CAGI SickKids challenges: Assessment of phenotype and variant predictions derived from clinical and genomic data of children with undiagnosed diseases

Whole‐genome sequencing (WGS) holds great potential as a diagnostic test. However, the majority of patients currently undergoing WGS lack a molecular diagnosis, largely due to the vast number of undiscovered disease genes and our inability to assess the pathogenicity of most genomic variants. The CA...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Human mutation 2019-09, Vol.40 (9), p.1373-1391
Hauptverfasser: Kasak, Laura, Hunter, Jesse M., Udani, Rupa, Bakolitsa, Constantina, Hu, Zhiqiang, Adhikari, Aashish N., Babbi, Giulia, Casadio, Rita, Gough, Julian, Guerrero, Rafael F., Jiang, Yuxiang, Joseph, Thomas, Katsonis, Panagiotis, Kotte, Sujatha, Kundu, Kunal, Lichtarge, Olivier, Martelli, Pier Luigi, Mooney, Sean D., Moult, John, Pal, Lipika R., Poitras, Jennifer, Radivojac, Predrag, Rao, Aditya, Sivadasan, Naveen, Sunderam, Uma, Saipradeep, V. G., Yin, Yizhou, Zaucha, Jan, Brenner, Steven E., Meyn, M. Stephen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1391
container_issue 9
container_start_page 1373
container_title Human mutation
container_volume 40
creator Kasak, Laura
Hunter, Jesse M.
Udani, Rupa
Bakolitsa, Constantina
Hu, Zhiqiang
Adhikari, Aashish N.
Babbi, Giulia
Casadio, Rita
Gough, Julian
Guerrero, Rafael F.
Jiang, Yuxiang
Joseph, Thomas
Katsonis, Panagiotis
Kotte, Sujatha
Kundu, Kunal
Lichtarge, Olivier
Martelli, Pier Luigi
Mooney, Sean D.
Moult, John
Pal, Lipika R.
Poitras, Jennifer
Radivojac, Predrag
Rao, Aditya
Sivadasan, Naveen
Sunderam, Uma
Saipradeep, V. G.
Yin, Yizhou
Zaucha, Jan
Brenner, Steven E.
Meyn, M. Stephen
description Whole‐genome sequencing (WGS) holds great potential as a diagnostic test. However, the majority of patients currently undergoing WGS lack a molecular diagnosis, largely due to the vast number of undiscovered disease genes and our inability to assess the pathogenicity of most genomic variants. The CAGI SickKids challenges attempted to address this knowledge gap by assessing state‐of‐the‐art methods for clinical phenotype prediction from genomes. CAGI4 and CAGI5 participants were provided with WGS data and clinical descriptions of 25 and 24 undiagnosed patients from the SickKids Genome Clinic Project, respectively. Predictors were asked to identify primary and secondary causal variants. In addition, for CAGI5, groups had to match each genome to one of three disorder categories (neurologic, ophthalmologic, and connective), and separately to each patient. The performance of matching genomes to categories was no better than random but two groups performed significantly better than chance in matching genomes to patients. Two of the ten variants proposed by two groups in CAGI4 were deemed to be diagnostic, and several proposed pathogenic variants in CAGI5 are good candidates for phenotype expansion. We discuss implications for improving in silico assessment of genomic variants and identifying new disease genes.
