MetagenoNets: comprehensive inference and meta-insights for microbial correlation networks
Abstract Microbial association networks are frequently used for understanding and comparing community dynamics from microbiome datasets. Inferring microbial correlations for such networks and obtaining meaningful biological insights, however, requires a lengthy data management workflow, choice of ap...
Gespeichert in:
Veröffentlicht in: | Nucleic acids research 2020-07, Vol.48 (W1), p.W572-W579 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | W579 |
---|---|
container_issue | W1 |
container_start_page | W572 |
container_title | Nucleic acids research |
container_volume | 48 |
creator | Nagpal, Sunil Singh, Rashmi Yadav, Deepak Mande, Sharmila S |
description | Abstract
Microbial association networks are frequently used for understanding and comparing community dynamics from microbiome datasets. Inferring microbial correlations for such networks and obtaining meaningful biological insights, however, requires a lengthy data management workflow, choice of appropriate methods, statistical computations, followed by a different pipeline for suitably visualizing, reporting and comparing the associations. The complexity is further increased with the added dimension of multi-group ‘meta-data’ and ‘inter-omic’ functional profiles that are often associated with microbiome studies. This not only necessitates the need for categorical networks, but also integrated and bi-partite networks. Multiple options of network inference algorithms further add to the efforts required for performing correlation-based microbiome interaction studies. We present MetagenoNets, a web-based application, which accepts multi-environment microbial abundance as well as functional profiles, intelligently segregates ‘continuous and categorical’ meta-data and allows inference as well as visualization of categorical, integrated (inter-omic) and bi-partite networks. Modular structure of MetagenoNets ensures logical flow of analysis (inference, integration, exploration and comparison) in an intuitive and interactive personalized dashboard driven framework. Dynamic choice of filtration, normalization, data transformation and correlation algorithms ensures, that end-users get a one-stop solution for microbial network analysis. MetagenoNets is freely available at https://web.rniapps.net/metagenonets. |
doi_str_mv | 10.1093/nar/gkaa254 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7319469</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/nar/gkaa254</oup_id><sourcerecordid>2395255041</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-8b080f0a7c864ca96cb3870f71b75df7d8fffb3c95f4ac934877fdd7a735ea5a3</originalsourceid><addsrcrecordid>eNp9kc1P3DAQxS1EBQvlxL3KCVVCATu244QDEkIFKtH20l64WBNnvOuS2IudBfW_x2gXVC6c5vB-8-bjEXLI6AmjLT_1EE_n9wCVFFtkxnhdlaKtq20yo5zKklHR7JK9lP5SygSTYofs8orzRkk1I3c_cII5-vATp3RWmDAuIy7QJ_eIhfMWI3qDBfi-GDNZuqzMF1MqbIjF6EwMnYMh98WIA0wu-MLj9BTiffpMPlkYEh5s6j75c_Xt9-VNefvr-vvlxW1pBKumsuloQy0FZZpaGGhr0-XdqFWsU7K3qm-stR03rbQCTMtFo5TtewWKSwQJfJ-cr32Xq27E3qCfIgx6Gd0I8Z8O4PR7xbuFnodHrThrRd1mg68bgxgeVpgmPbpkcBjAY1glXfFWVlJSwTJ6vEbz4SlFtG9jGNUvaeicht6kkekv_2_2xr6-PwNHayCslh86PQNGZ5eT</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2395255041</pqid></control><display><type>article</type><title>MetagenoNets: comprehensive inference and meta-insights for microbial correlation networks</title><source>Oxford Journals Open Access Collection</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Nagpal, Sunil ; Singh, Rashmi ; Yadav, Deepak ; Mande, Sharmila S</creator><creatorcontrib>Nagpal, Sunil ; Singh, Rashmi ; Yadav, Deepak ; Mande, Sharmila S</creatorcontrib><description>Abstract
Microbial association networks are frequently used for understanding and comparing community dynamics from microbiome datasets. Inferring microbial correlations for such networks and obtaining meaningful biological insights, however, requires a lengthy data management workflow, choice of appropriate methods, statistical computations, followed by a different pipeline for suitably visualizing, reporting and comparing the associations. The complexity is further increased with the added dimension of multi-group ‘meta-data’ and ‘inter-omic’ functional profiles that are often associated with microbiome studies. This not only necessitates the need for categorical networks, but also integrated