Chimeric Interaction of Nitrogenase‐Like Reductases with the MoFe Protein of Nitrogenase

The engineering of transgenic organisms with the ability to fix nitrogen is an attractive possibility. However, oxygen sensitivity of nitrogenase, mainly conferred by the reductase component (NifH)2, is an imminent problem. Nitrogenase‐like enzymes involved in coenzyme F430 and chlorophyll biosynthe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chembiochem : a European journal of chemical biology 2020-06, Vol.21 (12), p.1733-1741
Hauptverfasser: Jasper, Jan, Ramos, José V., Trncik, Christian, Jahn, Dieter, Einsle, Oliver, Layer, Gunhild, Moser, Jürgen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1741
container_issue 12
container_start_page 1733
container_title Chembiochem : a European journal of chemical biology
container_volume 21
creator Jasper, Jan
Ramos, José V.
Trncik, Christian
Jahn, Dieter
Einsle, Oliver
Layer, Gunhild
Moser, Jürgen
description The engineering of transgenic organisms with the ability to fix nitrogen is an attractive possibility. However, oxygen sensitivity of nitrogenase, mainly conferred by the reductase component (NifH)2, is an imminent problem. Nitrogenase‐like enzymes involved in coenzyme F430 and chlorophyll biosynthesis utilize the highly homologous reductases (CfbC)2 and (ChlL)2, respectively. Chimeric protein–protein interactions of these reductases with the catalytic component of nitrogenase (MoFe protein) did not support nitrogenase activity. Nucleotide‐dependent association and dissociation of these complexes was investigated, but (CfbC)2 and wild‐type (ChlL)2 showed no modulation of the binding affinity. By contrast, the interaction between the (ChlL)2 mutant Y127S and the MoFe protein was markedly increased in the presence of ATP (or ATP analogues) and reduced in the ADP state. Upon formation of the octameric (ChlL)2MoFe(ChlL)2 complex, the ATPase activity of this variant is triggered, as seen in the homologous nitrogenase system. Thus, the described reductase(s) might be an attractive tool for further elucidation of the diverse functions of (NifH)2 and the rational design of a more robust reductase. In a fix: The catalytic component of nitrogenase (MoFe) forms chimeric complexes with nitrogenase‐like reductases (CfbC)2 and (ChlL)2. Nucleotide‐dependent protein–protein interactions and the triggering of ATPase activity is investigated. The described reductases and related variants might be an attractive tool to further elucidate the diverse functions of nitrogenase reductase.
doi_str_mv 10.1002/cbic.201900759
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7317204</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2342354820</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5059-9017bb33c17deaef50b6d173c4a7ffe238a4e11bd93442a48e9bc420d6a880083</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi0Eoh9w5YgiceGyy_gjcXxBgoiWlZYWIbj0YjnOpOuSjYvttOqtP4HfyC_B1W4X6IWTLc8zj2b8EvKCwpwCsDe2dXbOgCoAWapHZJ8Krmay4vzx9i4Yk3vkIMYLAFAVp0_JHqeqrBlU--SsWbk1BmeLxZgwGJucHwvfFycuBX-Oo4n46_bn0n3H4gt2k035IRbXLq2KtMLikz_C4nPwCd3DtmfkSW-GiM-35yH5dvTha_Nxtjw9XjTvljNbQqlmCqhsW84tlR0a7Etoq45KboWRfY-M10YgpW2nuBDMiBpVawWDrjJ1DVDzQ_J2472c2jV2FscUzKAvg1ubcKO9cfrfyuhW-txfacmpZCCy4PVWEPyPCWPSaxctDoMZ0U9RMy4YL0X-sIy-eoBe-CmMeT3NBOV1WeaZMjXfUDb4GAP2u2Eo6LvY9F1sehdbbnj59wo7_D6nDKgNcO0GvPmPTjfvF80f-W_Bi6XV</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2413855880</pqid></control><display><type>article</type><title>Chimeric Interaction of Nitrogenase‐Like Reductases with the MoFe Protein of Nitrogenase</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Jasper, Jan ; Ramos, José V. ; Trncik, Christian ; Jahn, Dieter ; Einsle, Oliver ; Layer, Gunhild ; Moser, Jürgen</creator><creatorcontrib>Jasper, Jan ; Ramos, José V. ; Trncik, Christian ; Jahn, Dieter ; Einsle, Oliver ; Layer, Gunhild ; Moser, Jürgen</creatorcontrib><description>The engineering of transgenic organisms with the ability to fix nitrogen is an attractive possibility. However, oxygen sensitivity of nitrogenase, mainly conferred by the reductase component (NifH)2, is an imminent problem. Nitrogenase‐like enzymes involved in coenzyme F430 and chlorophyll biosynthesis utilize the highly homologous reductases (CfbC)2 and (ChlL)2, respectively. Chimeric protein–protein interactions of these reductases with the catalytic component of nitrogenase (MoFe protein) did not support nitrogenase