CAGI SickKids challenges: Assessment of phenotype and variant predictions derived from clinical and genomic data of children with undiagnosed diseases
Whole‐genome sequencing (WGS) holds great potential as a diagnostic test. However, the majority of patients currently undergoing WGS lack a molecular diagnosis, largely due to the vast number of undiscovered disease genes and our inability to assess the pathogenicity of most genomic variants. The CA...
Gespeichert in:
Veröffentlicht in: | Human mutation 2019-09, Vol.40 (9), p.1373-1391 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1391 |
---|---|
container_issue | 9 |
container_start_page | 1373 |
container_title | Human mutation |
container_volume | 40 |
creator | Kasak, Laura Hunter, Jesse M. Udani, Rupa Bakolitsa, Constantina Hu, Zhiqiang Adhikari, Aashish N. Babbi, Giulia Casadio, Rita Gough, Julian Guerrero, Rafael F. Jiang, Yuxiang Joseph, Thomas Katsonis, Panagiotis Kotte, Sujatha Kundu, Kunal Lichtarge, Olivier Martelli, Pier Luigi Mooney, Sean D. Moult, John Pal, Lipika R. Poitras, Jennifer Radivojac, Predrag Rao, Aditya Sivadasan, Naveen Sunderam, Uma Saipradeep, V. G. Yin, Yizhou Zaucha, Jan Brenner, Steven E. Meyn, M. Stephen |
description | Whole‐genome sequencing (WGS) holds great potential as a diagnostic test. However, the majority of patients currently undergoing WGS lack a molecular diagnosis, largely due to the vast number of undiscovered disease genes and our inability to assess the pathogenicity of most genomic variants. The CAGI SickKids challenges attempted to address this knowledge gap by assessing state‐of‐the‐art methods for clinical phenotype prediction from genomes. CAGI4 and CAGI5 participants were provided with WGS data and clinical descriptions of 25 and 24 undiagnosed patients from the SickKids Genome Clinic Project, respectively. Predictors were asked to identify primary and secondary causal variants. In addition, for CAGI5, groups had to match each genome to one of three disorder categories (neurologic, ophthalmologic, and connective), and separately to each patient. The performance of matching genomes to categories was no better than random but two groups performed significantly better than chance in matching genomes to patients. Two of the ten variants proposed by two groups in CAGI4 were deemed to be diagnostic, and several proposed pathogenic variants in CAGI5 are good candidates for phenotype expansion. We discuss implications for improving in silico assessment of genomic variants and identifying new disease genes. |
doi_str_mv | 10.1002/humu.23874 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7318886</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2289622437</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4484-348e3be9f7269fe9c4e8699d44e0ec4d3a77026a701946bfc77aa73f66ac1e903</originalsourceid><addsrcrecordid>eNp9kctu1DAUhiMEohfY8ADIEhuElOLbxDELpNEI2ooiFjBry2OfTFwSO7WTqeZF-rw4nVIBC1a2fL7z-Rz9RfGK4DOCMX3fTv10Rlkt-JPimGBZl_mZP53vC1kKIflRcZLSNca4XizY8-KIEUapkOS4uFstzy_Rd2d-fnE2IdPqrgO_hfQBLVOClHrwIwoNGlrwYdwPgLS3aKej07kwRLDOjC74hCxEtwOLmhh6ZDrnndHdPb3Nrb0zyOpRzy7Tus5G8OjWjS2avHV660PKvdYl0PnbF8WzRncJXj6cp8X686cfq4vy6tv55Wp5VRrOa14yXgPbgGwErWQD0nCoKykt54DBcMu0EJhWWmAiebVpjBBaC9ZUlTYEJGanxceDd5g2PViTl426U0N0vY57FbRTf1e8a9U27JRgpK7rKgvePghiuJkgjap3yUDXaQ9hSorSitCKMjKjb_5Br8MUfV4vU7WsKOVMZOrdgTIxpBSheRyGYDXHrea41X3cGX795_iP6O98M0AOwK3rYP8flbpYf10fpL8AODK4_A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2289622437</pqid></control><display><type>article</type><title>CAGI