MetagenoNets: comprehensive inference and meta-insights for microbial correlation networks

Abstract Microbial association networks are frequently used for understanding and comparing community dynamics from microbiome datasets. Inferring microbial correlations for such networks and obtaining meaningful biological insights, however, requires a lengthy data management workflow, choice of ap...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nucleic acids research 2020-07, Vol.48 (W1), p.W572-W579
Hauptverfasser: Nagpal, Sunil, Singh, Rashmi, Yadav, Deepak, Mande, Sharmila S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page W579
container_issue W1
container_start_page W572
container_title Nucleic acids research
container_volume 48
creator Nagpal, Sunil
Singh, Rashmi
Yadav, Deepak
Mande, Sharmila S
description Abstract Microbial association networks are frequently used for understanding and comparing community dynamics from microbiome datasets. Inferring microbial correlations for such networks and obtaining meaningful biological insights, however, requires a lengthy data management workflow, choice of appropriate methods, statistical computations, followed by a different pipeline for suitably visualizing, reporting and comparing the associations. The complexity is further increased with the added dimension of multi-group ‘meta-data’ and ‘inter-omic’ functional profiles that are often associated with microbiome studies. This not only necessitates the need for categorical networks, but also integrated and bi-partite networks. Multiple options of network inference algorithms further add to the efforts required for performing correlation-based microbiome interaction studies. We present MetagenoNets, a web-based application, which accepts multi-environment microbial abundance as well as functional profiles, intelligently segregates ‘continuous and categorical’ meta-data and allows inference as well as visualization of categorical, integrated (inter-omic) and bi-partite networks. Modular structure of MetagenoNets ensures logical flow of analysis (inference, integration, exploration and comparison) in an intuitive and interactive personalized dashboard driven framework. Dynamic choice of filtration, normalization, data transformation and correlation algorithms ensures, that end-users get a one-stop solution for microbial network analysis. MetagenoNets is freely available at https://web.rniapps.net/metagenonets.
doi_str_mv 10.1093/nar/gkaa254
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7319469</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/nar/gkaa254</oup_id><sourcerecordid>2395255041</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-8b080f0a7c864ca96cb3870f71b75df7d8fffb3c95f4ac934877fdd7a735ea5a3</originalsourceid><addsrcrecordid>eNp9kc1P3DAQxS1EBQvlxL3KCVVCATu244QDEkIFKtH20l64WBNnvOuS2IudBfW_x2gXVC6c5vB-8-bjEXLI6AmjLT_1EE_n9wCVFFtkxnhdlaKtq20yo5zKklHR7JK9lP5SygSTYofs8orzRkk1I3c_cII5-vATp3RWmDAuIy7QJ_eIhfMWI3qDBfi-GDNZuqzMF1MqbIjF6EwMnYMh98WIA0wu-MLj9BTiffpMPlkYEh5s6j75c_Xt9-VNefvr-vvlxW1pBKumsuloQy0FZZpaGGhr0-XdqFWsU7K3qm-stR03rbQCTMtFo5TtewWKSwQJfJ-cr32Xq27E3qCfIgx6Gd0I8Z8O4PR7xbuFnodHrThrRd1mg68bgxgeVpgmPbpkcBjAY1glXfFWVlJSwTJ6vEbz4SlFtG9jGNUvaeicht6kkekv_2_2xr6-PwNHayCslh86PQNGZ5eT</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2395255041</pqid></control><display><type>article</type><title>MetagenoNets: comprehensive inference and meta-insights for microbial correlation networks</title><source>Oxford Journals Open Access Collection</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Nagpal, Sunil ; Singh, Rashmi ; Yadav, Deepak ; Mande, Sharmila S</creator><creatorcontrib>Nagpal, Sunil ; Singh, Rashmi ; Yadav, Deepak ; Mande, Sharmila S</creatorcontrib><description>Abstract Microbial association networks are frequently used for understanding and comparing community dynamics from microbiome datasets. Inferring microbial correlations for such networks and obtaining meaningful biological insights, however, requires a lengthy data management workflow, choice of appropriate methods, statistical computations, followed by a different pipeline for suitably visualizing, reporting and comparing the associations. The complexity is further increased with the added dimension of multi-group ‘meta-data’ and ‘inter-omic’ functional profiles that are often associated with microbiome studies. This not only necessitates the need