Electrostatic Interactions Govern Extreme Nascent Protein Ejection Times from Ribosomes and Can Delay Ribosome Recycling
The ejection of nascent proteins out of the ribosome exit tunnel, after their covalent bond to transfer-RNA has been broken, has not been experimentally studied due to challenges in sample preparation. Here, we investigate this process using a combination of multiscale modeling, ribosome profiling,...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2020-04, Vol.142 (13), p.6103-6110 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6110 |
---|---|
container_issue | 13 |
container_start_page | 6103 |
container_title | Journal of the American Chemical Society |
container_volume | 142 |
creator | Nissley, Daniel A Vu, Quyen V Trovato, Fabio Ahmed, Nabeel Jiang, Yang Li, Mai Suan O’Brien, Edward P |
description | The ejection of nascent proteins out of the ribosome exit tunnel, after their covalent bond to transfer-RNA has been broken, has not been experimentally studied due to challenges in sample preparation. Here, we investigate this process using a combination of multiscale modeling, ribosome profiling, and gene ontology analyses. Simulating the ejection of a representative set of 122 E. coli proteins we find a greater than 1000-fold variation in ejection times. Nascent proteins enriched in negatively charged residues near their C-terminus eject the fastest, while nascent chains enriched in positively charged residues tend to eject much more slowly. More work is required to pull slowly ejecting proteins out of the exit tunnel than quickly ejecting proteins, according to all-atom simulations. An energetic decomposition reveals, for slowly ejecting proteins, that this is due to the strong attractive electrostatic interactions between the nascent chain and the negatively charged ribosomal-RNA lining the exit tunnel, and for quickly ejecting proteins, it is due to their repulsive electrostatic interactions with the exit tunnel. Ribosome profiling data from E. coli reveals that the presence of slowly ejecting sequences correlates with ribosomes spending more time at stop codons, indicating that the ejection process might delay ribosome recycling. Proteins that have the highest positive charge density at their C-terminus are overwhelmingly ribosomal proteins, suggesting the possibility that this sequence feature may aid in the cotranslational assembly of ribosomes by delaying the release of nascent ribosomal proteins into the cytosol. Thus, nascent chain ejection times from the ribosome can vary greatly between proteins due to differential electrostatic interactions, can influence ribosome recycling, and could be particularly relevant to the synthesis and cotranslational behavior of some proteins. |
doi_str_mv | 10.1021/jacs.9b12264 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7312765</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2374344490</sourcerecordid><originalsourceid>FETCH-LOGICAL-a417t-6bf1e78dcdc5c9a829f1a8af574fa3062325f97d6435b01646c6ca45d9916dbb3</originalsourceid><addsrcrecordid>eNptkc1v1DAQxS0Eokvhxhn5yIEUfye5IKFlKZUqQFU5WxNnUrxK7GJ7q-5_T0KXBSRO1ox_fjN-j5CXnJ1xJvjbLbh81nZcCKMekRXXglWaC_OYrBhjoqobI0_Is5y3c6lEw5-SEym4bDTTK3K_GdGVFHOB4h29CAUTuOJjyPQ83mEKdHNfEk5IP0N2GAr9mmJBP_e3-Auk137CTIcUJ3rlu5jjUkLo6RoC_YAj7I99eoVu70Yfbp6TJwOMGV8czlPy7ePmev2puvxyfrF-f1mB4nWpTDdwrJve9U67FhrRDhwaGHStBpDMCCn00Na9UVJ3jBtlnHGgdN-23PRdJ0_Juwfd2103Yb_8IMFob5OfIO1tBG__vQn-u72Jd7aWXNRGzwKvDwIp_thhLnbysxHjCAHjLlshayWVUi2b0TcPqJsNzQmH4xjO7BKWXcKyh7Bm_NXfqx3h3-n8Gb282sZdCrNT_9f6CSyboIQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2374344490</pqid></control><display><type>article</type><title>Electrostatic Interactions Govern Extreme Nascent Protein Ejection Times from Ribosomes and Can Delay Ribosome Recycling</title><source>MEDLINE</source><source>ACS Publications</source><creator>Nissley, Daniel A ; Vu, Quyen V ; Trovato, Fabio ; Ahmed, Nabeel ; Jiang, Yang ; Li, Mai Suan ; O’Brien, Edward