SickKids challenges: Assessment of phenotype and variant predictions derived from clinical and genomic data of children with undiagnosed diseases</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Kasak, Laura ; Hunter, Jesse M. ; Udani, Rupa ; Bakolitsa, Constantina ; Hu, Zhiqiang ; Adhikari, Aashish N. ; Babbi, Giulia ; Casadio, Rita ; Gough, Julian ; Guerrero, Rafael F. ; Jiang, Yuxiang ; Joseph, Thomas ; Katsonis, Panagiotis ; Kotte, Sujatha ; Kundu, Kunal ; Lichtarge, Olivier ; Martelli, Pier Luigi ; Mooney, Sean D. ; Moult, John ; Pal, Lipika R. ; Poitras, Jennifer ; Radivojac, Predrag ; Rao, Aditya ; Sivadasan, Naveen ; Sunderam, Uma ; Saipradeep, V. G. ; Yin, Yizhou ; Zaucha, Jan ; Brenner, Steven E. ; Meyn, M. Stephen</creator><creatorcontrib>Kasak, Laura ; Hunter, Jesse M. ; Udani, Rupa ; Bakolitsa, Constantina ; Hu, Zhiqiang ; Adhikari, Aashish N. ; Babbi, Giulia ; Casadio, Rita ; Gough, Julian ; Guerrero, Rafael F. ; Jiang, Yuxiang ; Joseph, Thomas ; Katsonis, Panagiotis ; Kotte, Sujatha ; Kundu, Kunal ; Lichtarge, Olivier ; Martelli, Pier Luigi ; Mooney, Sean D. ; Moult, John ; Pal, Lipika R. ; Poitras, Jennifer ; Radivojac, Predrag ; Rao, Aditya ; Sivadasan, Naveen ; Sunderam, Uma ; Saipradeep, V. G. ; Yin, Yizhou ; Zaucha, Jan ; Brenner, Steven E. ; Meyn, M. Stephen</creatorcontrib><description>Whole‐genome sequencing (WGS) holds great potential as a diagnostic test. However, the majority of patients currently undergoing WGS lack a molecular diagnosis, largely due to the vast number of undiscovered disease genes and our inability to assess the pathogenicity of most genomic variants. The CAGI SickKids challenges attempted to address this knowledge gap by assessing state‐of‐the‐art methods for clinical phenotype prediction from genomes. CAGI4 and CAGI5 participants were provided with WGS data and clinical descriptions of 25 and 24 undiagnosed patients from the SickKids Genome Clinic Project, respectively. Predictors were asked to identify primary and secondary causal variants. In addition, for CAGI5, groups had to match each genome to one of three disorder categories (neurologic, ophthalmologic, and connective), and separately to each patient. The performance of matching genomes to categories was no better than random but two groups performed significantly better than chance in matching genomes to patients. Two of the ten variants proposed by two groups in CAGI4 were deemed to be diagnostic, and several proposed pathogenic variants in CAGI5 are good candidates for phenotype expansion. We discuss implications for improving in silico assessment of genomic variants and identifying new disease genes.</description><identifier>ISSN: 1059-7794</identifier><identifier>EISSN: 1098-1004</identifier><identifier>DOI: 10.1002/humu.23874</identifier><identifier>PMID: 31322791</identifier><language>eng</language><publisher>United States: Hindawi Limited</publisher><subject>Adolescent ; CAGI ; Child ; Child, Preschool ; Computational Biology - methods ; Computer Simulation ; Databases, Genetic ; Female ; Genetic Predisposition to Disease ; Genetic Variation ; Genomes ; Genotype & phenotype ; Humans ; Male ; Pathogenicity ; pediatric rare disease ; Phenotype ; phenotype prediction ; Phenotypes ; SickKids ; Undiagnosed Diseases - diagnosis ; Undiagnosed Diseases - genetics ; variant interpretation ; Whole Genome Sequencing ; whole‐genome sequencing data</subject><ispartof>Human mutation, 2019-09, Vol.40 (9), p.1373-1391</ispartof><rights>2019 The Authors. published by Wiley Periodicals, Inc.