doi_str_mv 10.1002/humu.23874
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7318886</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2289622437</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4484-348e3be9f7269fe9c4e8699d44e0ec4d3a77026a701946bfc77aa73f66ac1e903</originalsourceid><addsrcrecordid>eNp9kctu1DAUhiMEohfY8ADIEhuElOLbxDELpNEI2ooiFjBry2OfTFwSO7WTqeZF-rw4nVIBC1a2fL7z-Rz9RfGK4DOCMX3fTv10Rlkt-JPimGBZl_mZP53vC1kKIflRcZLSNca4XizY8-KIEUapkOS4uFstzy_Rd2d-fnE2IdPqrgO_hfQBLVOClHrwIwoNGlrwYdwPgLS3aKej07kwRLDOjC74hCxEtwOLmhh6ZDrnndHdPb3Nrb0zyOpRzy7Tus5G8OjWjS2avHV660PKvdYl0PnbF8WzRncJXj6cp8X686cfq4vy6tv55Wp5VRrOa14yXgPbgGwErWQD0nCoKykt54DBcMu0EJhWWmAiebVpjBBaC9ZUlTYEJGanxceDd5g2PViTl426U0N0vY57FbRTf1e8a9U27JRgpK7rKgvePghiuJkgjap3yUDXaQ9hSorSitCKMjKjb_5Br8MUfV4vU7WsKOVMZOrdgTIxpBSheRyGYDXHrea41X3cGX795_iP6O98M0AOwK3rYP8flbpYf10fpL8AODK4_A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2289622437</pqid></control><display><type>article</type><title>CAGI SickKids challenges: Assessment of phenotype and variant predictions derived from clinical and genomic data of children with undiagnosed diseases</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Kasak, Laura ; Hunter, Jesse M. ; Udani, Rupa ; Bakolitsa, Constantina ; Hu, Zhiqiang ; Adhikari, Aashish N. ; Babbi, Giulia ; Casadio, Rita ; Gough, Julian ; Guerrero, Rafael F. ; Jiang, Yuxiang ; Joseph, Thomas ; Katsonis, Panagiotis ; Kotte, Sujatha ; Kundu, Kunal ; Lichtarge, Olivier ; Martelli, Pier Luigi ; Mooney, Sean D. ; Moult, John ; Pal, Lipika R. ; Poitras, Jennifer ; Radivojac, Predrag ; Rao, Aditya ; Sivadasan, Naveen ; Sunderam, Uma ; Saipradeep, V. G. ; Yin, Yizhou ; Zaucha, Jan ; Brenner, Steven E. ; Meyn, M. Stephen</creator><creatorcontrib>Kasak, Laura ; Hunter, Jesse M. ; Udani, Rupa ; Bakolitsa, Constantina ; Hu, Zhiqiang ; Adhikari, Aashish N. ; Babbi, Giulia ; Casadio, Rita ; Gough, Julian ; Guerrero, Rafael F. ; Jiang, Yuxiang ; Joseph, Thomas ; Katsonis, Panagiotis ; Kotte, Sujatha ; Kundu, Kunal ; Lichtarge, Olivier ; Martelli, Pier Luigi ; Mooney, Sean D. ; Moult, John ; Pal, Lipika R. ; Poitras, Jennifer ; Radivojac, Predrag ; Rao, Aditya ; Sivadasan, Naveen ; Sunderam, Uma ; Saipradeep, V. G. ; Yin, Yizhou ; Zaucha, Jan ; Brenner, Steven E. ; Meyn, M. Stephen</creatorcontrib><description>Whole‐genome sequencing (WGS) holds great potential as a diagnostic test. However, the majority of patients currently undergoing WGS lack a molecular diagnosis, largely due to the vast number of undiscovered disease genes and our inability to assess the pathogenicity of most genomic variants. The CAGI SickKids challenges attempted to address this knowledge gap by assessing state‐of‐the‐art methods for clinical phenotype prediction from genomes. CAGI4 and CAGI5 participants were provided with WGS data and clinical descriptions of 25 and 24 undiagnosed patients from the SickKids Genome Clinic Project, respectively. Predictors were asked to identify primary and secondary causal variants. In addition, for CAGI5, groups had to match each genome to one of three disorder categories (neurologic, ophthalmologic, and connective), and separately to each patient. The performance of matching genomes to categories was no better than random but two groups performed significantly better than chance in matching genomes to patients. Two of the ten variants proposed by two groups in CAGI4 were deemed to be diagnostic, and several proposed pathogenic variants in CAGI5 are good candidates for phenotype expansion. We discuss implications for improving in silico assessment of genomic variants and identifying new disease genes.