Chimeric Interaction of Nitrogenase‐Like Reductases with the MoFe Protein of Nitrogenase
The engineering of transgenic organisms with the ability to fix nitrogen is an attractive possibility. However, oxygen sensitivity of nitrogenase, mainly conferred by the reductase component (NifH)2, is an imminent problem. Nitrogenase‐like enzymes involved in coenzyme F430 and chlorophyll biosynthe...
Gespeichert in:
Veröffentlicht in: | Chembiochem : a European journal of chemical biology 2020-06, Vol.21 (12), p.1733-1741 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1741 |
---|---|
container_issue | 12 |
container_start_page | 1733 |
container_title | Chembiochem : a European journal of chemical biology |
container_volume | 21 |
creator | Jasper, Jan Ramos, José V. Trncik, Christian Jahn, Dieter Einsle, Oliver Layer, Gunhild Moser, Jürgen |
description | The engineering of transgenic organisms with the ability to fix nitrogen is an attractive possibility. However, oxygen sensitivity of nitrogenase, mainly conferred by the reductase component (NifH)2, is an imminent problem. Nitrogenase‐like enzymes involved in coenzyme F430 and chlorophyll biosynthesis utilize the highly homologous reductases (CfbC)2 and (ChlL)2, respectively. Chimeric protein–protein interactions of these reductases with the catalytic component of nitrogenase (MoFe protein) did not support nitrogenase activity. Nucleotide‐dependent association and dissociation of these complexes was investigated, but (CfbC)2 and wild‐type (ChlL)2 showed no modulation of the binding affinity. By contrast, the interaction between the (ChlL)2 mutant Y127S and the MoFe protein was markedly increased in the presence of ATP (or ATP analogues) and reduced in the ADP state. Upon formation of the octameric (ChlL)2MoFe(ChlL)2 complex, the ATPase activity of this variant is triggered, as seen in the homologous nitrogenase system. Thus, the described reductase(s) might be an attractive tool for further elucidation of the diverse functions of (NifH)2 and the rational design of a more robust reductase.
In a fix: The catalytic component of nitrogenase (MoFe) forms chimeric complexes with nitrogenase‐like reductases (CfbC)2 and (ChlL)2. Nucleotide‐dependent protein–protein interactions and the triggering of ATPase activity is investigated. The described reductases and related variants might be an attractive tool to further elucidate the diverse functions of nitrogenase reductase. |
doi_str_mv | 10.1002/cbic.201900759 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7317204</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2342354820</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5059-9017bb33c17deaef50b6d173c4a7ffe238a4e11bd93442a48e9bc420d6a880083</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi0Eoh9w5YgiceGyy_gjcXxBgoiWlZYWIbj0YjnOpOuSjYvttOqtP4HfyC_B1W4X6IWTLc8zj2b8EvKCwpwCsDe2dXbOgCoAWapHZJ8Krmay4vzx9i4Yk3vkIMYLAFAVp0_JHqeqrBlU--SsWbk1BmeLxZgwGJucHwvfFycuBX-Oo4n46_bn0n3H4gt2k035IRbXLq2KtMLikz_C4nPwCd3DtmfkSW-GiM-35yH5dvTha_Nxtjw9XjTvljNbQqlmCqhsW84tlR0a7Etoq45KboWRfY-M10YgpW2nuBDMiBpVawWDrjJ1DVDzQ_J2472c2jV2FscUzKAvg1ubcKO9cfrfyuhW-txfacmpZCCy4PVWEPyPCWPSaxctDoMZ0U9RMy4YL0X-sIy-eoBe-CmMeT3NBOV1WeaZMjXfUDb4GAP2u2Eo6LvY9F1sehdbbnj59wo7_D6nDKgNcO0GvPmPTjfvF80f-W_Bi6XV</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2413855880</pqid></control><display><type>article</type><title>Chimeric Interaction of Nitrogenase‐Like Reductases with the MoFe Protein of Nitrogenase</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Jasper, Jan ; Ramos, José V. ; Trncik, Christian ; Jahn, Dieter ; Einsle, Oliver ; Layer, Gunhild ; Moser, Jürgen</creator><creatorcontrib>Jasper, Jan ; Ramos, José V. ; Trncik, Christian ; Jahn, Dieter ; Einsle, Oliver ; Layer, Gunhild ; Moser, Jürgen</creatorcontrib><description>The engineering of transgenic organisms with the ability to fix nitrogen is an attractive possibility. However, oxygen sensitivity of nitrogenase, mainly conferred by the reductase component (NifH)2, is an imminent problem. Nitrogenase‐like enzymes involved in coenzyme F430 and chlorophyll biosynthesis utilize the highly homologous reductases (CfbC)2 and (ChlL)2, respectively. Chimeric protein–protein interactions of these reductases with the catalytic component of nitrogenase (MoFe protein) did not support nitrogenase activity. Nucleotide‐dependent association and dissociation of these complexes was investigated, but (CfbC)2 and wild‐type (ChlL)2 showed no modulation of the binding affinity. By contrast, the interaction between the (ChlL)2 mutant Y127S and the MoFe protein was markedly increased in the presence of ATP (or ATP analogues) and reduced in the ADP state. Upon formation of the octameric (ChlL)2MoFe(ChlL)2 complex, the ATPase activity of this variant is triggered, as seen in the homologous nitrogenase system. Thus, the described reductase(s) might be an attractive tool for further elucidation of the diverse functions of (NifH)2 and the rational design of a more robust reductase.