and bi-partite networks. Multiple options of network inference algorithms further add to the efforts required for performing correlation-based microbiome interaction studies. We present MetagenoNets, a web-based application, which accepts multi-environment microbial abundance as well as functional profiles, intelligently segregates ‘continuous and categorical’ meta-data and allows inference as well as visualization of categorical, integrated (inter-omic) and bi-partite networks. Modular structure of MetagenoNets ensures logical flow of analysis (inference, integration, exploration and comparison) in an intuitive and interactive personalized dashboard driven framework. Dynamic choice of filtration, normalization, data transformation and correlation algorithms ensures, that end-users get a one-stop solution for microbial network analysis. MetagenoNets is freely available at https://web.rniapps.net/metagenonets.</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkaa254</identifier><identifier>PMID: 32338757</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Web Server Issue</subject><ispartof>Nucleic acids research, 2020-07, Vol.48 (W1), p.W572-W579</ispartof><rights>The Author(s) 2020. Published by Oxford University Press on behalf of Nucleic Acids Research. 2020</rights><rights>The Author(s) 2020. Published by Oxford University Press on behalf of Nucleic Acids Research.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-8b080f0a7c864ca96cb3870f71b75df7d8fffb3c95f4ac934877fdd7a735ea5a3</citedby><cites>FETCH-LOGICAL-c412t-8b080f0a7c864ca96cb3870f71b75df7d8fffb3c95f4ac934877fdd7a735ea5a3</cites><orcidid>0000-0002-2614-1982</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7319469/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7319469/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,1598,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32338757$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nagpal, Sunil</creatorcontrib><creatorcontrib>Singh, Rashmi</creatorcontrib><creatorcontrib>Yadav, Deepak</creatorcontrib><creatorcontrib>Mande, Sharmila S</creatorcontrib><title>MetagenoNets: comprehensive inference and meta-insights for microbial correlation networks</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>Abstract
Microbial association networks are frequently used for understanding and comparing community dynamics from microbiome datasets. Inferring microbial correlations for such networks and obtaining meaningful biological insights, however, requires a lengthy data management workflow, choice of appropriate methods, statistical computations, followed by a different pipeline for suitably visualizing, reporting and comparing the associations. The complexity is further increased with the added dimension of multi-group ‘meta-data’ and ‘inter-omic’ functional profiles that are often associated with microbiome studies. This not only necessitates the need for categorical networks, but also integrated and bi-partite networks. Multiple options of network inference algorithms further add to the efforts required for performing correlation-based microbiome interaction studies. We present MetagenoNets, a web-based application, which accepts multi-environment microbial abundance as well as functional profiles, intelligently segregates ‘continuous and categorical’ meta-data and allows inference as well as visualization of categorical, integrated (inter-omic) and bi-partite networks. Modular structure of MetagenoNets ensures logical flow of analysis (inference, integration, exploration and comparison) in an intuitive and interactive personalized dashboard driven framework. Dynamic choice of filtration, normalization, data transformation and correlation algorithms ensures, that end-users get a one-stop solution for microbial network analysis. MetagenoNets is freely available at https://web.rniapps.net/metagenonets.