</rights><rights>2019 The Authors. Human Mutation published by Wiley Periodicals, Inc.</rights><rights>2019 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4484-348e3be9f7269fe9c4e8699d44e0ec4d3a77026a701946bfc77aa73f66ac1e903</citedby><cites>FETCH-LOGICAL-c4484-348e3be9f7269fe9c4e8699d44e0ec4d3a77026a701946bfc77aa73f66ac1e903</cites><orcidid>0000-0001-6673-7740 ; 0000-0002-3012-2282 ; 0000-0002-4452-4290 ; 0000-0002-8451-3609 ; 0000-0003-4057-7122 ; 0000-0001-6444-2607 ; 0000-0002-7462-7039 ; 0000-0002-6769-0793 ; 0000-0003-4182-2396 ; 0000-0002-5315-5693 ; 0000-0002-7161-737X ; 0000-0003-3289-4590 ; 0000-0003-2654-0833 ; 0000-0002-3390-110X ; 0000-0002-6980-9831 ; 0000-0002-0686-6767 ; 0000-0001-7808-0301 ; 0000-0002-0274-5669 ; 0000-0001-7559-6185 ; 0000-0002-1965-4982 ; 0000-0002-9816-4737 ; 0000-0002-7172-1644 ; 0000-0001-8854-3410 ; 0000-0003-4305-9494</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fhumu.23874$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fhumu.23874$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31322791$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kasak, Laura</creatorcontrib><creatorcontrib>Hunter, Jesse M.</creatorcontrib><creatorcontrib>Udani, Rupa</creatorcontrib><creatorcontrib>Bakolitsa, Constantina</creatorcontrib><creatorcontrib>Hu, Zhiqiang</creatorcontrib><creatorcontrib>Adhikari, Aashish N.</creatorcontrib><creatorcontrib>Babbi, Giulia</creatorcontrib><creatorcontrib>Casadio, Rita</creatorcontrib><creatorcontrib>Gough, Julian</creatorcontrib><creatorcontrib>Guerrero, Rafael F.</creatorcontrib><creatorcontrib>Jiang, Yuxiang</creatorcontrib><creatorcontrib>Joseph, Thomas</creatorcontrib><creatorcontrib>Katsonis, Panagiotis</creatorcontrib><creatorcontrib>Kotte, Sujatha</creatorcontrib><creatorcontrib>Kundu, Kunal</creatorcontrib><creatorcontrib>Lichtarge, Olivier</creatorcontrib><creatorcontrib>Martelli, Pier Luigi</creatorcontrib><creatorcontrib>Mooney, Sean D.</creatorcontrib><creatorcontrib>Moult, John</creatorcontrib><creatorcontrib>Pal, Lipika R.</creatorcontrib><creatorcontrib>Poitras, Jennifer</creatorcontrib><creatorcontrib>Radivojac, Predrag</creatorcontrib><creatorcontrib>Rao, Aditya</creatorcontrib><creatorcontrib>Sivadasan, Naveen</creatorcontrib><creatorcontrib>Sunderam, Uma</creatorcontrib><creatorcontrib>Saipradeep, V. G.</creatorcontrib><creatorcontrib>Yin, Yizhou</creatorcontrib><creatorcontrib>Zaucha, Jan</creatorcontrib><creatorcontrib>Brenner, Steven E.</creatorcontrib><creatorcontrib>Meyn, M. Stephen</creatorcontrib><title>CAGI SickKids challenges: Assessment of phenotype and variant predictions derived from clinical and genomic data of children with undiagnosed diseases</title><title>Human mutation</title><addtitle>Hum Mutat</addtitle><description>Whole‐genome sequencing (WGS) holds great potential as a diagnostic test. However, the majority of patients currently undergoing WGS lack a molecular diagnosis, largely due to the vast number of undiscovered disease genes and our inability to assess the pathogenicity of most genomic variants. The CAGI SickKids challenges attempted to address this knowledge gap by assessing state‐of‐the‐art methods for clinical