activity. Nucleotide‐dependent association and dissociation of these complexes was investigated, but (CfbC)2 and wild‐type (ChlL)2 showed no modulation of the binding affinity. By contrast, the interaction between the (ChlL)2 mutant Y127S and the MoFe protein was markedly increased in the presence of ATP (or ATP analogues) and reduced in the ADP state. Upon formation of the octameric (ChlL)2MoFe(ChlL)2 complex, the ATPase activity of this variant is triggered, as seen in the homologous nitrogenase system. Thus, the described reductase(s) might be an attractive tool for further elucidation of the diverse functions of (NifH)2 and the rational design of a more robust reductase. In a fix: The catalytic component of nitrogenase (MoFe) forms chimeric complexes with nitrogenase‐like reductases (CfbC)2 and (ChlL)2. Nucleotide‐dependent protein–protein interactions and the triggering of ATPase activity is investigated. The described reductases and related variants might be an attractive tool to further elucidate the diverse functions of nitrogenase reductase.</description><identifier>ISSN: 1439-4227</identifier><identifier>EISSN: 1439-7633</identifier><identifier>DOI: 10.1002/cbic.201900759</identifier><identifier>PMID: 31958206</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Adenosine diphosphate ; Adenosine triphosphatase ; Adenosine triphosphate ; Biosynthesis ; Chlorophyll ; enzyme catalysis ; Genetically engineered organisms ; Homology ; metalloproteins ; Methanosarcina barkeri - enzymology ; MoFe protein ; Molecular Structure ; Molybdoferredoxin - chemistry ; Molybdoferredoxin - metabolism ; nitrogen fixation ; Nitrogenase ; Nitrogenase - chemistry ; Nitrogenase - metabolism ; nitrogenases ; Nucleotides ; Oxidoreductases - chemistry ; Oxidoreductases - metabolism ; Protein Binding ; Protein engineering ; Protein interaction ; Proteins ; protein–protein interactions ; Reductase ; Reductases</subject><ispartof>Chembiochem : a European journal of chemical biology, 2020-06, Vol.21 (12), p.1733-1741</ispartof><rights>2020 The Authors. Published by Wiley-VCH Verlag GmbH &amp; Co. KGaA.</rights><rights>2020. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5059-9017bb33c17deaef50b6d173c4a7ffe238a4e11bd93442a48e9bc420d6a880083</citedby><cites>FETCH-LOGICAL-c5059-9017bb33c17deaef50b6d173c4a7ffe238a4e11bd93442a48e9bc420d6a880083</cites><orcidid>0000-0003-3300-1993 ; 0000-0001-8722-2893 ; 0000-0002-4064-9205 ; 0000-0001-5927-1671 ; 0000-0001-9373-4967</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcbic.201900759$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcbic.201900759$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,778,782,883,1414,27907,27908,45557,45558</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31958206$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jasper, Jan</creatorcontrib><creatorcontrib>Ramos, José V.</creatorcontrib><creatorcontrib>Trncik, Christian</creatorcontrib><creatorcontrib>Jahn, Dieter</creatorcontrib><creatorcontrib>Einsle, Oliver</creatorcontrib><creatorcontrib>Layer, Gunhild</creatorcontrib><creatorcontrib>Moser, Jürgen</creatorcontrib><title>Chimeric Interaction of Nitrogenase‐Like Reductases with the MoFe Protein of Nitrogenase</title><title>Chembiochem : a European journal of chemical biology</title><addtitle>Chembiochem</addtitle><description>The engineering of transgenic organisms with the ability to fix nitrogen is an attractive possibility. However, oxygen sensitivity of nitrogenase, mainly conferred by the reductase component (NifH)2, is an imminent problem. Nitrogenase‐like enzymes involved in coenzyme F430 and chlorophyll biosynthesis utilize the highly homologous reductases (CfbC)2 and (ChlL)2, respectively. Chimeric protein–protein interactions of these reductases with the catalytic component of nitrogenase (MoFe protein) did not support nitrogenase activity. Nucleotide‐dependent association and dissociation of these complexes was investigated, but (CfbC)2 and wild‐type (ChlL)2 showed no modulation of the binding affinity. By contrast, the interaction between the (ChlL)2 mutant Y127S and the MoFe protein was markedly increased in the presence of ATP (or ATP analogues) and reduced in the ADP state. Upon formation of the octameric (ChlL)2MoFe(ChlL)2 complex, the ATPase activity of this variant is triggered, as seen in the homologous nitrogenase system. Thus, the described reductase(s) might be an attractive tool for further elucidation of the diverse functions of (NifH)2 and the rational design of a more robust reductase. In a fix: The catalytic component of nitrogenase (MoFe) forms chimeric complexes with nitrogenase‐like reductases (CfbC)2 and (ChlL)2. Nucleotide‐dependent protein–protein interactions and the triggering of ATPase activity is investigated. The described reductases and related variants might be an attractive tool to further elucidate the diverse functions of nitrogenase reductase.