The Oldest Highlands of Mars May Be Massive Dust Fallout Deposits
The oldest terrains of Mars are cratered landscapes, in which extensive valleys and basins are covered by ubiquitous fluvial plains. One current paradigm maintains that an impact-generated megaregolith underlies these sediments. This megaregolith was likely largely generated during the Early Noachia...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2020-06, Vol.10 (1), p.10347-10347, Article 10347 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10347 |
---|---|
container_issue | 1 |
container_start_page | 10347 |
container_title | Scientific reports |
container_volume | 10 |
creator | Rodriguez, J. Alexis P. Dobrea, Eldar Noe Kargel, Jeffrey S. Baker, V. R. Crown, David A. Webster, Kevin D. Berman, Daniel C. Wilhelm, Mary Beth Buckner, Denise |
description | The oldest terrains of Mars are cratered landscapes, in which extensive valleys and basins are covered by ubiquitous fluvial plains. One current paradigm maintains that an impact-generated megaregolith underlies these sediments. This megaregolith was likely largely generated during the Early Noachian (~4.1 to ~3.94 Ga) when most Martian impact basins formed. We examined the geologic records of NW Hellas and NW Isidis, which include this epoch’s most extensive circum-basin outcrops. Here, we show that these regions include widespread, wind-eroded landscapes, crater rims eroded down by several hundred meters, pitted plains, and inverted fluvial and crater landforms. These surfaces exhibit few fresh craters, indicating geologically recent wind erosion. The deep erosion, topographic inversions, and an absence of dunes on or near talus across these regions suggest that sediments finer than sand compose most of these highland materials. We propose that basin-impact-generated hurricane-force winds created sediment-laden atmospheric conditions, and that muddy rains rapidly settled suspended sediments to construct extensive Early Noachian highlands. The implied high abundance of fine-grained sediments before these impacts suggests large-scale glacial silt production and supports the previously proposed Noachian “icy highlands” hypothesis. We suggest that subglacial meltwater interactions with the sedimentary highlands could have promoted habitability, particularly in clay strata. |
doi_str_mv | 10.1038/s41598-020-64676-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7316829</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2418124683</sourcerecordid><originalsourceid>FETCH-LOGICAL-c490t-ffc51637c1641d927ff2694b9f60ecc83652b235af925b21be4537036e917d3</originalsourceid><addsrcrecordid>eNp9kUtLAzEUhYMoVrR_wNWAGzejyc1rshFqtVZQXNh9mEfSTplOajIj6K83tcXXwixyA_nO4R4OQqcEXxBMs8vACFdZigGnggkp0vc9dASY8RQowP6P9wANQ1jieDgoRtQhGlDgmaSYHKHRbGGSp6YyoUum9XzR5G0VEmeTx9yHeL0l1yaOEOpXk9z0kZrkTeP6LrkxaxfqLpygA5s3wQx38xg9T25n42n68HR3Px49pCVTuEutLTkRVJZEMFIpkNaCUKxQVmBTlhkVHAqgPLcKeAGkMIxTiakwisiKHqOrreu6L1amKk3b-bzRa1-vcv-mXV7r3z9tvdBz96olJSIDFQ3OdwbevfQxrl7VoTRNDGxcHzQwkhFgIqMRPfuDLl3v2xhuQ0kiJGcsUrClSu9C8MZ-LUOw3lSktxXpWJH-rEi_RxHdikKE27nx39b_qD4A-4mRQg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2417167544</pqid></control><display><type>article</type><title>The Oldest Highlands of Mars May Be Massive Dust Fallout Deposits</title><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Rodriguez, J. Alexis P. ; Dobrea, Eldar Noe ; Kargel, Jeffrey S. ; Baker, V. R. ; Crown, David A. ; Webster, Kevin D. ; Berman, Daniel C. ; Wilhelm, Mary Beth ; Buckner, Denise</creator><creatorcontrib>Rodriguez, J. Alexis P. ; Dobrea, Eldar Noe ; Kargel, Jeffrey S. ; Baker, V. R. ; Crown, David A. ; Webster, Kevin D. ; Berman, Daniel C. ; Wilhelm, Mary Beth ; Buckner, Denise</creatorcontrib><description>The oldest terrains of Mars are cratered landscapes, in which extensive valleys and basins are covered by ubiquitous fluvial plains. One current paradigm maintains that an impact-generated megaregolith underlies these sediments. This megaregolith was likely largely generated during the Early Noachian (~4.1 to ~3.94 Ga) when most Martian impact basins formed. We examined the geologic records of NW Hellas and NW Isidis, which include this epoch’s most extensive circum-basin outcrops. Here, we show that these regions include widespread, wind-eroded landscapes, crater rims eroded down by several hundred meters, pitted plains, and inverted fluvial and crater landforms. These surfaces exhibit few fresh craters, indicating geologically recent wind erosion. The deep erosion, topographic inversions, and an absence of dunes on or near talus across these regions suggest that sediments finer than sand compose most of these highland materials. We propose that basin-impact-generated hurricane-force winds created sediment-laden atmospheric conditions, and that muddy rains rapidly settled suspended sediments to construct extensive Early Noachian highlands. The implied high abundance of fine-grained sediments before these impacts suggests large-scale glacial silt production and supports the previously proposed Noachian “icy highlands” hypothesis. We suggest that subglacial meltwater interactions with the sedimentary highlands could have promoted habitability, particularly in clay strata.