phenotype prediction from genomes. CAGI4 and CAGI5 participants were provided with WGS data and clinical descriptions of 25 and 24 undiagnosed patients from the SickKids Genome Clinic Project, respectively. Predictors were asked to identify primary and secondary causal variants. In addition, for CAGI5, groups had to match each genome to one of three disorder categories (neurologic, ophthalmologic, and connective), and separately to each patient. The performance of matching genomes to categories was no better than random but two groups performed significantly better than chance in matching genomes to patients. Two of the ten variants proposed by two groups in CAGI4 were deemed to be diagnostic, and several proposed pathogenic variants in CAGI5 are good candidates for phenotype expansion. We discuss implications for improving in silico assessment of genomic variants and identifying new disease genes.</description><subject>Adolescent</subject><subject>CAGI</subject><subject>Child</subject><subject>Child, Preschool</subject><subject>Computational Biology - methods</subject><subject>Computer Simulation</subject><subject>Databases, Genetic</subject><subject>Female</subject><subject>Genetic Predisposition to Disease</subject><subject>Genetic Variation</subject><subject>Genomes</subject><subject>Genotype & phenotype</subject><subject>Humans</subject><subject>Male</subject><subject>Pathogenicity</subject><subject>pediatric rare disease</subject><subject>Phenotype</subject><subject>phenotype prediction</subject><subject>Phenotypes</subject><subject>SickKids</subject><subject>Undiagnosed Diseases - diagnosis</subject><subject>Undiagnosed Diseases - genetics</subject><subject>variant interpretation</subject><subject>Whole Genome Sequencing</subject><subject>whole‐genome sequencing data</subject><issn>1059-7794</issn><issn>1098-1004</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNp9kctu1DAUhiMEohfY8ADIEhuElOLbxDELpNEI2ooiFjBry2OfTFwSO7WTqeZF-rw4nVIBC1a2fL7z-Rz9RfGK4DOCMX3fTv10Rlkt-JPimGBZl_mZP53vC1kKIflRcZLSNca4XizY8-KIEUapkOS4uFstzy_Rd2d-fnE2IdPqrgO_hfQBLVOClHrwIwoNGlrwYdwPgLS3aKej07kwRLDOjC74hCxEtwOLmhh6ZDrnndHdPb3Nrb0zyOpRzy7Tus5G8OjWjS2avHV660PKvdYl0PnbF8WzRncJXj6cp8X686cfq4vy6tv55Wp5VRrOa14yXgPbgGwErWQD0nCoKykt54DBcMu0EJhWWmAiebVpjBBaC9ZUlTYEJGanxceDd5g2PViTl426U0N0vY57FbRTf1e8a9U27JRgpK7rKgvePghiuJkgjap3yUDXaQ9hSorSitCKMjKjb_5Br8MUfV4vU7WsKOVMZOrdgTIxpBSheRyGYDXHrea41X3cGX795_iP6O98M0AOwK3rYP8flbpYf10fpL8AODK4_A</recordid><startdate>201909</startdate><enddate>201909</enddate><creator>Kasak, Laura</creator><creator>Hunter, Jesse M.</creator><creator>Udani, Rupa</creator><creator>Bakolitsa, Constantina</creator><creator>Hu, Zhiqiang</creator><creator>Adhikari, Aashish N.</creator><creator>Babbi, Giulia</creator><creator>Casadio, Rita</creator><creator>Gough, Julian</creator><creator>Guerrero, Rafael F.</creator><creator>Jiang, Yuxiang</creator><creator>Joseph, Thomas</creator><creator>Katsonis, Panagiotis</creator><creator>Kotte, Sujatha</creator><creator>Kundu, Kunal</creator><creator>Lichtarge, Olivier</creator><creator>Martelli, Pier Luigi</creator><creator>Mooney, Sean D.</creator><creator>Moult, John</creator><creator>Pal, Lipika R.</creator><creator>Poitras, Jennifer</creator><creator>Radivojac, Predrag</creator><creator>Rao, Aditya</creator><creator>Sivadasan, Naveen</creator><creator>Sunderam, Uma</creator><creator>Saipradeep, V. G.