A new mechanism of strain transfer in polycrystals
At the grain boundaries of plastically deforming polycrystals, strain transfer mechanisms can accommodate the shear strain carried by slip bands and mechanical twins to prevent stress build-ups and damage. So far, only the accommodation obtained through slip (and twinning) alone has been considered...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2020-06, Vol.10 (1), p.10082, Article 10082 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 10082 |
container_title | Scientific reports |
container_volume | 10 |
creator | Di Gioacchino, F. Edwards, T. E. J. Wells, G. N. Clegg, W. J. |
description | At the grain boundaries of plastically deforming polycrystals, strain transfer mechanisms can accommodate the shear strain carried by slip bands and mechanical twins to prevent stress build-ups and damage. So far, only the accommodation obtained through slip (and twinning) alone has been considered in the mechanism known as slip (and twin) transfer. Here, a strain transfer mechanism that also requires the rotation of the crystal lattice is demonstrated. A region of accumulated slip develops perpendicular to the active slip plane in the impinged grain. The slip gradients enable a localized lattice rotation that accommodates the shear strain in the incoming band, preventing the build-up of interfacial stresses. The mechanism operates preferentially at the boundaries between highly misoriented grains. Facilitating strain transfer at these interfaces opens up new possibilities to improve the mechanical properties of polycrystals, as discussed. |
doi_str_mv | 10.1038/s41598-020-66569-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7308395</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2415569405</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-127918b8c99e1ac28f4f273a2d4157eb9435e3317d14d6886c7aefa220c673ef3</originalsourceid><addsrcrecordid>eNp9UE1LAzEUDKLYUvsHPMiC59XkJbtJLkIpfkHBi55Dmk3aLd1sTVql_97UrbVezOG9BzOZGQahS4JvCKbiNjJSSJFjwHlZFqXM-QnqA2ZFDhTg9OjuoWGMC5xeAZIReY56FAqecNFHMMq8_cwaa-ba17HJWpfFddC1z9L00dmQpXvVLrcmbONaL-MFOnNp2eF-D9Dbw_3r-CmfvDw-j0eT3DDO1jkBLomYCiOlJdqAcMwBpxqqlJzbqWS0sJQSXhFWlUKUhmvrNAA2JafW0QG663RXm2ljK2N9SrRUq1A3OmxVq2v1F_H1XM3aD8UpFlQWSeB6LxDa942Na7VoN8GnzApShlQawzsWdCwT2hiDdQcHgtWuatVVrVLV6rvqZDBAV8fZDl9-ik0E2hFigvzMhl_vf2S_AMv7iSc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2415569405</pqid></control><display><type>article</type><title>A new mechanism of strain transfer in polycrystals</title><source>Nature Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Springer Nature OA/Free Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Di Gioacchino, F. ; Edwards, T. E. J. ; Wells, G. N. ; Clegg, W. J.</creator><creatorcontrib>Di Gioacchino, F. ; Edwards, T. E. J. ; Wells, G. N. ; Clegg, W. J.</creatorcontrib><description>At the grain boundaries of plastically deforming polycrystals, strain transfer mechanisms can accommodate the shear strain carried by slip bands and mechanical twins to prevent stress build-ups and damage. So far, only the accommodation obtained through slip (and twinning) alone has been considered in the mechanism known as slip (and twin) transfer. Here, a strain transfer mechanism that also requires the rotation of the crystal lattice is demonstrated. A region of accumulated slip develops perpendicular to the active slip plane in the impinged grain. The slip gradients enable a localized lattice rotation that accommodates the shear strain in the incoming band, preventing the build-up of interfacial stresses. The mechanism operates preferentially at the boundaries between highly misoriented grains. Facilitating strain transfer at these interfaces opens up new possibilities to improve the mechanical properties of polycrystals, as discussed.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-66569-7</identifier><identifier>PMID: 32572048</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/1023/1026 ; 639/301/1034/1036 ; 639/301/930/12 ; Boundaries ; Humanities and Social Sciences ; Interfaces ; Mechanical properties ; multidisciplinary ; Science ; Science (multidisciplinary) ; Shear strain ; Strain</subject><ispartof>Scientific reports, 2020-06, Vol.10 (1), p.10082, Article 10082</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-127918b8c99e1ac28f4f273a2d4157eb9435e3317d14d6886c7aefa220c673ef3</citedby><cites>FETCH-LOGICAL-c474t-127918b8c99e1ac28f4f273a2d4157eb9435e3317d14d6886c7aefa220c673ef3</cites><orcidid>0000-0002-3089-0062 ; 0000-0001-5291-7951</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7308395/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7308395/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,41120,42189,51576,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32572048$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Di Gioacchino, F.</creatorcontrib><creatorcontrib>Edwards, T. E. J.</creatorcontrib><creatorcontrib>Wells, G. N.</creatorcontrib><creatorcontrib>Clegg, W. J.