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-64676-z</identifier><identifier>PMID: 32587301</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/33 ; 639/33/445/215 ; Atmospheric conditions ; Fallout ; Humanities and Social Sciences ; Hurricanes ; Landforms ; Mars ; Meltwater ; multidisciplinary ; Science ; Science (multidisciplinary) ; Sediments ; Suspended sediments ; Wind erosion</subject><ispartof>Scientific reports, 2020-06, Vol.10 (1), p.10347-10347, Article 10347</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c490t-ffc51637c1641d927ff2694b9f60ecc83652b235af925b21be4537036e917d3</citedby><cites>FETCH-LOGICAL-c490t-ffc51637c1641d927ff2694b9f60ecc83652b235af925b21be4537036e917d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7316829/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7316829/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,27905,27906,41101,42170,51557,53772,53774</link.rule.ids></links><search><creatorcontrib>Rodriguez, J. Alexis P.</creatorcontrib><creatorcontrib>Dobrea, Eldar Noe</creatorcontrib><creatorcontrib>Kargel, Jeffrey S.</creatorcontrib><creatorcontrib>Baker, V. R.</creatorcontrib><creatorcontrib>Crown, David A.</creatorcontrib><creatorcontrib>Webster, Kevin D.</creatorcontrib><creatorcontrib>Berman, Daniel C.</creatorcontrib><creatorcontrib>Wilhelm, Mary Beth</creatorcontrib><creatorcontrib>Buckner, Denise</creatorcontrib><title>The Oldest Highlands of Mars May Be Massive Dust Fallout Deposits</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><description>The oldest terrains of Mars are cratered landscapes, in which extensive valleys and basins are covered by ubiquitous fluvial plains. One current paradigm maintains that an impact-generated megaregolith underlies these sediments. This megaregolith was likely largely generated during the Early Noachian (~4.1 to ~3.94 Ga) when most Martian impact basins formed. We examined the geologic records of NW Hellas and NW Isidis, which include this epoch’s most extensive circum-basin outcrops. Here, we show that these regions include widespread, wind-eroded landscapes, crater rims eroded down by several hundred meters, pitted plains, and inverted fluvial and crater landforms. These surfaces exhibit few fresh craters, indicating geologically recent wind erosion. The deep erosion, topographic inversions, and an absence of dunes on or near talus across these regions suggest that sediments finer than sand compose most of these highland materials. We propose that basin-impact-generated hurricane-force winds created sediment-laden atmospheric conditions, and that muddy rains rapidly settled suspended sediments to construct extensive Early Noachian highlands. The implied high abundance of fine-grained sediments before these impacts suggests large-scale glacial silt production and supports the previously proposed Noachian “icy highlands” hypothesis. We suggest that subglacial meltwater interactions with the sedimentary highlands could have promoted habitability, particularly in clay strata.</description><subject>639/33</subject><subject>639/33/445/215</subject><subject>Atmospheric conditions</subject><subject>Fallout</subject><subject>Humanities and Social Sciences</subject><subject>Hurricanes</subject><subject>Landforms</subject><subject>Mars</subject><subject>Meltwater</subject><subject>multidisciplinary</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Sediments</subject><subject>Suspended sediments</subject><subject>Wind erosion</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kUtLAzEUhYMoVrR_wNWAGzejyc1rshFqtVZQXNh9mEfSTplOajIj6K83tcXXwixyA_nO4R4OQqcEXxBMs8vACFdZigGnggkp0vc9dASY8RQowP6P9wANQ1jieDgoRtQhGlDgmaSYHKHRbGGSp6YyoUum9XzR5G0VEmeTx9yHeL0l1yaOEOpXk9z0kZrkTeP6LrkxaxfqLpygA5s3wQx38xg9T25n42n68HR3Px49pCVTuEutLTkRVJZEMFIpkNaCUKxQVmBTlhkVHAqgPLcKeAGkMIxTiakwisiKHqOrreu6L1amKk3b-bzRa1-vcv-mXV7r3z9tvdBz96olJSIDFQ3OdwbevfQxrl7VoTRNDGxcHzQwkhFgIqMRPfuDLl3v2xhuQ0kiJGcsUrClSu9C8MZ-LUOw3lSktxXpWJH-rEi_RxHdikKE27nx39b_qD4A-4mRQg</recordid><startdate>20200625</startdate><enddate>20200625</enddate><creator>Rodriguez, J. Alexis P.</creator><creator>Dobrea, Eldar Noe</creator><creator>Kargel, Jeffrey S.</creator><creator>Baker, V. R.</creator><creator>Crown, David A.</creator><creator>Webster, Kevin D.</creator><creator>Berman, Daniel C.