</creator><creator>Yin, Yizhou</creator><creator>Zaucha, Jan</creator><creator>Brenner, Steven E.</creator><creator>Meyn, M. Stephen</creator><general>Hindawi Limited</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6673-7740</orcidid><orcidid>https://orcid.org/0000-0002-3012-2282</orcidid><orcidid>https://orcid.org/0000-0002-4452-4290</orcidid><orcidid>https://orcid.org/0000-0002-8451-3609</orcidid><orcidid>https://orcid.org/0000-0003-4057-7122</orcidid><orcidid>https://orcid.org/0000-0001-6444-2607</orcidid><orcidid>https://orcid.org/0000-0002-7462-7039</orcidid><orcidid>https://orcid.org/0000-0002-6769-0793</orcidid><orcidid>https://orcid.org/0000-0003-4182-2396</orcidid><orcidid>https://orcid.org/0000-0002-5315-5693</orcidid><orcidid>https://orcid.org/0000-0002-7161-737X</orcidid><orcidid>https://orcid.org/0000-0003-3289-4590</orcidid><orcidid>https://orcid.org/0000-0003-2654-0833</orcidid><orcidid>https://orcid.org/0000-0002-3390-110X</orcidid><orcidid>https://orcid.org/0000-0002-6980-9831</orcidid><orcidid>https://orcid.org/0000-0002-0686-6767</orcidid><orcidid>https://orcid.org/0000-0001-7808-0301</orcidid><orcidid>https://orcid.org/0000-0002-0274-5669</orcidid><orcidid>https://orcid.org/0000-0001-7559-6185</orcidid><orcidid>https://orcid.org/0000-0002-1965-4982</orcidid><orcidid>https://orcid.org/0000-0002-9816-4737</orcidid><orcidid>https://orcid.org/0000-0002-7172-1644</orcidid><orcidid>https://orcid.org/0000-0001-8854-3410</orcidid><orcidid>https://orcid.org/0000-0003-4305-9494</orcidid></search><sort><creationdate>201909</creationdate><title>CAGI SickKids challenges: Assessment of phenotype and variant predictions derived from clinical and genomic data of children with undiagnosed diseases</title><author>Kasak, Laura ; Hunter, Jesse M. ; Udani, Rupa ; Bakolitsa, Constantina ; Hu, Zhiqiang ; Adhikari, Aashish N. ; Babbi, Giulia ; Casadio, Rita ; Gough, Julian ; Guerrero, Rafael F. ; Jiang, Yuxiang ; Joseph, Thomas ; Katsonis, Panagiotis ; Kotte, Sujatha ; Kundu, Kunal ; Lichtarge, Olivier ; Martelli, Pier Luigi ; Mooney, Sean D. ; Moult, John ; Pal, Lipika R. ; Poitras, Jennifer ; Radivojac, Predrag ; Rao, Aditya ; Sivadasan, Naveen ; Sunderam, Uma ; Saipradeep, V. G. ; Yin, Yizhou ; Zaucha, Jan ; Brenner, Steven E. ; Meyn, M. Stephen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4484-348e3be9f7269fe9c4e8699d44e0ec4d3a77026a701946bfc77aa73f66ac1e903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adolescent</topic><topic>CAGI</topic><topic>Child</topic><topic>Child, Preschool</topic><topic>Computational Biology - methods</topic><topic>Computer Simulation</topic><topic>Databases, Genetic</topic><topic>Female</topic><topic>Genetic Predisposition to Disease</topic><topic>Genetic Variation</topic><topic>Genomes</topic><topic>Genotype & phenotype</topic><topic>Humans</topic><topic>Male</topic><topic>Pathogenicity</topic><topic>pediatric rare disease</topic><topic>Phenotype</topic><topic>phenotype prediction</topic><topic>Phenotypes</topic><topic>SickKids</topic><topic>Undiagnosed Diseases - diagnosis</topic><topic>Undiagnosed Diseases - genetics</topic><topic>variant interpretation</topic><topic>Whole Genome Sequencing</topic><topic>whole‐genome sequencing data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kasak, Laura</creatorcontrib><creatorcontrib>Hunter, Jesse M.</creatorcontrib><creatorcontrib>Udani, Rupa</creatorcontrib><creatorcontrib>Bakolitsa, Constantina</creatorcontrib><creatorcontrib>Hu, Zhiqiang</creatorcontrib><creatorcontrib>Adhikari, Aashish N.