</description><subject>Adenosine diphosphate</subject><subject>Adenosine triphosphatase</subject><subject>Adenosine triphosphate</subject><subject>Biosynthesis</subject><subject>Chlorophyll</subject><subject>enzyme catalysis</subject><subject>Genetically engineered organisms</subject><subject>Homology</subject><subject>metalloproteins</subject><subject>Methanosarcina barkeri - enzymology</subject><subject>MoFe protein</subject><subject>Molecular Structure</subject><subject>Molybdoferredoxin - chemistry</subject><subject>Molybdoferredoxin - metabolism</subject><subject>nitrogen fixation</subject><subject>Nitrogenase</subject><subject>Nitrogenase - chemistry</subject><subject>Nitrogenase - metabolism</subject><subject>nitrogenases</subject><subject>Nucleotides</subject><subject>Oxidoreductases - chemistry</subject><subject>Oxidoreductases - metabolism</subject><subject>Protein Binding</subject><subject>Protein engineering</subject><subject>Protein interaction</subject><subject>Proteins</subject><subject>protein–protein interactions</subject><subject>Reductase</subject><subject>Reductases</subject><issn>1439-4227</issn><issn>1439-7633</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNqFkU1v1DAQhi0Eoh9w5YgiceGyy_gjcXxBgoiWlZYWIbj0YjnOpOuSjYvttOqtP4HfyC_B1W4X6IWTLc8zj2b8EvKCwpwCsDe2dXbOgCoAWapHZJ8Krmay4vzx9i4Yk3vkIMYLAFAVp0_JHqeqrBlU--SsWbk1BmeLxZgwGJucHwvfFycuBX-Oo4n46_bn0n3H4gt2k035IRbXLq2KtMLikz_C4nPwCd3DtmfkSW-GiM-35yH5dvTha_Nxtjw9XjTvljNbQqlmCqhsW84tlR0a7Etoq45KboWRfY-M10YgpW2nuBDMiBpVawWDrjJ1DVDzQ_J2472c2jV2FscUzKAvg1ubcKO9cfrfyuhW-txfacmpZCCy4PVWEPyPCWPSaxctDoMZ0U9RMy4YL0X-sIy-eoBe-CmMeT3NBOV1WeaZMjXfUDb4GAP2u2Eo6LvY9F1sehdbbnj59wo7_D6nDKgNcO0GvPmPTjfvF80f-W_Bi6XV</recordid><startdate>20200615</startdate><enddate>20200615</enddate><creator>Jasper, Jan</creator><creator>Ramos, José V.</creator><creator>Trncik, Christian</creator><creator>Jahn, Dieter</creator><creator>Einsle, Oliver</creator><creator>Layer, Gunhild</creator><creator>Moser, Jürgen</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3300-1993</orcidid><orcidid>https://orcid.org/0000-0001-8722-2893</orcidid><orcidid>https://orcid.org/0000-0002-4064-9205</orcidid><orcidid>https://orcid.org/0000-0001-5927-1671</orcidid><orcidid>https://orcid.org/0000-0001-9373-4967</orcidid></search><sort><creationdate>20200615</creationdate><title>Chimeric Interaction of Nitrogenase‐Like Reductases with the MoFe Protein of Nitrogenase</title><author>Jasper, Jan ; Ramos, José V. ; Trncik, Christian ; Jahn, Dieter ; Einsle, Oliver ; Layer, Gunhild ; Moser, Jürgen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5059-9017bb33c17deaef50b6d173c4a7ffe238a4e11bd93442a48e9bc420d6a880083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adenosine diphosphate</topic><topic>Adenosine triphosphatase</topic><topic>Adenosine triphosphate</topic><topic>Biosynthesis</topic><topic>Chlorophyll</topic><topic>enzyme catalysis</topic><topic>Genetically engineered organisms</topic><topic>Homology</topic><topic>metalloproteins</topic><topic>Methanosarcina barkeri - enzymology</topic><topic>MoFe protein</topic><topic>Molecular Structure</topic><topic>Molybdoferredoxin - chemistry</topic><topic>Molybdoferredoxin - metabolism</topic><topic>nitrogen fixation</topic><topic>Nitrogenase</topic><topic>Nitrogenase - chemistry</topic><topic>Nitrogenase - metabolism</topic><topic>nitrogenases</topic><topic>Nucleotides</topic><topic>Oxidoreductases - chemistry</topic><topic>Oxidoreductases - metabolism</topic><topic>Protein Binding</topic><topic>Protein engineering</topic><topic>Protein interaction</topic><topic>Proteins</topic><topic>protein–protein interactions</topic><topic>Reductase</topic><topic>Reductases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jasper, Jan</creatorcontrib><creatorcontrib>Ramos, José V.