Emulating tightly bound electrons in crystalline solids using mechanical waves
Solid state physics deals with systems composed of atoms with strongly bound electrons. The tunneling probability of each electron is determined by interactions that typically extend to neighboring sites, as their corresponding wave amplitudes decay rapidly away from an isolated atomic core. This ki...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2020-06, Vol.10 (1), p.10229-10229, Article 10229 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10229 |
---|---|
container_issue | 1 |
container_start_page | 10229 |
container_title | Scientific reports |
container_volume | 10 |
creator | Ramírez-Ramírez, F. Flores-Olmedo, E. Báez, G. Sadurní, E. Méndez-Sánchez, R. A. |
description | Solid state physics deals with systems composed of atoms with strongly bound electrons. The tunneling probability of each electron is determined by interactions that typically extend to neighboring sites, as their corresponding wave amplitudes decay rapidly away from an isolated atomic core. This kind of description is essential in condensed-matter physics, and it rules the electronic transport properties of metals, insulators and many other solid-state systems. The corresponding phenomenology is well captured by tight-binding models, where the electronic band structure emerges from atomic orbitals of isolated atoms plus their coupling to neighboring sites in a crystal. In this work, a mechanical system that emulates dynamically a quantum tightly bound electron is built. This is done by connecting mechanical resonators via locally periodic aluminum bars acting as couplers. When the frequency of a particular resonator lies within the frequency gap of a coupler, the vibrational wave amplitude imitates a bound electron orbital. The localization of the wave at the resonator site and its exponential decay along the coupler are experimentally verified. The quantum dynamical tight-binding model and frequency measurements in mechanical structures show an excellent agreement. Some applications in atomic and condensed matter physics are suggested. |
doi_str_mv | 10.1038/s41598-020-67108-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7311533</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2416946100</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-3d29b4473afdd7ee0ebb8f6d54d90b1fa1f3a115bebd069dc9034fb487f6fd133</originalsourceid><addsrcrecordid>eNp9kUtr3DAURkVoSEKSP5CVoZtunOpl2d4UyjB5QGg2yVrocTWjIEtTyZ4y_z6eTEgfi2qjCzrf4YoPoSuCrwlm3dfCSdN3Naa4Fi3B83SEzijmTU0ZpZ_-mE_RZSkveD4N7TnpT9Apo00ruq49Qz-WwxTU6OOqGv1qPYZdpdMUbQUBzJhTLJWPlcm7MqoQfISqpOBtqaayzwxg1ip6o0L1S22hXKBjp0KBy_f7HD3fLJ8Wd_XD4-394vtDbXhDxppZ2mvOW6actS0ABq07J2zDbY81cYo4pghpNGiLRW9Njxl3mnetE84Sxs7Rt4N3M-kBrIE4ZhXkJvtB5Z1Mysu_X6Jfy1XaypbNWrYXfHkX5PRzgjLKwRcDIagIaSqSciJ6LgjGM_r5H_QlTTnO33ujMBOt4DNFD5TJqZQM7mMZguW-MXloTM6NybfG5F7NDqEyw3EF-bf6P6lXbx2Zcg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2416036764</pqid></control><display><type>article</type><title>Emulating tightly bound electrons in crystalline solids using mechanical waves</title><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature OA Free Journals</source><creator>Ramírez-Ramírez, F. ; Flores-Olmedo, E. ; Báez, G. ; Sadurní, E. ; Méndez-Sánchez, R. A.</creator><creatorcontrib>Ramírez-Ramírez, F. ; Flores-Olmedo, E. ; Báez, G. ; Sadurní, E. ; Méndez-Sánchez, R. A.</creatorcontrib><description>Solid state physics deals with systems composed of atoms with strongly bound electrons. The tunneling probability of each electron is determined by interactions that typically extend to neighboring sites, as their corresponding wave amplitudes decay rapidly away from an isolated atomic core. This kind of description is essential in condensed-matter physics, and it rules the electronic transport properties of metals, insulators and many other solid-state systems. The corresponding phenomenology is well captured by tight-binding models, where the electronic band structure emerges from atomic orbitals of isolated atoms plus their coupling to neighboring sites in a crystal. In this work, a mechanical system that