</creator><creator>Wilhelm, Mary Beth</creator><creator>Buckner, Denise</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20200625</creationdate><title>The Oldest Highlands of Mars May Be Massive Dust Fallout Deposits</title><author>Rodriguez, J. Alexis P. ; Dobrea, Eldar Noe ; Kargel, Jeffrey S. ; Baker, V. R. ; Crown, David A. ; Webster, Kevin D. ; Berman, Daniel C. ; Wilhelm, Mary Beth ; Buckner, Denise</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c490t-ffc51637c1641d927ff2694b9f60ecc83652b235af925b21be4537036e917d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/33</topic><topic>639/33/445/215</topic><topic>Atmospheric conditions</topic><topic>Fallout</topic><topic>Humanities and Social Sciences</topic><topic>Hurricanes</topic><topic>Landforms</topic><topic>Mars</topic><topic>Meltwater</topic><topic>multidisciplinary</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Sediments</topic><topic>Suspended sediments</topic><topic>Wind erosion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rodriguez, J. Alexis P.</creatorcontrib><creatorcontrib>Dobrea, Eldar Noe</creatorcontrib><creatorcontrib>Kargel, Jeffrey S.</creatorcontrib><creatorcontrib>Baker, V. R.</creatorcontrib><creatorcontrib>Crown, David A.</creatorcontrib><creatorcontrib>Webster, Kevin D.</creatorcontrib><creatorcontrib>Berman, Daniel C.</creatorcontrib><creatorcontrib>Wilhelm, Mary Beth</creatorcontrib><creatorcontrib>Buckner, Denise</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rodriguez, J. Alexis P.</au><au>Dobrea, Eldar Noe</au><au>Kargel, Jeffrey S.</au><au>Baker, V. R.</au><au>Crown, David A.</au><au>Webster, Kevin D.</au><au>Berman, Daniel C.</au><au>Wilhelm, Mary Beth</au><au>Buckner, Denise</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Oldest Highlands of Mars May Be Massive Dust Fallout Deposits</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><date>2020-06-25</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>10347</spage><epage>10347</epage><pages>10347-10347</pages><artnum>10347</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>The oldest terrains of Mars are cratered landscapes, in which extensive valleys and basins are covered by ubiquitous fluvial plains. One current paradigm maintains that an impact-generated megaregolith underlies these sediments. This megaregolith was likely largely generated during the Early Noachian (~4.1 to ~3.94 Ga) when most Martian impact basins formed. We examined the geologic records of NW Hellas and NW Isidis, which include this epoch’s most extensive circum-basin outcrops. Here, we show that these regions include widespread, wind-eroded landscapes, crater rims eroded down by several hundred meters, pitted plains, and inverted fluvial and crater landforms. These surfaces exhibit few fresh craters, indicating geologically recent wind erosion. The deep erosion, topographic inversions, and an absence of dunes on or near talus across these regions suggest that sediments finer than sand compose most of these highland materials. We propose that basin-impact-generated hurricane-force winds created sediment-laden atmospheric conditions, and that muddy rains rapidly settled suspended sediments to construct extensive Early Noachian highlands. The implied high abundance of fine-grained sediments before these impacts suggests large-scale glacial silt production and supports the previously proposed Noachian “icy highlands” hypothesis. We suggest that subglacial meltwater interactions with the sedimentary highlands could have promoted habitability, particularly in clay strata.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32587301</pmid><doi>10.1038/s41598-020-64676-z</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2020-06, Vol.10 (1), p.10347-10347, Article 10347 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7316829 |
source | DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | 639/33 639/33/445/215 Atmospheric conditions Fallout Humanities and Social Sciences Hurricanes Landforms Mars Meltwater multidisciplinary Science Science (multidisciplinary) Sediments Suspended sediments Wind erosion |
title | The Oldest Highlands of Mars May Be Massive Dust Fallout Deposits |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T23%3A07%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Oldest%20Highlands%20of%20Mars%20May%20Be%20Massive%20Dust%20Fallout%20Deposits&rft.jtitle=Scientific%20reports&rft.au=Rodriguez,%20J.%20Alexis%20P.&rft.date=2020-06-25&rft.volume=10&rft.issue=1&rft.spage=10347&rft.epage=10347&rft.pages=10347-10347&rft.artnum=10347&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-64676-z&rft_dat=%3Cproquest_pubme%3E2418124683%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2417167544&rft_id=info:pmid/32587301&rfr_iscdi=true |