</description><identifier>ISSN: 1059-7794</identifier><identifier>EISSN: 1098-1004</identifier><identifier>DOI: 10.1002/humu.23874</identifier><identifier>PMID: 31322791</identifier><language>eng</language><publisher>United States: Hindawi Limited</publisher><subject>Adolescent ; CAGI ; Child ; Child, Preschool ; Computational Biology - methods ; Computer Simulation ; Databases, Genetic ; Female ; Genetic Predisposition to Disease ; Genetic Variation ; Genomes ; Genotype &amp; phenotype ; Humans ; Male ; Pathogenicity ; pediatric rare disease ; Phenotype ; phenotype prediction ; Phenotypes ; SickKids ; Undiagnosed Diseases - diagnosis ; Undiagnosed Diseases - genetics ; variant interpretation ; Whole Genome Sequencing ; whole‐genome sequencing data</subject><ispartof>Human mutation, 2019-09, Vol.40 (9), p.1373-1391</ispartof><rights>2019 The Authors. published by Wiley Periodicals, Inc.</rights><rights>2019 The Authors. Human Mutation published by Wiley Periodicals, Inc.</rights><rights>2019 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4484-348e3be9f7269fe9c4e8699d44e0ec4d3a77026a701946bfc77aa73f66ac1e903</citedby><cites>FETCH-LOGICAL-c4484-348e3be9f7269fe9c4e8699d44e0ec4d3a77026a701946bfc77aa73f66ac1e903</cites><orcidid>0000-0001-6673-7740 ; 0000-0002-3012-2282 ; 0000-0002-4452-4290 ; 0000-0002-8451-3609 ; 0000-0003-4057-7122 ; 0000-0001-6444-2607 ; 0000-0002-7462-7039 ; 0000-0002-6769-0793 ; 0000-0003-4182-2396 ; 0000-0002-5315-5693 ; 0000-0002-7161-737X ; 0000-0003-3289-4590 ; 0000-0003-2654-0833 ; 0000-0002-3390-110X ; 0000-0002-6980-9831 ; 0000-0002-0686-6767 ; 0000-0001-7808-0301 ; 0000-0002-0274-5669 ; 0000-0001-7559-6185 ; 0000-0002-1965-4982 ; 0000-0002-9816-4737 ; 0000-0002-7172-1644 ; 0000-0001-8854-3410 ; 0000-0003-4305-9494</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fhumu.23874$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fhumu.23874$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31322791$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kasak, Laura</creatorcontrib><creatorcontrib>Hunter, Jesse M.</creatorcontrib><creatorcontrib>Udani, Rupa</creatorcontrib><creatorcontrib>Bakolitsa, Constantina</creatorcontrib><creatorcontrib>Hu, Zhiqiang</creatorcontrib><creatorcontrib>Adhikari, Aashish N.</creatorcontrib><creatorcontrib>Babbi, Giulia</creatorcontrib><creatorcontrib>Casadio, Rita</creatorcontrib><creatorcontrib>Gough, Julian</creatorcontrib><creatorcontrib>Guerrero, Rafael F.</creatorcontrib><creatorcontrib>Jiang, Yuxiang</creatorcontrib><creatorcontrib>Joseph, Thomas</creatorcontrib><creatorcontrib>Katsonis, Panagiotis</creatorcontrib><creatorcontrib>Kotte, Sujatha</creatorcontrib><creatorcontrib>Kundu, Kunal</creatorcontrib><creatorcontrib>Lichtarge, Olivier</creatorcontrib><creatorcontrib>Martelli, Pier Luigi</creatorcontrib><creatorcontrib>Mooney, Sean D.</creatorcontrib><creatorcontrib>Moult, John</creatorcontrib><creatorcontrib>Pal, Lipika R.</creatorcontrib><creatorcontrib>Poitras, Jennifer</creatorcontrib><creatorcontrib>Radivojac, Predrag</creatorcontrib><creatorcontrib>Rao, Aditya</creatorcontrib><creatorcontrib>Sivadasan, Naveen</creatorcontrib><creatorcontrib>Sunderam, Uma</creatorcontrib><creatorcontrib>Saipradeep, V. G.</creatorcontrib><creatorcontrib>Yin, Yizhou</creatorcontrib><creatorcontrib>Zaucha, Jan</creatorcontrib><creatorcontrib>Brenner, Steven E.