</creatorcontrib><creatorcontrib>Babbi, Giulia</creatorcontrib><creatorcontrib>Casadio, Rita</creatorcontrib><creatorcontrib>Gough, Julian</creatorcontrib><creatorcontrib>Guerrero, Rafael F.</creatorcontrib><creatorcontrib>Jiang, Yuxiang</creatorcontrib><creatorcontrib>Joseph, Thomas</creatorcontrib><creatorcontrib>Katsonis, Panagiotis</creatorcontrib><creatorcontrib>Kotte, Sujatha</creatorcontrib><creatorcontrib>Kundu, Kunal</creatorcontrib><creatorcontrib>Lichtarge, Olivier</creatorcontrib><creatorcontrib>Martelli, Pier Luigi</creatorcontrib><creatorcontrib>Mooney, Sean D.</creatorcontrib><creatorcontrib>Moult, John</creatorcontrib><creatorcontrib>Pal, Lipika R.</creatorcontrib><creatorcontrib>Poitras, Jennifer</creatorcontrib><creatorcontrib>Radivojac, Predrag</creatorcontrib><creatorcontrib>Rao, Aditya</creatorcontrib><creatorcontrib>Sivadasan, Naveen</creatorcontrib><creatorcontrib>Sunderam, Uma</creatorcontrib><creatorcontrib>Saipradeep, V. G.</creatorcontrib><creatorcontrib>Yin, Yizhou</creatorcontrib><creatorcontrib>Zaucha, Jan</creatorcontrib><creatorcontrib>Brenner, Steven E.</creatorcontrib><creatorcontrib>Meyn, M. Stephen</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Human mutation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kasak, Laura</au><au>Hunter, Jesse M.</au><au>Udani, Rupa</au><au>Bakolitsa, Constantina</au><au>Hu, Zhiqiang</au><au>Adhikari, Aashish N.</au><au>Babbi, Giulia</au><au>Casadio, Rita</au><au>Gough, Julian</au><au>Guerrero, Rafael F.</au><au>Jiang, Yuxiang</au><au>Joseph, Thomas</au><au>Katsonis, Panagiotis</au><au>Kotte, Sujatha</au><au>Kundu, Kunal</au><au>Lichtarge, Olivier</au><au>Martelli, Pier Luigi</au><au>Mooney, Sean D.</au><au>Moult, John</au><au>Pal, Lipika R.</au><au>Poitras, Jennifer</au><au>Radivojac, Predrag</au><au>Rao, Aditya</au><au>Sivadasan, Naveen</au><au>Sunderam, Uma</au><au>Saipradeep, V. G.</au><au>Yin, Yizhou</au><au>Zaucha, Jan</au><au>Brenner, Steven E.</au><au>Meyn, M. Stephen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CAGI SickKids challenges: Assessment of phenotype and variant predictions derived from clinical and genomic data of children with undiagnosed diseases</atitle><jtitle>Human mutation</jtitle><addtitle>Hum Mutat</addtitle><date>2019-09</date><risdate>2019</risdate><volume>40</volume><issue>9</issue><spage>1373</spage><epage>1391</epage><pages>1373-1391</pages><issn>1059-7794</issn><eissn>1098-1004</eissn><abstract>Whole‐genome sequencing (WGS) holds great potential as a diagnostic test. However, the majority of patients currently undergoing WGS lack a molecular diagnosis, largely due to the vast number of undiscovered disease genes and our inability to assess the pathogenicity of most genomic variants. The CAGI SickKids challenges attempted to address this knowledge gap by assessing state‐of‐the‐art methods for clinical phenotype prediction from genomes. CAGI4 and CAGI5 participants were provided with WGS data and clinical descriptions of 25 and 24 undiagnosed patients from the SickKids Genome Clinic Project, respectively. Predictors were asked to identify primary and secondary causal variants. In addition, for CAGI5, groups had to match each genome to one of three disorder categories (neurologic, ophthalmologic, and connective), and separately to each patient. The performance of matching genomes to categories was no better than random but two groups performed significantly better than chance in matching genomes to patients. Two of the ten variants proposed by two groups in CAGI4 were deemed to be diagnostic, and several proposed pathogenic variants in CAGI5 are good candidates for phenotype expansion. We discuss implications for improving in silico assessment of genomic variants and identifying new disease genes.