitors of poly (ADP-ribose) polymerase (PARP) that are being tested in clinical trials. However, the mechanism by which these oncometabolites inhibit HDR remains poorly understood. Here we determine the pathway by which these metabolites disrupt DNA repair. We show that oncometabolite-induced inhibition of the lysine demethylase KDM4B results in aberrant hypermethylation of histone 3 lysine 9 (H3K9) at loci surrounding DNA breaks, masking a local H3K9 trimethylation signal that is essential for the proper execution of HDR. Consequently, recruitment of TIP60 and ATM, two key proximal HDR factors, is substantially impaired at DNA breaks, with reduced end resection and diminished recruitment of downstream repair factors. These findings provide a mechanistic basis for oncometabolite-induced HDR suppression and may guide effective strategies to exploit these defects for therapeutic gain.
Metabolites that are elevated in tumours inhibit the lysine demethylase KDM4B, resulting in aberrant hypermethylation of histone 3 lysine 9 and decreased homology-dependent DNA repair.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32494005</pmid><doi>10.1038/s41586-020-2363-0</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-9695-8771</orcidid><orcidid>https://orcid.org/0000-0003-4691-808X</orcidid><orcidid>https://orcid.org/0000-0002-5745-1158</orcidid><orcidid>https://orcid.org/0000-0003-4525-5560</orcidid><orcidid>https://orcid.org/0000-0002-1688-2226</orcidid><orcidid>https://orcid.org/0000-0003-1354-1124</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2020-06, Vol.582 (7813), p.586-591 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7319896 |
source | MEDLINE; SpringerLink Journals; Nature Journals Online |
subjects | 14 14/63 38 631/67/1922 631/67/2327 631/67/68/2486 Adenosine diphosphate Ataxia Telangiectasia Mutated Proteins - metabolism Cell cycle Cell Line, Tumor Chromatin Chromatin - drug effects Chromatin - metabolism Clinical trials Control Defects Dehydrogenase Dehydrogenases Deoxyribonucleic acid Deregulation Disruption DNA DNA Breaks - drug effects DNA damage DNA repair DNA Repair - drug effects Fumarase Gene expression Genes Genomes Homologous Recombination - drug effects Homology Humanities and Social Sciences Humans Influence Isocitrate dehydrogenase Jumonji Domain-Containing Histone Demethylases - antagonists & inhibitors Ligands Lysine Lysine Acetyltransferase 5 - metabolism Masking Metabolites Methylation - drug effects multidisciplinary Mutation Neoplasms - drug therapy Neoplasms - genetics Neoplasms - metabolism Neoplasms - pathology Phosphorylation Poly(ADP-ribose) polymerase Poly(ADP-ribose) Polymerase Inhibitors - pharmacology Recruitment Repair Ribose Science Science (multidisciplinary) Signal transduction Signal Transduction - drug effects Succinate dehydrogenase Tumors |
title | Oncometabolites suppress DNA repair by disrupting local chromatin signalling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T07%3A56%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oncometabolites%20suppress%20DNA%20repair%20by%20disrupting%20local%20chromatin%20signalling&rft.jtitle=Nature%20(London)&rft.au=Sulkowski,%20Parker%20L.&rft.date=2020-06-25&rft.volume=582&rft.issue=7813&rft.spage=586&rft.epage=591&rft.pages=586-591&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-020-2363-0&rft_dat=%3Cgale_pubme%3EA627621639%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2421991358&rft_id=info:pmid/32494005&rft_galeid=A627621639&rfr_iscdi=true |