</creatorcontrib><creatorcontrib>Meyn, M. Stephen</creatorcontrib><title>CAGI SickKids challenges: Assessment of phenotype and variant predictions derived from clinical and genomic data of children with undiagnosed diseases</title><title>Human mutation</title><addtitle>Hum Mutat</addtitle><description>Whole‐genome sequencing (WGS) holds great potential as a diagnostic test. However, the majority of patients currently undergoing WGS lack a molecular diagnosis, largely due to the vast number of undiscovered disease genes and our inability to assess the pathogenicity of most genomic variants. The CAGI SickKids challenges attempted to address this knowledge gap by assessing state‐of‐the‐art methods for clinical phenotype prediction from genomes. CAGI4 and CAGI5 participants were provided with WGS data and clinical descriptions of 25 and 24 undiagnosed patients from the SickKids Genome Clinic Project, respectively. Predictors were asked to identify primary and secondary causal variants. In addition, for CAGI5, groups had to match each genome to one of three disorder categories (neurologic, ophthalmologic, and connective), and separately to each patient. The performance of matching genomes to categories was no better than random but two groups performed significantly better than chance in matching genomes to patients. Two of the ten variants proposed by two groups in CAGI4 were deemed to be diagnostic, and several proposed pathogenic variants in CAGI5 are good candidates for phenotype expansion. We discuss implications for improving in silico assessment of genomic variants and identifying new disease genes.</description><subject>Adolescent</subject><subject>CAGI</subject><subject>Child</subject><subject>Child, Preschool</subject><subject>Computational Biology - methods</subject><subject>Computer Simulation</subject><subject>Databases, Genetic</subject><subject>Female</subject><subject>Genetic Predisposition to Disease</subject><subject>Genetic Variation</subject><subject>Genomes</subject><subject>Genotype &amp; phenotype</subject><subject>Humans</subject><subject>Male</subject><subject>Pathogenicity</subject><subject>pediatric rare disease</subject><subject>Phenotype</subject><subject>phenotype prediction</subject><subject>Phenotypes</subject><subject>SickKids</subject><subject>Undiagnosed Diseases - diagnosis</subject><subject>Undiagnosed Diseases - genetics</subject><subject>variant interpretation</subject><subject>Whole Genome Sequencing</subject><subject>whole‐genome sequencing data</subject><issn>1059-7794</issn><issn>1098-1004</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNp9kctu1DAUhiMEohfY8ADIEhuElOLbxDELpNEI2ooiFjBry2OfTFwSO7WTqeZF-rw4nVIBC1a2fL7z-Rz9RfGK4DOCMX3fTv10Rlkt-JPimGBZl_mZP53vC1kKIflRcZLSNca4XizY8-KIEUapkOS4uFstzy_Rd2d-fnE2IdPqrgO_hfQBLVOClHrwIwoNGlrwYdwPgLS3aKej07kwRLDOjC74hCxEtwOLmhh6ZDrnndHdPb3Nrb0zyOpRzy7Tus5G8OjWjS2avHV660PKvdYl0PnbF8WzRncJXj6cp8X686cfq4vy6tv55Wp5VRrOa14yXgPbgGwErWQD0nCoKykt54DBcMu0EJhWWmAiebVpjBBaC9ZUlTYEJGanxceDd5g2PViTl426U0N0vY57FbRTf1e8a9U27JRgpK7rKgvePghiuJkgjap3yUDXaQ9hSorSitCKMjKjb_5Br8MUfV4vU7WsKOVMZOrdgTIxpBSheRyGYDXHrea41X3cGX795_iP6O98M0AOwK3rYP8flbpYf10fpL8AODK4_A</recordid><startdate>201909</startdate><enddate>201909</enddate><creator>Kasak, Laura</creator><creator>Hunter, Jesse M.</creator><creator>Udani, Rupa</creator><creator>Bakolitsa, Constantina</creator><creator>Hu, Zhiqiang</creator><creator>Adhikari, Aashish N.</creator><creator>Babbi, Giulia</creator><creator>Casadio, Rita</creator><creator>Gough, Julian</creator><creator>Guerrero, Rafael F.