emulates dynamically a quantum tightly bound electron is built. This is done by connecting mechanical resonators via locally periodic aluminum bars acting as couplers. When the frequency of a particular resonator lies within the frequency gap of a coupler, the vibrational wave amplitude imitates a bound electron orbital. The localization of the wave at the resonator site and its exponential decay along the coupler are experimentally verified. The quantum dynamical tight-binding model and frequency measurements in mechanical structures show an excellent agreement. Some applications in atomic and condensed matter physics are suggested.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-67108-0</identifier><identifier>PMID: 32576887</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/1023/303 ; 639/766/119/995 ; Aluminum ; Decay ; Humanities and Social Sciences ; Localization ; Metals ; multidisciplinary ; Physics ; Science ; Science (multidisciplinary)</subject><ispartof>Scientific reports, 2020-06, Vol.10 (1), p.10229-10229, Article 10229</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-3d29b4473afdd7ee0ebb8f6d54d90b1fa1f3a115bebd069dc9034fb487f6fd133</citedby><cites>FETCH-LOGICAL-c451t-3d29b4473afdd7ee0ebb8f6d54d90b1fa1f3a115bebd069dc9034fb487f6fd133</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7311533/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7311533/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids></links><search><creatorcontrib>Ramírez-Ramírez, F.</creatorcontrib><creatorcontrib>Flores-Olmedo, E.</creatorcontrib><creatorcontrib>Báez, G.</creatorcontrib><creatorcontrib>Sadurní, E.</creatorcontrib><creatorcontrib>Méndez-Sánchez, R. A.</creatorcontrib><title>Emulating tightly bound electrons in crystalline solids using mechanical waves</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><description>Solid state physics deals with systems composed of atoms with strongly bound electrons. The tunneling probability of each electron is determined by interactions that typically extend to neighboring sites, as their corresponding wave amplitudes decay rapidly away from an isolated atomic core. This kind of description is essential in condensed-matter physics, and it rules the electronic transport properties of metals, insulators and many other solid-state systems. The corresponding phenomenology is well captured by tight-binding models, where the electronic band structure emerges from atomic orbitals of isolated atoms plus their coupling to neighboring sites in a crystal. In this work, a mechanical system that emulates dynamically a quantum tightly bound electron is built. This is done by connecting mechanical resonators via locally periodic aluminum bars acting as couplers. When the frequency of a particular resonator lies within the frequency gap of a coupler, the vibrational wave amplitude imitates a bound electron orbital. The localization of the wave at the resonator site and its exponential decay along the coupler are experimentally verified. The quantum dynamical tight-binding model and frequency measurements in mechanical structures show an excellent agreement. Some applications in atomic and condensed matter physics are suggested.</description><subject>639/301/1023/303</subject><subject>639/766/119/995</subject><subject>Aluminum</subject><subject>Decay</subject><subject>Humanities and Social Sciences</subject><subject>Localization</subject><subject>Metals</subject><subject>multidisciplinary</subject><subject>Physics</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kUtr3DAURkVoSEKSP5CVoZtunOpl2d4UyjB5QGg2yVrocTWjIEtTyZ4y_z6eTEgfi2qjCzrf4YoPoSuCrwlm3dfCSdN3Naa4Fi3B83SEzijmTU0ZpZ_-mE_RZSkveD4N7TnpT9Apo00ruq49Qz-WwxTU6OOqGv1qPYZdpdMUbQUBzJhTLJWPlcm7MqoQfISqpOBtqaayzwxg1ip6o0L1S22hXKBjp0KBy_f7HD3fLJ8Wd_XD4-394vtDbXhDxppZ2mvOW6actS0ABq07J2zDbY81cYo4pghpNGiLRW9Njxl3mnetE84Sxs7Rt4N3M-kBrIE4ZhXkJvtB5Z1Mysu_X6Jfy1XaypbNWrYXfHkX5PRzgjLKwRcDIagIaSqSciJ6LgjGM_r5H_QlTTnO33ujMBOt4DNFD5TJqZQM7mMZguW-MXloTM6NybfG5F7NDqEyw3EF-bf6P6lXbx2Zcg</recordid><startdate>20200623</startdate><enddate>20200623</enddate><creator>Ramírez-Ramírez, F.</creator><creator>Flores-Olmedo, E.