In a fix: The catalytic component of nitrogenase (MoFe) forms chimeric complexes with nitrogenase‐like reductases (CfbC)2 and (ChlL)2. Nucleotide‐dependent protein–protein interactions and the triggering of ATPase activity is investigated. The described reductases and related variants might be an attractive tool to further elucidate the diverse functions of nitrogenase reductase.</description><identifier>ISSN: 1439-4227</identifier><identifier>EISSN: 1439-7633</identifier><identifier>DOI: 10.1002/cbic.201900759</identifier><identifier>PMID: 31958206</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Adenosine diphosphate ; Adenosine triphosphatase ; Adenosine triphosphate ; Biosynthesis ; Chlorophyll ; enzyme catalysis ; Genetically engineered organisms ; Homology ; metalloproteins ; Methanosarcina barkeri - enzymology ; MoFe protein ; Molecular Structure ; Molybdoferredoxin - chemistry ; Molybdoferredoxin - metabolism ; nitrogen fixation ; Nitrogenase ; Nitrogenase - chemistry ; Nitrogenase - metabolism ; nitrogenases ; Nucleotides ; Oxidoreductases - chemistry ; Oxidoreductases - metabolism ; Protein Binding ; Protein engineering ; Protein interaction ; Proteins ; protein–protein interactions ; Reductase ; Reductases</subject><ispartof>Chembiochem : a European journal of chemical biology, 2020-06, Vol.21 (12), p.1733-1741</ispartof><rights>2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.</rights><rights>2020. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5059-9017bb33c17deaef50b6d173c4a7ffe238a4e11bd93442a48e9bc420d6a880083</citedby><cites>FETCH-LOGICAL-c5059-9017bb33c17deaef50b6d173c4a7ffe238a4e11bd93442a48e9bc420d6a880083</cites><orcidid>0000-0003-3300-1993 ; 0000-0001-8722-2893 ; 0000-0002-4064-9205 ; 0000-0001-5927-1671 ; 0000-0001-9373-4967</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcbic.201900759$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcbic.201900759$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,778,782,883,1414,27907,27908,45557,45558</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31958206$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jasper, Jan</creatorcontrib><creatorcontrib>Ramos, José V.</creatorcontrib><creatorcontrib>Trncik, Christian</creatorcontrib><creatorcontrib>Jahn, Dieter</creatorcontrib><creatorcontrib>Einsle, Oliver</creatorcontrib><creatorcontrib>Layer, Gunhild</creatorcontrib><creatorcontrib>Moser, Jürgen</creatorcontrib><title>Chimeric Interaction of Nitrogenase‐Like Reductases with the MoFe Protein of Nitrogenase</title><title>Chembiochem : a European journal of chemical biology</title><addtitle>Chembiochem</addtitle><description>The engineering of transgenic organisms with the ability to fix nitrogen is an attractive possibility. However, oxygen sensitivity of nitrogenase, mainly conferred by the reductase component (NifH)2, is an imminent problem. Nitrogenase‐like enzymes involved in coenzyme F430 and chlorophyll biosynthesis utilize the highly homologous reductases (CfbC)2 and (ChlL)2, respectively. Chimeric protein–protein interactions of these reductases with the catalytic component of nitrogenase (MoFe protein) did not support nitrogenase activity. Nucleotide‐dependent association and dissociation of these complexes was investigated, but (CfbC)2 and wild‐type (ChlL)2 showed no modulation of the binding affinity. By contrast, the interaction between the (ChlL)2 mutant Y127S and the MoFe protein was markedly increased in the presence of ATP (or ATP analogues) and reduced in the ADP state. Upon formation of the octameric (ChlL)2MoFe(ChlL)2 complex, the ATPase activity of this variant is triggered, as seen in the homologous nitrogenase system. Thus, the described reductase(s) might be an attractive tool for further elucidation of the diverse functions of (NifH)2 and the rational design of a more robust reductase.