</creator><creator>Jiang, Yuxiang</creator><creator>Joseph, Thomas</creator><creator>Katsonis, Panagiotis</creator><creator>Kotte, Sujatha</creator><creator>Kundu, Kunal</creator><creator>Lichtarge, Olivier</creator><creator>Martelli, Pier Luigi</creator><creator>Mooney, Sean D.</creator><creator>Moult, John</creator><creator>Pal, Lipika R.</creator><creator>Poitras, Jennifer</creator><creator>Radivojac, Predrag</creator><creator>Rao, Aditya</creator><creator>Sivadasan, Naveen</creator><creator>Sunderam, Uma</creator><creator>Saipradeep, V. G.</creator><creator>Yin, Yizhou</creator><creator>Zaucha, Jan</creator><creator>Brenner, Steven E.</creator><creator>Meyn, M. Stephen</creator><general>Hindawi Limited</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6673-7740</orcidid><orcidid>https://orcid.org/0000-0002-3012-2282</orcidid><orcidid>https://orcid.org/0000-0002-4452-4290</orcidid><orcidid>https://orcid.org/0000-0002-8451-3609</orcidid><orcidid>https://orcid.org/0000-0003-4057-7122</orcidid><orcidid>https://orcid.org/0000-0001-6444-2607</orcidid><orcidid>https://orcid.org/0000-0002-7462-7039</orcidid><orcidid>https://orcid.org/0000-0002-6769-0793</orcidid><orcidid>https://orcid.org/0000-0003-4182-2396</orcidid><orcidid>https://orcid.org/0000-0002-5315-5693</orcidid><orcidid>https://orcid.org/0000-0002-7161-737X</orcidid><orcidid>https://orcid.org/0000-0003-3289-4590</orcidid><orcidid>https://orcid.org/0000-0003-2654-0833</orcidid><orcidid>https://orcid.org/0000-0002-3390-110X</orcidid><orcidid>https://orcid.org/0000-0002-6980-9831</orcidid><orcidid>https://orcid.org/0000-0002-0686-6767</orcidid><orcidid>https://orcid.org/0000-0001-7808-0301</orcidid><orcidid>https://orcid.org/0000-0002-0274-5669</orcidid><orcidid>https://orcid.org/0000-0001-7559-6185</orcidid><orcidid>https://orcid.org/0000-0002-1965-4982</orcidid><orcidid>https://orcid.org/0000-0002-9816-4737</orcidid><orcidid>https://orcid.org/0000-0002-7172-1644</orcidid><orcidid>https://orcid.org/0000-0001-8854-3410</orcidid><orcidid>https://orcid.org/0000-0003-4305-9494</orcidid></search><sort><creationdate>201909</creationdate><title>CAGI SickKids challenges: Assessment of phenotype and variant predictions derived from clinical and genomic data of children with undiagnosed diseases</title><author>Kasak, Laura ; Hunter, Jesse M. ; Udani, Rupa ; Bakolitsa, Constantina ; Hu, Zhiqiang ; Adhikari, Aashish N. ; Babbi, Giulia ; Casadio, Rita ; Gough, Julian ; Guerrero, Rafael F. ; Jiang, Yuxiang ; Joseph, Thomas ; Katsonis, Panagiotis ; Kotte, Sujatha ; Kundu, Kunal ; Lichtarge, Olivier ; Martelli, Pier Luigi ; Mooney, Sean D. ; Moult, John ; Pal, Lipika R. ; Poitras, Jennifer ; Radivojac, Predrag ; Rao, Aditya ; Sivadasan, Naveen ; Sunderam, Uma ; Saipradeep, V. G. ; Yin, Yizhou ; Zaucha, Jan ; Brenner, Steven E. ; Meyn, M. Stephen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4484-348e3be9f7269fe9c4e8699d44e0ec4d3a77026a701946bfc77aa73f66ac1e903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adolescent</topic><topic>CAGI</topic><topic>Child</topic><topic>Child, Preschool</topic><topic>Computational Biology - methods</topic><topic>Computer Simulation</topic><topic>Databases, Genetic</topic><topic>Female</topic><topic>Genetic Predisposition to Disease</topic><topic>Genetic Variation</topic><topic>Genomes</topic><topic>Genotype &amp; phenotype</topic><topic>Humans</topic><topic>Male</topic><topic>Pathogenicity</topic><topic>pediatric rare disease</topic><topic>Phenotype</topic><topic>phenotype prediction</topic><topic>Phenotypes</topic><topic>SickKids</topic><topic>Undiagnosed Diseases - diagnosis</topic><topic>Undiagnosed Diseases - genetics</topic><topic>variant interpretation</topic><topic>Whole Genome Sequencing</topic><topic>whole‐genome sequencing data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kasak, Laura</creatorcontrib><creatorcontrib>Hunter, Jesse M.