for categorical networks, but also integrated and bi-partite networks. Multiple options of network inference algorithms further add to the efforts required for performing correlation-based microbiome interaction studies. We present MetagenoNets, a web-based application, which accepts multi-environment microbial abundance as well as functional profiles, intelligently segregates ‘continuous and categorical’ meta-data and allows inference as well as visualization of categorical, integrated (inter-omic) and bi-partite networks. Modular structure of MetagenoNets ensures logical flow of analysis (inference, integration, exploration and comparison) in an intuitive and interactive personalized dashboard driven framework. Dynamic choice of filtration, normalization, data transformation and correlation algorithms ensures, that end-users get a one-stop solution for microbial network analysis. MetagenoNets is freely available at https://web.rniapps.net/metagenonets.</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkaa254</identifier><identifier>PMID: 32338757</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Web Server Issue</subject><ispartof>Nucleic acids research, 2020-07, Vol.48 (W1), p.W572-W579</ispartof><rights>The Author(s) 2020. Published by Oxford University Press on behalf of Nucleic Acids Research. 2020</rights><rights>The Author(s) 2020. Published by Oxford University Press on behalf of Nucleic Acids Research.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-8b080f0a7c864ca96cb3870f71b75df7d8fffb3c95f4ac934877fdd7a735ea5a3</citedby><cites>FETCH-LOGICAL-c412t-8b080f0a7c864ca96cb3870f71b75df7d8fffb3c95f4ac934877fdd7a735ea5a3</cites><orcidid>0000-0002-2614-1982</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7319469/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7319469/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,1598,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32338757$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nagpal, Sunil</creatorcontrib><creatorcontrib>Singh, Rashmi</creatorcontrib><creatorcontrib>Yadav, Deepak</creatorcontrib><creatorcontrib>Mande, Sharmila S</creatorcontrib><title>MetagenoNets: comprehensive inference and meta-insights for microbial correlation networks</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>Abstract Microbial association networks are frequently used for understanding and comparing community dynamics from microbiome datasets. Inferring microbial correlations for such networks and obtaining meaningful biological insights, however, requires a lengthy data management workflow, choice of appropriate methods, statistical computations, followed by a different pipeline for suitably visualizing, reporting and comparing the associations. The complexity is further increased with the added dimension of multi-group ‘meta-data’ and ‘inter-omic’ functional profiles that are often associated with microbiome studies. This not only necessitates the need for categorical networks, but also integrated and bi-partite networks. Multiple options of network inference algorithms further add to the efforts required for performing correlation-based microbiome interaction studies. We present MetagenoNets, a web-based application, which accepts multi-environment microbial abundance as well as functional profiles, intelligently segregates ‘continuous and categorical’ meta-data and allows inference as well as visualization of categorical, integrated (inter-omic) and bi-partite networks. Modular structure of MetagenoNets ensures logical flow of analysis (inference, integration, exploration and comparison) in an intuitive and interactive personalized dashboard driven framework. Dynamic choice of filtration, normalization, data transformation and correlation algorithms ensures, that end-users get a one-stop solution for microbial network analysis. MetagenoNets is freely available at https://web.rniapps.net/metagenonets.