In a fix: The catalytic component of nitrogenase (MoFe) forms chimeric complexes with nitrogenase‐like reductases (CfbC)2 and (ChlL)2. Nucleotide‐dependent protein–protein interactions and the triggering of ATPase activity is investigated. The described reductases and related variants might be an attractive tool to further elucidate the diverse functions of nitrogenase reductase.</description><subject>Adenosine diphosphate</subject><subject>Adenosine triphosphatase</subject><subject>Adenosine triphosphate</subject><subject>Biosynthesis</subject><subject>Chlorophyll</subject><subject>enzyme catalysis</subject><subject>Genetically engineered organisms</subject><subject>Homology</subject><subject>metalloproteins</subject><subject>Methanosarcina barkeri - enzymology</subject><subject>MoFe protein</subject><subject>Molecular Structure</subject><subject>Molybdoferredoxin - chemistry</subject><subject>Molybdoferredoxin - metabolism</subject><subject>nitrogen fixation</subject><subject>Nitrogenase</subject><subject>Nitrogenase - chemistry</subject><subject>Nitrogenase - metabolism</subject><subject>nitrogenases</subject><subject>Nucleotides</subject><subject>Oxidoreductases - chemistry</subject><subject>Oxidoreductases - metabolism</subject><subject>Protein Binding</subject><subject>Protein engineering</subject><subject>Protein interaction</subject><subject>Proteins</subject><subject>protein–protein interactions</subject><subject>Reductase</subject><subject>Reductases</subject><issn>1439-4227</issn><issn>1439-7633</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNqFkU1v1DAQhi0Eoh9w5YgiceGyy_gjcXxBgoiWlZYWIbj0YjnOpOuSjYvttOqtP4HfyC_B1W4X6IWTLc8zj2b8EvKCwpwCsDe2dXbOgCoAWapHZJ8Krmay4vzx9i4Yk3vkIMYLAFAVp0_JHqeqrBlU--SsWbk1BmeLxZgwGJucHwvfFycuBX-Oo4n46_bn0n3H4gt2k035IRbXLq2KtMLikz_C4nPwCd3DtmfkSW-GiM-35yH5dvTha_Nxtjw9XjTvljNbQqlmCqhsW84tlR0a7Etoq45KboWRfY-M10YgpW2nuBDMiBpVawWDrjJ1DVDzQ_J2472c2jV2FscUzKAvg1ubcKO9cfrfyuhW-txfacmpZCCy4PVWEPyPCWPSaxctDoMZ0U9RMy4YL0X-sIy-eoBe-CmMeT3NBOV1WeaZMjXfUDb4GAP2u2Eo6LvY9F1sehdbbnj59wo7_D6nDKgNcO0GvPmPTjfvF80f-W_Bi6XV</recordid><startdate>20200615</startdate><enddate>20200615</enddate><creator>Jasper, Jan</creator><creator>Ramos, José V.</creator><creator>Trncik, Christian</creator><creator>Jahn, Dieter</creator><creator>Einsle, Oliver</creator><creator>Layer, Gunhild</creator><creator>Moser, Jürgen</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3300-1993</orcidid><orcidid>https://orcid.org/0000-0001-8722-2893</orcidid><orcidid>https://orcid.org/0000-0002-4064-9205</orcidid><orcidid>https://orcid.org/0000-0001-5927-1671</orcidid><orcidid>https://orcid.org/0000-0001-9373-4967</orcidid></search><sort><creationdate>20200615</creationdate><title>Chimeric Interaction of Nitrogenase‐Like Reductases with the MoFe Protein of Nitrogenase</title><author>Jasper, Jan ; Ramos, José V. ; Trncik, Christian ; Jahn, Dieter ; Einsle, Oliver ; Layer, Gunhild ; Moser, Jürgen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5059-9017bb33c17deaef50b6d173c4a7ffe238a4e11bd93442a48e9bc420d6a880083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adenosine diphosphate</topic><topic>Adenosine triphosphatase</topic><topic>Adenosine triphosphate</topic><topic>Biosynthesis</topic><topic>Chlorophyll</topic><topic>enzyme catalysis</topic><topic>Genetically engineered organisms</topic><topic>Homology</topic><topic>metalloproteins</topic><topic>Methanosarcina barkeri - enzymology</topic><topic>MoFe protein</topic><topic>Molecular Structure</topic><topic>Molybdoferredoxin - chemistry</topic><topic>Molybdoferredoxin - metabolism</topic><topic>nitrogen fixation</topic><topic>Nitrogenase</topic><topic>Nitrogenase - chemistry</topic><topic>Nitrogenase - metabolism</topic><topic>nitrogenases</topic><topic>Nucleotides</topic><topic>Oxidoreductases - chemistry</topic><topic>Oxidoreductases - metabolism</topic><topic>Protein Binding</topic><topic>Protein engineering</topic><topic>Protein interaction</topic><topic>Proteins</topic><topic>protein–protein interactions</topic><topic>Reductase</topic><topic>Reductases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jasper, Jan</creatorcontrib><creatorcontrib>Ramos, José V.