</creator><creator>Báez, G.</creator><creator>Sadurní, E.</creator><creator>Méndez-Sánchez, R. A.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20200623</creationdate><title>Emulating tightly bound electrons in crystalline solids using mechanical waves</title><author>Ramírez-Ramírez, F. ; Flores-Olmedo, E. ; Báez, G. ; Sadurní, E. ; Méndez-Sánchez, R. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-3d29b4473afdd7ee0ebb8f6d54d90b1fa1f3a115bebd069dc9034fb487f6fd133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/301/1023/303</topic><topic>639/766/119/995</topic><topic>Aluminum</topic><topic>Decay</topic><topic>Humanities and Social Sciences</topic><topic>Localization</topic><topic>Metals</topic><topic>multidisciplinary</topic><topic>Physics</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramírez-Ramírez, F.</creatorcontrib><creatorcontrib>Flores-Olmedo, E.</creatorcontrib><creatorcontrib>Báez, G.</creatorcontrib><creatorcontrib>Sadurní, E.</creatorcontrib><creatorcontrib>Méndez-Sánchez, R. A.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramírez-Ramírez, F.</au><au>Flores-Olmedo, E.</au><au>Báez, G.</au><au>Sadurní, E.</au><au>Méndez-Sánchez, R. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Emulating tightly bound electrons in crystalline solids using mechanical waves</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><date>2020-06-23</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>10229</spage><epage>10229</epage><pages>10229-10229</pages><artnum>10229</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Solid state physics deals with systems composed of atoms with strongly bound electrons. The tunneling probability of each electron is determined by interactions that typically extend to neighboring sites, as their corresponding wave amplitudes decay rapidly away from an isolated atomic core. This kind of description is essential in condensed-matter physics, and it rules the electronic transport properties of metals, insulators and many other solid-state systems. The corresponding phenomenology is well captured by tight-binding models, where the electronic band structure emerges from atomic orbitals of isolated atoms plus their coupling to neighboring sites in a crystal. In this work, a mechanical system that emulates dynamically a quantum tightly bound electron is built. This is done by connecting mechanical resonators via locally periodic aluminum bars acting as couplers. When the frequency of a particular resonator lies within the frequency gap of a coupler, the vibrational wave amplitude imitates a bound electron orbital. The localization of the wave at the resonator site and its exponential decay along the coupler are experimentally verified. The quantum dynamical tight-binding model and frequency measurements in mechanical structures show an excellent agreement. Some applications in atomic and condensed matter physics are suggested.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32576887</pmid><doi>10.1038/s41598-020-67108-0</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2020-06, Vol.10 (1), p.10229-10229, Article 10229 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7311533 |
source | Nature Free; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; Springer Nature OA Free Journals |
subjects | 639/301/1023/303 639/766/119/995 Aluminum Decay Humanities and Social Sciences Localization Metals multidisciplinary Physics Science Science (multidisciplinary) |
title | Emulating tightly bound electrons in crystalline solids using mechanical waves |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T09%3A55%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Emulating%20tightly%20bound%20electrons%20in%20crystalline%20solids%20using%20mechanical%20waves&rft.jtitle=Scientific%20reports&rft.au=Ram%C3%ADrez-Ram%C3%ADrez,%20F.&rft.date=2020-06-23&rft.volume=10&rft.issue=1&rft.spage=10229&rft.epage=10229&rft.pages=10229-10229&rft.artnum=10229&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-67108-0&rft_dat=%3Cproquest_pubme%3E2416946100%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2416036764&rft_id=info:pmid/32576887&rfr_iscdi=true |