</description><subject>Web Server Issue</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><recordid>eNp9kc1P3DAQxS1EBQvlxL3KCVVCATu244QDEkIFKtH20l64WBNnvOuS2IudBfW_x2gXVC6c5vB-8-bjEXLI6AmjLT_1EE_n9wCVFFtkxnhdlaKtq20yo5zKklHR7JK9lP5SygSTYofs8orzRkk1I3c_cII5-vATp3RWmDAuIy7QJ_eIhfMWI3qDBfi-GDNZuqzMF1MqbIjF6EwMnYMh98WIA0wu-MLj9BTiffpMPlkYEh5s6j75c_Xt9-VNefvr-vvlxW1pBKumsuloQy0FZZpaGGhr0-XdqFWsU7K3qm-stR03rbQCTMtFo5TtewWKSwQJfJ-cr32Xq27E3qCfIgx6Gd0I8Z8O4PR7xbuFnodHrThrRd1mg68bgxgeVpgmPbpkcBjAY1glXfFWVlJSwTJ6vEbz4SlFtG9jGNUvaeicht6kkekv_2_2xr6-PwNHayCslh86PQNGZ5eT</recordid><startdate>20200702</startdate><enddate>20200702</enddate><creator>Nagpal, Sunil</creator><creator>Singh, Rashmi</creator><creator>Yadav, Deepak</creator><creator>Mande, Sharmila S</creator><general>Oxford University Press</general><scope>TOX</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2614-1982</orcidid></search><sort><creationdate>20200702</creationdate><title>MetagenoNets: comprehensive inference and meta-insights for microbial correlation networks</title><author>Nagpal, Sunil ; Singh, Rashmi ; Yadav, Deepak ; Mande, Sharmila S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-8b080f0a7c864ca96cb3870f71b75df7d8fffb3c95f4ac934877fdd7a735ea5a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Web Server Issue</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nagpal, Sunil</creatorcontrib><creatorcontrib>Singh, Rashmi</creatorcontrib><creatorcontrib>Yadav, Deepak</creatorcontrib><creatorcontrib>Mande, Sharmila S</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nagpal, Sunil</au><au>Singh, Rashmi</au><au>Yadav, Deepak</au><au>Mande, Sharmila S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MetagenoNets: comprehensive inference and meta-insights for microbial correlation networks</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2020-07-02</date><risdate>2020</risdate><volume>48</volume><issue>W1</issue><spage>W572</spage><epage>W579</epage><pages>W572-W579</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><abstract>Abstract Microbial association networks are frequently used for understanding and comparing community dynamics from microbiome datasets. Inferring microbial correlations for such networks and obtaining meaningful biological insights, however, requires a lengthy data management workflow, choice of appropriate methods, statistical computations, followed by a different pipeline for suitably visualizing, reporting and comparing the associations. The complexity is further increased with the added dimension of multi-group ‘meta-data’ and ‘inter-omic’ functional profiles that are often associated with microbiome studies. This not only necessitates the need for categorical networks, but also integrated and bi-partite networks. Multiple options of network inference algorithms further add to the efforts required for performing correlation-based microbiome interaction studies. We present MetagenoNets, a web-based application, which accepts multi-environment microbial abundance as well as functional profiles, intelligently segregates ‘continuous and categorical’ meta-data and allows inference as well as visualization of categorical, integrated (inter-omic) and bi-partite networks. Modular structure of MetagenoNets ensures logical flow of analysis (inference, integration, exploration and comparison) in an intuitive and interactive personalized dashboard driven framework. Dynamic choice of filtration, normalization, data transformation and correlation algorithms ensures, that end-users get a one-stop solution for microbial network analysis. MetagenoNets is freely available at https://web.rniapps.net/metagenonets.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>32338757</pmid><doi>10.1093/nar/gkaa254</doi><orcidid>https://orcid.org/0000-0002-2614-1982</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0305-1048
ispartof Nucleic acids research, 2020-07, Vol.48 (W1), p.W572-W579
issn 0305-1048
1362-4962
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7319469
source Oxford Journals Open Access Collection; DOAJ Directory of Open Access Journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Web Server Issue
title MetagenoNets: comprehensive inference and meta-insights for microbial correlation networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T11%3A17%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MetagenoNets:%20comprehensive%20inference%20and%20meta-insights%20for%20microbial%20correlation%20networks&rft.jtitle=Nucleic%20acids%20research&rft.au=Nagpal,%20Sunil&rft.date=2020-07-02&rft.volume=48&rft.issue=W1&rft.spage=W572&rft.epage=W579&rft.pages=W572-W579&rft.issn=0305-1048&rft.eissn=1362-4962&rft_id=info:doi/10.1093/nar/gkaa254&rft_dat=%3Cproquest_pubme%3E2395255041%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2395255041&rft_id=info:pmid/32338757&rft_oup_id=10.1093/nar/gkaa254&rfr_iscdi=true