</creatorcontrib><creatorcontrib>Trncik, Christian</creatorcontrib><creatorcontrib>Jahn, Dieter</creatorcontrib><creatorcontrib>Einsle, Oliver</creatorcontrib><creatorcontrib>Layer, Gunhild</creatorcontrib><creatorcontrib>Moser, Jürgen</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chembiochem : a European journal of chemical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jasper, Jan</au><au>Ramos, José V.</au><au>Trncik, Christian</au><au>Jahn, Dieter</au><au>Einsle, Oliver</au><au>Layer, Gunhild</au><au>Moser, Jürgen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chimeric Interaction of Nitrogenase‐Like Reductases with the MoFe Protein of Nitrogenase</atitle><jtitle>Chembiochem : a European journal of chemical biology</jtitle><addtitle>Chembiochem</addtitle><date>2020-06-15</date><risdate>2020</risdate><volume>21</volume><issue>12</issue><spage>1733</spage><epage>1741</epage><pages>1733-1741</pages><issn>1439-4227</issn><eissn>1439-7633</eissn><abstract>The engineering of transgenic organisms with the ability to fix nitrogen is an attractive possibility. However, oxygen sensitivity of nitrogenase, mainly conferred by the reductase component (NifH)2, is an imminent problem. Nitrogenase‐like enzymes involved in coenzyme F430 and chlorophyll biosynthesis utilize the highly homologous reductases (CfbC)2 and (ChlL)2, respectively. Chimeric protein–protein interactions of these reductases with the catalytic component of nitrogenase (MoFe protein) did not support nitrogenase activity. Nucleotide‐dependent association and dissociation of these complexes was investigated, but (CfbC)2 and wild‐type (ChlL)2 showed no modulation of the binding affinity. By contrast, the interaction between the (ChlL)2 mutant Y127S and the MoFe protein was markedly increased in the presence of ATP (or ATP analogues) and reduced in the ADP state. Upon formation of the octameric (ChlL)2MoFe(ChlL)2 complex, the ATPase activity of this variant is triggered, as seen in the homologous nitrogenase system. Thus, the described reductase(s) might be an attractive tool for further elucidation of the diverse functions of (NifH)2 and the rational design of a more robust reductase.
In a fix: The catalytic component of nitrogenase (MoFe) forms chimeric complexes with nitrogenase‐like reductases (CfbC)2 and (ChlL)2. Nucleotide‐dependent protein–protein interactions and the triggering of ATPase activity is investigated. The described reductases and related variants might be an attractive tool to further elucidate the diverse functions of nitrogenase reductase.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>31958206</pmid><doi>10.1002/cbic.201900759</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3300-1993</orcidid><orcidid>https://orcid.org/0000-0001-8722-2893</orcidid><orcidid>https://orcid.org/0000-0002-4064-9205</orcidid><orcidid>https://orcid.org/0000-0001-5927-1671</orcidid><orcidid>https://orcid.org/0000-0001-9373-4967</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1439-4227 |
ispartof | Chembiochem : a European journal of chemical biology, 2020-06, Vol.21 (12), p.1733-1741 |
issn | 1439-4227 1439-7633 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7317204 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Adenosine diphosphate Adenosine triphosphatase Adenosine triphosphate Biosynthesis Chlorophyll enzyme catalysis Genetically engineered organisms Homology metalloproteins Methanosarcina barkeri - enzymology MoFe protein Molecular Structure Molybdoferredoxin - chemistry Molybdoferredoxin - metabolism nitrogen fixation Nitrogenase Nitrogenase - chemistry Nitrogenase - metabolism nitrogenases Nucleotides Oxidoreductases - chemistry Oxidoreductases - metabolism Protein Binding Protein engineering Protein interaction Proteins protein–protein interactions Reductase Reductases |
title | Chimeric Interaction of Nitrogenase‐Like Reductases with the MoFe Protein of Nitrogenase |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T08%3A34%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chimeric%20Interaction%20of%20Nitrogenase%E2%80%90Like%20Reductases%20with%20the%20MoFe%20Protein%20of%20Nitrogenase&rft.jtitle=Chembiochem%20:%20a%20European%20journal%20of%20chemical%20biology&rft.au=Jasper,%20Jan&rft.date=2020-06-15&rft.volume=21&rft.issue=12&rft.spage=1733&rft.epage=1741&rft.pages=1733-1741&rft.issn=1439-4227&rft.eissn=1439-7633&rft_id=info:doi/10.1002/cbic.201900759&rft_dat=%3Cproquest_pubme%3E2342354820%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2413855880&rft_id=info:pmid/31958206&rfr_iscdi=true |