Experimental Observation of Strong Exciton Effects in Graphene Nanoribbons
Graphene nanoribbons (GNRs) with atomically precise width and edge structures are a promising class of nanomaterials for optoelectronics, thanks to their semiconducting nature and high mobility of charge carriers. Understanding the fundamental static optical properties and ultrafast dynamics of char...
Gespeichert in:
Veröffentlicht in: | Nano letters 2020-05, Vol.20 (5), p.2993-3002 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3002 |
---|---|
container_issue | 5 |
container_start_page | 2993 |
container_title | Nano letters |
container_volume | 20 |
creator | Tries, Alexander Osella, Silvio Zhang, Pengfei Xu, Fugui Ramanan, Charusheela Kläui, Mathias Mai, Yiyong Beljonne, David Wang, Hai I |
description | Graphene nanoribbons (GNRs) with atomically precise width and edge structures are a promising class of nanomaterials for optoelectronics, thanks to their semiconducting nature and high mobility of charge carriers. Understanding the fundamental static optical properties and ultrafast dynamics of charge carrier generation in GNRs is essential for optoelectronic applications. Combining THz spectroscopy and theoretical calculations, we report a strong exciton effect with binding energy up to ∼700 meV in liquid-phase-dispersed GNRs with a width of 1.7 nm and an optical band gap of ∼1.6 eV, illustrating the intrinsically strong Coulomb interactions between photogenerated electrons and holes. By tracking the exciton dynamics, we reveal an ultrafast formation of excitons in GNRs with a long lifetime over 100 ps. Our results not only reveal fundamental aspects of excitons in GNRs (strong binding energy and ultrafast exciton formation etc.) but also highlight promising properties of GNRs for optoelectronic devices. |
doi_str_mv | 10.1021/acs.nanolett.9b04816 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7311082</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2383017283</sourcerecordid><originalsourceid>FETCH-LOGICAL-a515t-c4cb0f7042e54a01b3f6975d9bd7d556a3c52dd57a00f9123037d31817f64e433</originalsourceid><addsrcrecordid>eNp9UU1PAyEQJUZj68c_MGaPXloHWJbdi4lp6lcaPahnwrJgt9lCBdrUfy9Na6MXT0Nm3nvzmIfQBYYhBoKvpQpDK63rdIzDqoa8xMUB6mNGYVBUFTncv8u8h05CmAFARRkcox4lBHjFeB89jdcL7du5tlF22UsdtF_J2DqbOZO9Ru_sRzZeqzamztgYrWLIWpvde7mYaquz5-TAt3XtbDhDR0Z2QZ_v6il6vxu_jR4Gk5f7x9HtZCAZZnGgclWD4ZATzXIJuKamqDhrqrrhDWOFpIqRpmFcApgKEwqUNxSXmJsi1zmlp-hmq7tY1nPdqGTdy04s0i-k_xJOtuLvxLZT8eFWglOMoSRJ4Gon4N3nUoco5m1Quuuk1W4ZBKElBcxJudmVb6HKuxC8Nvs1GMQmBpFiED8xiF0MiXb52-Ke9HP3BIAtYEOfuaW36WL_a34D-saYzA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2383017283</pqid></control><display><type>article</type><title>Experimental Observation of Strong Exciton Effects in Graphene Nanoribbons</title><source>ACS Publications</source><creator>Tries, Alexander ; Osella, Silvio ; Zhang, Pengfei ; Xu, Fugui ; Ramanan, Charusheela ; Kläui, Mathias ; Mai, Yiyong ; Beljonne, David ; Wang, Hai I</creator><creatorcontrib>Tries, Alexander ; Osella, Silvio ; Zhang, Pengfei ; Xu, Fugui ; Ramanan, Charusheela ; Kläui, Mathias ; Mai, Yiyong ; Beljonne, David ; Wang, Hai I</creatorcontrib><description>Graphene nanoribbons (GNRs) with atomically precise width and edge structures are a promising class of nanomaterials for optoelectronics, thanks to their semiconducting nature and high mobility of charge carriers. Understanding the fundamental static optical properties and ultrafast dynamics of charge carrier generation in GNRs is essential for optoelectronic applications. Combining THz spectroscopy and theoretical calculations, we report a strong exciton effect with binding energy up to ∼700 meV in liquid-phase-dispersed GNRs with a width of 1.7 nm and an optical band gap of ∼1.6 eV, illustrating the intrinsically strong Coulomb interactions between photogenerated electrons and holes. By tracking the exciton dynamics, we reveal an ultrafast formation of excitons in GNRs with a long lifetime over 100 ps. Our results not only reveal fundamental aspects of excitons in GNRs (strong binding energy and ultrafast exciton formation etc.) but also highlight promising properties of GNRs for optoelectronic devices.