</creatorcontrib><creatorcontrib>Udani, Rupa</creatorcontrib><creatorcontrib>Bakolitsa, Constantina</creatorcontrib><creatorcontrib>Hu, Zhiqiang</creatorcontrib><creatorcontrib>Adhikari, Aashish N.</creatorcontrib><creatorcontrib>Babbi, Giulia</creatorcontrib><creatorcontrib>Casadio, Rita</creatorcontrib><creatorcontrib>Gough, Julian</creatorcontrib><creatorcontrib>Guerrero, Rafael F.</creatorcontrib><creatorcontrib>Jiang, Yuxiang</creatorcontrib><creatorcontrib>Joseph, Thomas</creatorcontrib><creatorcontrib>Katsonis, Panagiotis</creatorcontrib><creatorcontrib>Kotte, Sujatha</creatorcontrib><creatorcontrib>Kundu, Kunal</creatorcontrib><creatorcontrib>Lichtarge, Olivier</creatorcontrib><creatorcontrib>Martelli, Pier Luigi</creatorcontrib><creatorcontrib>Mooney, Sean D.</creatorcontrib><creatorcontrib>Moult, John</creatorcontrib><creatorcontrib>Pal, Lipika R.</creatorcontrib><creatorcontrib>Poitras, Jennifer</creatorcontrib><creatorcontrib>Radivojac, Predrag</creatorcontrib><creatorcontrib>Rao, Aditya</creatorcontrib><creatorcontrib>Sivadasan, Naveen</creatorcontrib><creatorcontrib>Sunderam, Uma</creatorcontrib><creatorcontrib>Saipradeep, V. G.</creatorcontrib><creatorcontrib>Yin, Yizhou</creatorcontrib><creatorcontrib>Zaucha, Jan</creatorcontrib><creatorcontrib>Brenner, Steven E.</creatorcontrib><creatorcontrib>Meyn, M. Stephen</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Human mutation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kasak, Laura</au><au>Hunter, Jesse M.</au><au>Udani, Rupa</au><au>Bakolitsa, Constantina</au><au>Hu, Zhiqiang</au><au>Adhikari, Aashish N.</au><au>Babbi, Giulia</au><au>Casadio, Rita</au><au>Gough, Julian</au><au>Guerrero, Rafael F.</au><au>Jiang, Yuxiang</au><au>Joseph, Thomas</au><au>Katsonis, Panagiotis</au><au>Kotte, Sujatha</au><au>Kundu, Kunal</au><au>Lichtarge, Olivier</au><au>Martelli, Pier Luigi</au><au>Mooney, Sean D.</au><au>Moult, John</au><au>Pal, Lipika R.</au><au>Poitras, Jennifer</au><au>Radivojac, Predrag</au><au>Rao, Aditya</au><au>Sivadasan, Naveen</au><au>Sunderam, Uma</au><au>Saipradeep, V. G.</au><au>Yin, Yizhou</au><au>Zaucha, Jan</au><au>Brenner, Steven E.</au><au>Meyn, M. Stephen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CAGI SickKids challenges: Assessment of phenotype and variant predictions derived from clinical and genomic data of children with undiagnosed diseases</atitle><jtitle>Human mutation</jtitle><addtitle>Hum Mutat</addtitle><date>2019-09</date><risdate>2019</risdate><volume>40</volume><issue>9</issue><spage>1373</spage><epage>1391</epage><pages>1373-1391</pages><issn>1059-7794</issn><eissn>1098-1004</eissn><abstract>Whole‐genome sequencing (WGS) holds great potential as a diagnostic test. However, the majority of patients currently undergoing WGS lack a molecular diagnosis, largely due to the vast number of undiscovered disease genes and our inability to assess the pathogenicity of most genomic variants. The CAGI SickKids challenges attempted to address this knowledge gap by assessing state‐of‐the‐art methods for clinical phenotype prediction from genomes. CAGI4 and CAGI5 participants were provided with WGS data and clinical descriptions of 25 and 24 undiagnosed patients from the SickKids Genome Clinic Project, respectively. Predictors were asked to identify primary and secondary causal variants. In addition, for CAGI5, groups had