P</creator><creatorcontrib>Nissley, Daniel A ; Vu, Quyen V ; Trovato, Fabio ; Ahmed, Nabeel ; Jiang, Yang ; Li, Mai Suan ; O’Brien, Edward P</creatorcontrib><description>The ejection of nascent proteins out of the ribosome exit tunnel, after their covalent bond to transfer-RNA has been broken, has not been experimentally studied due to challenges in sample preparation. Here, we investigate this process using a combination of multiscale modeling, ribosome profiling, and gene ontology analyses. Simulating the ejection of a representative set of 122 E. coli proteins we find a greater than 1000-fold variation in ejection times. Nascent proteins enriched in negatively charged residues near their C-terminus eject the fastest, while nascent chains enriched in positively charged residues tend to eject much more slowly. More work is required to pull slowly ejecting proteins out of the exit tunnel than quickly ejecting proteins, according to all-atom simulations. An energetic decomposition reveals, for slowly ejecting proteins, that this is due to the strong attractive electrostatic interactions between the nascent chain and the negatively charged ribosomal-RNA lining the exit tunnel, and for quickly ejecting proteins, it is due to their repulsive electrostatic interactions with the exit tunnel. Ribosome profiling data from E. coli reveals that the presence of slowly ejecting sequences correlates with ribosomes spending more time at stop codons, indicating that the ejection process might delay ribosome recycling. Proteins that have the highest positive charge density at their C-terminus are overwhelmingly ribosomal proteins, suggesting the possibility that this sequence feature may aid in the cotranslational assembly of ribosomes by delaying the release of nascent ribosomal proteins into the cytosol. Thus, nascent chain ejection times from the ribosome can vary greatly between proteins due to differential electrostatic interactions, can influence ribosome recycling, and could be particularly relevant to the synthesis and cotranslational behavior of some proteins.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.9b12264</identifier><identifier>PMID: 32138505</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Escherichia coli - metabolism ; Escherichia coli Proteins - metabolism ; Models, Molecular ; Protein Biosynthesis ; Ribosomes - metabolism ; Static Electricity</subject><ispartof>Journal of the American Chemical Society, 2020-04, Vol.142 (13), p.6103-6110</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a417t-6bf1e78dcdc5c9a829f1a8af574fa3062325f97d6435b01646c6ca45d9916dbb3</citedby><cites>FETCH-LOGICAL-a417t-6bf1e78dcdc5c9a829f1a8af574fa3062325f97d6435b01646c6ca45d9916dbb3</cites><orcidid>0000-0001-9809-3273 ; 0000-0001-7021-7916 ; 0000-0002-9863-0486 ; 0000-0003-1100-9177</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.9b12264$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.9b12264$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2763,27074,27922,27923,56736,56786</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32138505$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nissley, Daniel A</creatorcontrib><creatorcontrib>Vu, Quyen V</creatorcontrib><creatorcontrib>Trovato, Fabio</creatorcontrib><creatorcontrib>Ahmed, Nabeel</creatorcontrib><creatorcontrib>Jiang, Yang</creatorcontrib><creatorcontrib>Li, Mai Suan</creatorcontrib><creatorcontrib>O’Brien, Edward P</creatorcontrib><title>Electrostatic Interactions Govern Extreme Nascent Protein Ejection Times from Ribosomes and Can Delay Ribosome Recycling</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>The ejection of nascent proteins out of the ribosome exit tunnel, after their covalent bond to transfer-RNA has been broken, has not been experimentally studied due to challenges in sample preparation. Here, we investigate this process using a combination of multiscale modeling, ribosome profiling, and gene ontology analyses. Simulating