Evaluation of a Machine Learning Model Based on Pretreatment Symptoms and Electroencephalographic Features to Predict Outcomes of Antidepressant Treatment in Adults With Depression: A Prespecified Secondary Analysis of a Randomized Clinical Trial

Despite the high prevalence and potential outcomes of major depressive disorder, whether and how patients will respond to antidepressant medications is not easily predicted. To identify the extent to which a machine learning approach, using gradient-boosted decision trees, can predict acute improvem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:JAMA health forum 2020-06, Vol.3 (6), p.e206653
Hauptverfasser: Rajpurkar, Pranav, Yang, Jingbo, Dass, Nathan, Vale, Vinjai, Keller, Arielle S, Irvin, Jeremy, Taylor, Zachary, Basu, Sanjay, Ng, Andrew, Williams, Leanne M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!