</creatorcontrib><title>A new mechanism of strain transfer in polycrystals</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>At the grain boundaries of plastically deforming polycrystals, strain transfer mechanisms can accommodate the shear strain carried by slip bands and mechanical twins to prevent stress build-ups and damage. So far, only the accommodation obtained through slip (and twinning) alone has been considered in the mechanism known as slip (and twin) transfer. Here, a strain transfer mechanism that also requires the rotation of the crystal lattice is demonstrated. A region of accumulated slip develops perpendicular to the active slip plane in the impinged grain. The slip gradients enable a localized lattice rotation that accommodates the shear strain in the incoming band, preventing the build-up of interfacial stresses. The mechanism operates preferentially at the boundaries between highly misoriented grains. Facilitating strain transfer at these interfaces opens up new possibilities to improve the mechanical properties of polycrystals, as discussed.</description><subject>639/301/1023/1026</subject><subject>639/301/1034/1036</subject><subject>639/301/930/12</subject><subject>Boundaries</subject><subject>Humanities and Social Sciences</subject><subject>Interfaces</subject><subject>Mechanical properties</subject><subject>multidisciplinary</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Shear strain</subject><subject>Strain</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9UE1LAzEUDKLYUvsHPMiC59XkJbtJLkIpfkHBi55Dmk3aLd1sTVql_97UrbVezOG9BzOZGQahS4JvCKbiNjJSSJFjwHlZFqXM-QnqA2ZFDhTg9OjuoWGMC5xeAZIReY56FAqecNFHMMq8_cwaa-ba17HJWpfFddC1z9L00dmQpXvVLrcmbONaL-MFOnNp2eF-D9Dbw_3r-CmfvDw-j0eT3DDO1jkBLomYCiOlJdqAcMwBpxqqlJzbqWS0sJQSXhFWlUKUhmvrNAA2JafW0QG663RXm2ljK2N9SrRUq1A3OmxVq2v1F_H1XM3aD8UpFlQWSeB6LxDa942Na7VoN8GnzApShlQawzsWdCwT2hiDdQcHgtWuatVVrVLV6rvqZDBAV8fZDl9-ik0E2hFigvzMhl_vf2S_AMv7iSc</recordid><startdate>20200622</startdate><enddate>20200622</enddate><creator>Di Gioacchino, F.</creator><creator>Edwards, T. E. J.</creator><creator>Wells, G. N.</creator><creator>Clegg, W. J.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3089-0062</orcidid><orcidid>https://orcid.org/0000-0001-5291-7951</orcidid></search><sort><creationdate>20200622</creationdate><title>A new mechanism of strain transfer in polycrystals</title><author>Di Gioacchino, F. ; Edwards, T. E. J. ; Wells, G. N. ; Clegg, W. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-127918b8c99e1ac28f4f273a2d4157eb9435e3317d14d6886c7aefa220c673ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/301/1023/1026</topic><topic>639/301/1034/1036</topic><topic>639/301/930/12</topic><topic>Boundaries</topic><topic>Humanities and Social Sciences</topic><topic>Interfaces</topic><topic>Mechanical properties</topic><topic>multidisciplinary</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Shear strain</topic><topic>Strain</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Di Gioacchino, F.</creatorcontrib><creatorcontrib>Edwards, T. E. J.</creatorcontrib><creatorcontrib>Wells, G. N.</creatorcontrib><creatorcontrib>Clegg, W. J.</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Di Gioacchino, F.</au><au>Edwards, T. E. J.</au><au>Wells, G. N.</au><au>Clegg, W. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new mechanism of strain transfer in polycrystals</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2020-06-22</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>10082</spage><pages>10082-</pages><artnum>10082</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>At the grain boundaries of plastically deforming polycrystals, strain transfer mechanisms can accommodate the shear strain carried by slip bands and mechanical twins to prevent stress build-ups and damage. So far, only the accommodation obtained through slip (and twinning) alone has been considered in the mechanism known as slip (and twin) transfer. Here, a strain transfer mechanism that also requires the rotation of the crystal lattice is demonstrated. A region of accumulated slip develops perpendicular to the active slip plane in the impinged grain. The slip gradients enable a localized lattice rotation that accommodates the shear strain in the incoming band, preventing the build-up of interfacial stresses. The mechanism operates preferentially at the boundaries between highly misoriented grains. Facilitating strain transfer at these interfaces opens up new possibilities to improve the mechanical properties of polycrystals, as discussed.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32572048</pmid><doi>10.1038/s41598-020-66569-7</doi><orcidid>https://orcid.org/0000-0002-3089-0062</orcidid><orcidid>https://orcid.org/0000-0001-5291-7951</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2020-06, Vol.10 (1), p.10082, Article 10082 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7308395 |
source | Nature Open Access; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Springer Nature OA/Free Journals; Free Full-Text Journals in Chemistry |
subjects | 639/301/1023/1026 639/301/1034/1036 639/301/930/12 Boundaries Humanities and Social Sciences Interfaces Mechanical properties multidisciplinary Science Science (multidisciplinary) Shear strain Strain |
title | A new mechanism of strain transfer in polycrystals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T04%3A16%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20mechanism%20of%20strain%20transfer%20in%20polycrystals&rft.jtitle=Scientific%20reports&rft.au=Di%20Gioacchino,%20F.&rft.date=2020-06-22&rft.volume=10&rft.issue=1&rft.spage=10082&rft.pages=10082-&rft.artnum=10082&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-66569-7&rft_dat=%3Cproquest_pubme%3E2415569405%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2415569405&rft_id=info:pmid/32572048&rfr_iscdi=true |