the ejection of a representative set of 122 E. coli proteins we find a greater than 1000-fold variation in ejection times. Nascent proteins enriched in negatively charged residues near their C-terminus eject the fastest, while nascent chains enriched in positively charged residues tend to eject much more slowly. More work is required to pull slowly ejecting proteins out of the exit tunnel than quickly ejecting proteins, according to all-atom simulations. An energetic decomposition reveals, for slowly ejecting proteins, that this is due to the strong attractive electrostatic interactions between the nascent chain and the negatively charged ribosomal-RNA lining the exit tunnel, and for quickly ejecting proteins, it is due to their repulsive electrostatic interactions with the exit tunnel. Ribosome profiling data from E. coli reveals that the presence of slowly ejecting sequences correlates with ribosomes spending more time at stop codons, indicating that the ejection process might delay ribosome recycling. Proteins that have the highest positive charge density at their C-terminus are overwhelmingly ribosomal proteins, suggesting the possibility that this sequence feature may aid in the cotranslational assembly of ribosomes by delaying the release of nascent ribosomal proteins into the cytosol. Thus, nascent chain ejection times from the ribosome can vary greatly between proteins due to differential electrostatic interactions, can influence ribosome recycling, and could be particularly relevant to the synthesis and cotranslational behavior of some proteins.</description><subject>Escherichia coli - metabolism</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>Models, Molecular</subject><subject>Protein Biosynthesis</subject><subject>Ribosomes - metabolism</subject><subject>Static Electricity</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkc1v1DAQxS0Eokvhxhn5yIEUfye5IKFlKZUqQFU5WxNnUrxK7GJ7q-5_T0KXBSRO1ox_fjN-j5CXnJ1xJvjbLbh81nZcCKMekRXXglWaC_OYrBhjoqobI0_Is5y3c6lEw5-SEym4bDTTK3K_GdGVFHOB4h29CAUTuOJjyPQ83mEKdHNfEk5IP0N2GAr9mmJBP_e3-Auk137CTIcUJ3rlu5jjUkLo6RoC_YAj7I99eoVu70Yfbp6TJwOMGV8czlPy7ePmev2puvxyfrF-f1mB4nWpTDdwrJve9U67FhrRDhwaGHStBpDMCCn00Na9UVJ3jBtlnHGgdN-23PRdJ0_Juwfd2103Yb_8IMFob5OfIO1tBG__vQn-u72Jd7aWXNRGzwKvDwIp_thhLnbysxHjCAHjLlshayWVUi2b0TcPqJsNzQmH4xjO7BKWXcKyh7Bm_NXfqx3h3-n8Gb282sZdCrNT_9f6CSyboIQ</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Nissley, Daniel A</creator><creator>Vu, Quyen V</creator><creator>Trovato, Fabio</creator><creator>Ahmed, Nabeel</creator><creator>Jiang, Yang</creator><creator>Li, Mai Suan</creator><creator>O’Brien, Edward P</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9809-3273</orcidid><orcidid>https://orcid.org/0000-0001-7021-7916</orcidid><orcidid>https://orcid.org/0000-0002-9863-0486</orcidid><orcidid>https://orcid.org/0000-0003-1100-9177</orcidid></search><sort><creationdate>20200401</creationdate><title>Electrostatic Interactions Govern Extreme Nascent Protein Ejection Times from Ribosomes and Can Delay Ribosome Recycling</title><author>Nissley, Daniel A ; Vu, Quyen V ; Trovato, Fabio ; Ahmed, Nabeel ; Jiang, Yang ; Li, Mai Suan ; O’Brien, Edward P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a417t-6bf1e78dcdc5c9a829f1a8af574fa3062325f97d6435b01646c6ca45d9916dbb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Escherichia coli - metabolism</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>Models, Molecular</topic><topic>Protein Biosynthesis</topic><topic>Ribosomes - metabolism</topic><topic>Static Electricity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nissley, Daniel A</creatorcontrib><creatorcontrib>Vu, Quyen V</creatorcontrib><creatorcontrib>Trovato, Fabio</creatorcontrib><creatorcontrib>Ahmed, Nabeel</creatorcontrib><creatorcontrib>Jiang, Yang</creatorcontrib><creatorcontrib>Li, Mai Suan</creatorcontrib><creatorcontrib>O’Brien, Edward P</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nissley, Daniel