to match each genome to one of three disorder categories (neurologic, ophthalmologic, and connective), and separately to each patient. The performance of matching genomes to categories was no better than random but two groups performed significantly better than chance in matching genomes to patients. Two of the ten variants proposed by two groups in CAGI4 were deemed to be diagnostic, and several proposed pathogenic variants in CAGI5 are good candidates for phenotype expansion. We discuss implications for improving in silico assessment of genomic variants and identifying new disease genes.</abstract><cop>United States</cop><pub>Hindawi Limited</pub><pmid>31322791</pmid><doi>10.1002/humu.23874</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-6673-7740</orcidid><orcidid>https://orcid.org/0000-0002-3012-2282</orcidid><orcidid>https://orcid.org/0000-0002-4452-4290</orcidid><orcidid>https://orcid.org/0000-0002-8451-3609</orcidid><orcidid>https://orcid.org/0000-0003-4057-7122</orcidid><orcidid>https://orcid.org/0000-0001-6444-2607</orcidid><orcidid>https://orcid.org/0000-0002-7462-7039</orcidid><orcidid>https://orcid.org/0000-0002-6769-0793</orcidid><orcidid>https://orcid.org/0000-0003-4182-2396</orcidid><orcidid>https://orcid.org/0000-0002-5315-5693</orcidid><orcidid>https://orcid.org/0000-0002-7161-737X</orcidid><orcidid>https://orcid.org/0000-0003-3289-4590</orcidid><orcidid>https://orcid.org/0000-0003-2654-0833</orcidid><orcidid>https://orcid.org/0000-0002-3390-110X</orcidid><orcidid>https://orcid.org/0000-0002-6980-9831</orcidid><orcidid>https://orcid.org/0000-0002-0686-6767</orcidid><orcidid>https://orcid.org/0000-0001-7808-0301</orcidid><orcidid>https://orcid.org/0000-0002-0274-5669</orcidid><orcidid>https://orcid.org/0000-0001-7559-6185</orcidid><orcidid>https://orcid.org/0000-0002-1965-4982</orcidid><orcidid>https://orcid.org/0000-0002-9816-4737</orcidid><orcidid>https://orcid.org/0000-0002-7172-1644</orcidid><orcidid>https://orcid.org/0000-0001-8854-3410</orcidid><orcidid>https://orcid.org/0000-0003-4305-9494</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1059-7794
ispartof Human mutation, 2019-09, Vol.40 (9), p.1373-1391
issn 1059-7794
1098-1004
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7318886
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Adolescent
CAGI
Child
Child, Preschool
Computational Biology - methods
Computer Simulation
Databases, Genetic
Female
Genetic Predisposition to Disease
Genetic Variation
Genomes
Genotype & phenotype
Humans
Male
Pathogenicity
pediatric rare disease
Phenotype
phenotype prediction
Phenotypes
SickKids
Undiagnosed Diseases - diagnosis
Undiagnosed Diseases - genetics
variant interpretation
Whole Genome Sequencing
whole‐genome sequencing data
title CAGI SickKids challenges: Assessment of phenotype and variant predictions derived from clinical and genomic data of children with undiagnosed diseases
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T14%3A57%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CAGI%20SickKids%20challenges:%20Assessment%20of%20phenotype%20and%20variant%20predictions%20derived%20from%20clinical%20and%20genomic%20data%20of%20children%20with%20undiagnosed%20diseases&rft.jtitle=Human%20mutation&rft.au=Kasak,%20Laura&rft.date=2019-09&rft.volume=40&rft.issue=9&rft.spage=1373&rft.epage=1391&rft.pages=1373-1391&rft.issn=1059-7794&rft.eissn=1098-1004&rft_id=info:doi/10.1002/humu.23874&rft_dat=%3Cproquest_pubme%3E2289622437%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2289622437&rft_id=info:pmid/31322791&rfr_iscdi=true