</abstract><cop>United States</cop><pub>Hindawi Limited</pub><pmid>31322791</pmid><doi>10.1002/humu.23874</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-6673-7740</orcidid><orcidid>https://orcid.org/0000-0002-3012-2282</orcidid><orcidid>https://orcid.org/0000-0002-4452-4290</orcidid><orcidid>https://orcid.org/0000-0002-8451-3609</orcidid><orcidid>https://orcid.org/0000-0003-4057-7122</orcidid><orcidid>https://orcid.org/0000-0001-6444-2607</orcidid><orcidid>https://orcid.org/0000-0002-7462-7039</orcidid><orcidid>https://orcid.org/0000-0002-6769-0793</orcidid><orcidid>https://orcid.org/0000-0003-4182-2396</orcidid><orcidid>https://orcid.org/0000-0002-5315-5693</orcidid><orcidid>https://orcid.org/0000-0002-7161-737X</orcidid><orcidid>https://orcid.org/0000-0003-3289-4590</orcidid><orcidid>https://orcid.org/0000-0003-2654-0833</orcidid><orcidid>https://orcid.org/0000-0002-3390-110X</orcidid><orcidid>https://orcid.org/0000-0002-6980-9831</orcidid><orcidid>https://orcid.org/0000-0002-0686-6767</orcidid><orcidid>https://orcid.org/0000-0001-7808-0301</orcidid><orcidid>https://orcid.org/0000-0002-0274-5669</orcidid><orcidid>https://orcid.org/0000-0001-7559-6185</orcidid><orcidid>https://orcid.org/0000-0002-1965-4982</orcidid><orcidid>https://orcid.org/0000-0002-9816-4737</orcidid><orcidid>https://orcid.org/0000-0002-7172-1644</orcidid><orcidid>https://orcid.org/0000-0001-8854-3410</orcidid><orcidid>https://orcid.org/0000-0003-4305-9494</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1059-7794 |
ispartof | Human mutation, 2019-09, Vol.40 (9), p.1373-1391 |
issn | 1059-7794 1098-1004 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7318886 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Adolescent CAGI Child Child, Preschool Computational Biology - methods Computer Simulation Databases, Genetic Female Genetic Predisposition to Disease Genetic Variation Genomes Genotype & phenotype Humans Male Pathogenicity pediatric rare disease Phenotype phenotype prediction Phenotypes SickKids Undiagnosed Diseases - diagnosis Undiagnosed Diseases - genetics variant interpretation Whole Genome Sequencing whole‐genome sequencing data |
title | CAGI SickKids challenges: Assessment of phenotype and variant predictions derived from clinical and genomic data of children with undiagnosed diseases |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T14%3A57%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CAGI%20SickKids%20challenges:%20Assessment%20of%20phenotype%20and%20variant%20predictions%20derived%20from%20clinical%20and%20genomic%20data%20of%20children%20with%20undiagnosed%20diseases&rft.jtitle=Human%20mutation&rft.au=Kasak,%20Laura&rft.date=2019-09&rft.volume=40&rft.issue=9&rft.spage=1373&rft.epage=1391&rft.pages=1373-1391&rft.issn=1059-7794&rft.eissn=1098-1004&rft_id=info:doi/10.1002/humu.23874&rft_dat=%3Cproquest_pubme%3E2289622437%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2289622437&rft_id=info:pmid/31322791&rfr_iscdi=true |