</description><subject>Web Server Issue</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><recordid>eNp9kc1P3DAQxS1EBQvlxL3KCVVCATu244QDEkIFKtH20l64WBNnvOuS2IudBfW_x2gXVC6c5vB-8-bjEXLI6AmjLT_1EE_n9wCVFFtkxnhdlaKtq20yo5zKklHR7JK9lP5SygSTYofs8orzRkk1I3c_cII5-vATp3RWmDAuIy7QJ_eIhfMWI3qDBfi-GDNZuqzMF1MqbIjF6EwMnYMh98WIA0wu-MLj9BTiffpMPlkYEh5s6j75c_Xt9-VNefvr-vvlxW1pBKumsuloQy0FZZpaGGhr0-XdqFWsU7K3qm-stR03rbQCTMtFo5TtewWKSwQJfJ-cr32Xq27E3qCfIgx6Gd0I8Z8O4PR7xbuFnodHrThrRd1mg68bgxgeVpgmPbpkcBjAY1glXfFWVlJSwTJ6vEbz4SlFtG9jGNUvaeicht6kkekv_2_2xr6-PwNHayCslh86PQNGZ5eT</recordid><startdate>20200702</startdate><enddate>20200702</enddate><creator>Nagpal, Sunil</creator><creator>Singh, Rashmi</creator><creator>Yadav, Deepak</creator><creator>Mande, Sharmila S</creator><general>Oxford University Press</general><scope>TOX</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2614-1982</orcidid></search><sort><creationdate>20200702</creationdate><title>MetagenoNets: comprehensive inference and meta-insights for microbial correlation networks</title><author>Nagpal, Sunil ; Singh, Rashmi ; Yadav, Deepak ; Mande, Sharmila S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-8b080f0a7c864ca96cb3870f71b75df7d8fffb3c95f4ac934877fdd7a735ea5a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Web Server Issue</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nagpal, Sunil</creatorcontrib><creatorcontrib>Singh, Rashmi</creatorcontrib><creatorcontrib>Yadav, Deepak</creatorcontrib><creatorcontrib>Mande, Sharmila S</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nagpal, Sunil</au><au>Singh, Rashmi</au><au>Yadav, Deepak</au><au>Mande, Sharmila S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MetagenoNets: comprehensive inference and meta-insights for microbial correlation networks</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2020-07-02</date><risdate>2020</risdate><volume>48</volume><issue>W1</issue><spage>W572</spage><epage>W579</epage><pages>W572-W579</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><abstract>Abstract
Microbial association networks are frequently used for understanding and comparing community dynamics from microbiome datasets. Inferring microbial correlations for such networks and obtaining meaningful biological insights, however, requires a lengthy data management workflow, choice of appropriate methods, statistical computations, followed by a different pipeline for suitably visualizing, reporting and comparing the associations. The complexity is further increased with the added dimension of multi-group ‘meta-data’ and ‘inter-omic’ functional profiles that are often associated with microbiome studies. This not only necessitates the need for categorical networks, but also integrated and bi-partite networks. Multiple options of network inference algorithms further add to the efforts required for performing correlation-based microbiome interaction studies. We present MetagenoNets, a web-based application, which accepts multi-environment microbial abundance as well as functional profiles, intelligently segregates ‘continuous and categorical’ meta-data and allows inference as well as visualization of categorical, integrated (inter-omic) and bi-partite networks. Modular structure of MetagenoNets ensures logical flow of analysis (inference, integration, exploration and comparison) in an intuitive and interactive personalized dashboard driven framework. Dynamic choice of filtration, normalization, data transformation and correlation algorithms ensures, that end-users get a one-stop solution for microbial network analysis. MetagenoNets is freely available at https://web.rniapps.net/metagenonets.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>32338757</pmid><doi>10.1093/nar/gkaa254</doi><orcidid>https://orcid.org/0000-0002-2614-1982</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0305-1048 |
ispartof | Nucleic acids research, 2020-07, Vol.48 (W1), p.W572-W579 |
issn | 0305-1048 1362-4962 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7319469 |
source | Oxford Journals Open Access Collection; DOAJ Directory of Open Access Journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Web Server Issue |
title | MetagenoNets: comprehensive inference and meta-insights for microbial correlation networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T11%3A17%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MetagenoNets:%20comprehensive%20inference%20and%20meta-insights%20for%20microbial%20correlation%20networks&rft.jtitle=Nucleic%20acids%20research&rft.au=Nagpal,%20Sunil&rft.date=2020-07-02&rft.volume=48&rft.issue=W1&rft.spage=W572&rft.epage=W579&rft.pages=W572-W579&rft.issn=0305-1048&rft.eissn=1362-4962&rft_id=info:doi/10.1093/nar/gkaa254&rft_dat=%3Cproquest_pubme%3E2395255041%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2395255041&rft_id=info:pmid/32338757&rft_oup_id=10.1093/nar/gkaa254&rfr_iscdi=true |