A</au><au>Vu, Quyen V</au><au>Trovato, Fabio</au><au>Ahmed, Nabeel</au><au>Jiang, Yang</au><au>Li, Mai Suan</au><au>O’Brien, Edward P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrostatic Interactions Govern Extreme Nascent Protein Ejection Times from Ribosomes and Can Delay Ribosome Recycling</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2020-04-01</date><risdate>2020</risdate><volume>142</volume><issue>13</issue><spage>6103</spage><epage>6110</epage><pages>6103-6110</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>The ejection of nascent proteins out of the ribosome exit tunnel, after their covalent bond to transfer-RNA has been broken, has not been experimentally studied due to challenges in sample preparation. Here, we investigate this process using a combination of multiscale modeling, ribosome profiling, and gene ontology analyses. Simulating the ejection of a representative set of 122 E. coli proteins we find a greater than 1000-fold variation in ejection times. Nascent proteins enriched in negatively charged residues near their C-terminus eject the fastest, while nascent chains enriched in positively charged residues tend to eject much more slowly. More work is required to pull slowly ejecting proteins out of the exit tunnel than quickly ejecting proteins, according to all-atom simulations. An energetic decomposition reveals, for slowly ejecting proteins, that this is due to the strong attractive electrostatic interactions between the nascent chain and the negatively charged ribosomal-RNA lining the exit tunnel, and for quickly ejecting proteins, it is due to their repulsive electrostatic interactions with the exit tunnel. Ribosome profiling data from E. coli reveals that the presence of slowly ejecting sequences correlates with ribosomes spending more time at stop codons, indicating that the ejection process might delay ribosome recycling. Proteins that have the highest positive charge density at their C-terminus are overwhelmingly ribosomal proteins, suggesting the possibility that this sequence feature may aid in the cotranslational assembly of ribosomes by delaying the release of nascent ribosomal proteins into the cytosol. Thus, nascent chain ejection times from the ribosome can vary greatly between proteins due to differential electrostatic interactions, can influence ribosome recycling, and could be particularly relevant to the synthesis and cotranslational behavior of some proteins.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>32138505</pmid><doi>10.1021/jacs.9b12264</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-9809-3273</orcidid><orcidid>https://orcid.org/0000-0001-7021-7916</orcidid><orcidid>https://orcid.org/0000-0002-9863-0486</orcidid><orcidid>https://orcid.org/0000-0003-1100-9177</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7863 |
ispartof | Journal of the American Chemical Society, 2020-04, Vol.142 (13), p.6103-6110 |
issn | 0002-7863 1520-5126 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7312765 |
source | MEDLINE; ACS Publications |
subjects | Escherichia coli - metabolism Escherichia coli Proteins - metabolism Models, Molecular Protein Biosynthesis Ribosomes - metabolism Static Electricity |
title | Electrostatic Interactions Govern Extreme Nascent Protein Ejection Times from Ribosomes and Can Delay Ribosome Recycling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A12%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrostatic%20Interactions%20Govern%20Extreme%20Nascent%20Protein%20Ejection%20Times%20from%20Ribosomes%20and%20Can%20Delay%20Ribosome%20Recycling&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Nissley,%20Daniel%20A&rft.date=2020-04-01&rft.volume=142&rft.issue=13&rft.spage=6103&rft.epage=6110&rft.pages=6103-6110&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.9b12264&rft_dat=%3Cproquest_pubme%3E2374344490%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2374344490&rft_id=info:pmid/32138505&rfr_iscdi=true |