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.9b04816</identifier><identifier>PMID: 32207957</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Letter</subject><ispartof>Nano letters, 2020-05, Vol.20 (5), p.2993-3002</ispartof><rights>Copyright © 2020 American Chemical Society 2020 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a515t-c4cb0f7042e54a01b3f6975d9bd7d556a3c52dd57a00f9123037d31817f64e433</citedby><cites>FETCH-LOGICAL-a515t-c4cb0f7042e54a01b3f6975d9bd7d556a3c52dd57a00f9123037d31817f64e433</cites><orcidid>0000-0002-6373-2597 ; 0000-0003-1463-5683 ; 0000-0001-8541-1914 ; 0000-0002-2989-3557 ; 0000-0002-4848-2569 ; 0000-0003-0940-3984</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.nanolett.9b04816$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.nanolett.9b04816$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32207957$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tries, Alexander</creatorcontrib><creatorcontrib>Osella, Silvio</creatorcontrib><creatorcontrib>Zhang, Pengfei</creatorcontrib><creatorcontrib>Xu, Fugui</creatorcontrib><creatorcontrib>Ramanan, Charusheela</creatorcontrib><creatorcontrib>Kläui, Mathias</creatorcontrib><creatorcontrib>Mai, Yiyong</creatorcontrib><creatorcontrib>Beljonne, David</creatorcontrib><creatorcontrib>Wang, Hai I</creatorcontrib><title>Experimental Observation of Strong Exciton Effects in Graphene Nanoribbons</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Graphene nanoribbons (GNRs) with atomically precise width and edge structures are a promising class of nanomaterials for optoelectronics, thanks to their semiconducting nature and high mobility of charge carriers. Understanding the fundamental static optical properties and ultrafast dynamics of charge carrier generation in GNRs is essential for optoelectronic applications. Combining THz spectroscopy and theoretical calculations, we report a strong exciton effect with binding energy up to ∼700 meV in liquid-phase-dispersed GNRs with a width of 1.7 nm and an optical band gap of ∼1.6 eV, illustrating the intrinsically strong Coulomb interactions between photogenerated electrons and holes. By tracking the exciton dynamics, we reveal an ultrafast formation of excitons in GNRs with a long lifetime over 100 ps. Our results not only reveal fundamental aspects of excitons in GNRs (strong binding energy and ultrafast exciton formation etc.) but also highlight promising properties of GNRs for optoelectronic devices.</description><subject>Letter</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9UU1PAyEQJUZj68c_MGaPXloHWJbdi4lp6lcaPahnwrJgt9lCBdrUfy9Na6MXT0Nm3nvzmIfQBYYhBoKvpQpDK63rdIzDqoa8xMUB6mNGYVBUFTncv8u8h05CmAFARRkcox4lBHjFeB89jdcL7du5tlF22UsdtF_J2DqbOZO9Ru_sRzZeqzamztgYrWLIWpvde7mYaquz5-TAt3XtbDhDR0Z2QZ_v6il6vxu_jR4Gk5f7x9HtZCAZZnGgclWD4ZATzXIJuKamqDhrqrrhDWOFpIqRpmFcApgKEwqUNxSXmJsi1zmlp-hmq7tY1nPdqGTdy04s0i-k_xJOtuLvxLZT8eFWglOMoSRJ4Gon4N3nUoco5m1Quuuk1W4ZBKElBcxJudmVb6HKuxC8Nvs1GMQmBpFiED8xiF0MiXb52-Ke9HP3BIAtYEOfuaW36WL_a34D-saYzA</recordid><startdate>20200513</startdate><enddate>20200513</enddate><creator>Tries, Alexander</creator><creator>Osella, Silvio</creator><creator>Zhang, Pengfei</creator><creator>Xu, Fugui</creator><creator>Ramanan, Charusheela</creator><creator>Kläui, Mathias</creator><creator>Mai, Yiyong</creator><creator>Beljonne, David</creator><creator>Wang, Hai I</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6373-2597</orcidid><orcidid>https://orcid.org/0000-0003-1463-5683</orcidid><orcidid>https://orcid.org/0000-0001-8541-1914</orcidid><orcidid>https://orcid.org/0000-0002-2989-3557</orcidid><orcidid>https://orcid.org/0000-0002-4848-2569</orcidid><orcidid>https://orcid.org/0000-0003-0940-3984</orcidid></search><sort><creationdate>20200513</creationdate><title>Experimental