</creatorcontrib><creatorcontrib>Trncik, Christian</creatorcontrib><creatorcontrib>Jahn, Dieter</creatorcontrib><creatorcontrib>Einsle, Oliver</creatorcontrib><creatorcontrib>Layer, Gunhild</creatorcontrib><creatorcontrib>Moser, Jürgen</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chembiochem : a European journal of chemical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jasper, Jan</au><au>Ramos, José V.</au><au>Trncik, Christian</au><au>Jahn, Dieter</au><au>Einsle, Oliver</au><au>Layer, Gunhild</au><au>Moser, Jürgen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chimeric Interaction of Nitrogenase‐Like Reductases with the MoFe Protein of Nitrogenase</atitle><jtitle>Chembiochem : a European journal of chemical biology</jtitle><addtitle>Chembiochem</addtitle><date>2020-06-15</date><risdate>2020</risdate><volume>21</volume><issue>12</issue><spage>1733</spage><epage>1741</epage><pages>1733-1741</pages><issn>1439-4227</issn><eissn>1439-7633</eissn><abstract>The engineering of transgenic organisms with the ability to fix nitrogen is an attractive possibility. However, oxygen sensitivity of nitrogenase, mainly conferred by the reductase component (NifH)2, is an imminent problem. Nitrogenase‐like enzymes involved in coenzyme F430 and chlorophyll biosynthesis utilize the highly homologous reductases (CfbC)2 and (ChlL)2, respectively. Chimeric protein–protein interactions of these reductases with the catalytic component of nitrogenase (MoFe protein) did not support nitrogenase activity. Nucleotide‐dependent association and dissociation of these complexes was investigated, but (CfbC)2 and wild‐type (ChlL)2 showed no modulation of the binding affinity. By contrast, the interaction between the (ChlL)2 mutant Y127S and the MoFe protein was markedly increased in the presence of ATP (or ATP analogues) and reduced in the ADP state. Upon formation of the octameric (ChlL)2MoFe(ChlL)2 complex, the ATPase activity of this variant is triggered, as seen in the homologous nitrogenase system. Thus, the described reductase(s) might be an attractive tool for further elucidation of the diverse functions of (NifH)2 and the rational design of a more robust reductase. In a fix: The catalytic component of nitrogenase (MoFe) forms chimeric complexes with nitrogenase‐like reductases (CfbC)2 and (ChlL)2. Nucleotide‐dependent protein–protein interactions and the triggering of ATPase activity is investigated. The described reductases and related variants might be an attractive tool to further elucidate the diverse functions of nitrogenase reductase.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>31958206</pmid><doi>10.1002/cbic.201900759</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3300-1993</orcidid><orcidid>https://orcid.org/0000-0001-8722-2893</orcidid><orcidid>https://orcid.org/0000-0002-4064-9205</orcidid><orcidid>https://orcid.org/0000-0001-5927-1671</orcidid><orcidid>https://orcid.org/0000-0001-9373-4967</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1439-4227
ispartof Chembiochem : a European journal of chemical biology, 2020-06, Vol.21 (12), p.1733-1741
issn 1439-4227
1439-7633
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7317204
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Adenosine diphosphate
Adenosine triphosphatase
Adenosine triphosphate
Biosynthesis
Chlorophyll
enzyme catalysis
Genetically engineered organisms
Homology
metalloproteins
Methanosarcina barkeri - enzymology
MoFe protein
Molecular Structure
Molybdoferredoxin - chemistry
Molybdoferredoxin - metabolism
nitrogen fixation
Nitrogenase
Nitrogenase - chemistry
Nitrogenase - metabolism
nitrogenases
Nucleotides
Oxidoreductases - chemistry
Oxidoreductases - metabolism
Protein Binding
Protein engineering
Protein interaction
Proteins
protein–protein interactions
Reductase
Reductases
title Chimeric Interaction of Nitrogenase‐Like Reductases with the MoFe Protein of Nitrogenase
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T08%3A34%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chimeric%20Interaction%20of%20Nitrogenase%E2%80%90Like%20Reductases%20with%20the%20MoFe%20Protein%20of%20Nitrogenase&rft.jtitle=Chembiochem%20:%20a%20European%20journal%20of%20chemical%20biology&rft.au=Jasper,%20Jan&rft.date=2020-06-15&rft.volume=21&rft.issue=12&rft.spage=1733&rft.epage=1741&rft.pages=1733-1741&rft.issn=1439-4227&rft.eissn=1439-7633&rft_id=info:doi/10.1002/cbic.201900759&rft_dat=%3Cproquest_pubme%3E2342354820%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2413855880&rft_id=info:pmid/31958206&rfr_iscdi=true