Observation of Strong Exciton Effects in Graphene Nanoribbons</title><author>Tries, Alexander ; Osella, Silvio ; Zhang, Pengfei ; Xu, Fugui ; Ramanan, Charusheela ; Kläui, Mathias ; Mai, Yiyong ; Beljonne, David ; Wang, Hai I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a515t-c4cb0f7042e54a01b3f6975d9bd7d556a3c52dd57a00f9123037d31817f64e433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Letter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tries, Alexander</creatorcontrib><creatorcontrib>Osella, Silvio</creatorcontrib><creatorcontrib>Zhang, Pengfei</creatorcontrib><creatorcontrib>Xu, Fugui</creatorcontrib><creatorcontrib>Ramanan, Charusheela</creatorcontrib><creatorcontrib>Kläui, Mathias</creatorcontrib><creatorcontrib>Mai, Yiyong</creatorcontrib><creatorcontrib>Beljonne, David</creatorcontrib><creatorcontrib>Wang, Hai I</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tries, Alexander</au><au>Osella, Silvio</au><au>Zhang, Pengfei</au><au>Xu, Fugui</au><au>Ramanan, Charusheela</au><au>Kläui, Mathias</au><au>Mai, Yiyong</au><au>Beljonne, David</au><au>Wang, Hai I</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental Observation of Strong Exciton Effects in Graphene Nanoribbons</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2020-05-13</date><risdate>2020</risdate><volume>20</volume><issue>5</issue><spage>2993</spage><epage>3002</epage><pages>2993-3002</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Graphene nanoribbons (GNRs) with atomically precise width and edge structures are a promising class of nanomaterials for optoelectronics, thanks to their semiconducting nature and high mobility of charge carriers. Understanding the fundamental static optical properties and ultrafast dynamics of charge carrier generation in GNRs is essential for optoelectronic applications. Combining THz spectroscopy and theoretical calculations, we report a strong exciton effect with binding energy up to ∼700 meV in liquid-phase-dispersed GNRs with a width of 1.7 nm and an optical band gap of ∼1.6 eV, illustrating the intrinsically strong Coulomb interactions between photogenerated electrons and holes. By tracking the exciton dynamics, we reveal an ultrafast formation of excitons in GNRs with a long lifetime over 100 ps. Our results not only reveal fundamental aspects of excitons in GNRs (strong binding energy and ultrafast exciton formation etc.) but also highlight promising properties of GNRs for optoelectronic devices.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>32207957</pmid><doi>10.1021/acs.nanolett.9b04816</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-6373-2597</orcidid><orcidid>https://orcid.org/0000-0003-1463-5683</orcidid><orcidid>https://orcid.org/0000-0001-8541-1914</orcidid><orcidid>https://orcid.org/0000-0002-2989-3557</orcidid><orcidid>https://orcid.org/0000-0002-4848-2569</orcidid><orcidid>https://orcid.org/0000-0003-0940-3984</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-6984 |
ispartof | Nano letters, 2020-05, Vol.20 (5), p.2993-3002 |
issn | 1530-6984 1530-6992 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7311082 |
source | ACS Publications |
subjects | Letter |
title | Experimental Observation of Strong Exciton Effects in Graphene Nanoribbons |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T02%3A44%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20Observation%20of%20Strong%20Exciton%20Effects%20in%20Graphene%20Nanoribbons&rft.jtitle=Nano%20letters&rft.au=Tries,%20Alexander&rft.date=2020-05-13&rft.volume=20&rft.issue=5&rft.spage=2993&rft.epage=3002&rft.pages=2993-3002&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.9b04816&rft_dat=%3Cproquest_pubme%3E2383017283%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2383017283&rft_id=info:pmid/32207957&rfr_iscdi=true |