A new mechanism of strain transfer in polycrystals

At the grain boundaries of plastically deforming polycrystals, strain transfer mechanisms can accommodate the shear strain carried by slip bands and mechanical twins to prevent stress build-ups and damage. So far, only the accommodation obtained through slip (and twinning) alone has been considered...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2020-06, Vol.10 (1), p.10082, Article 10082
Hauptverfasser: Di Gioacchino, F., Edwards, T. E. J., Wells, G. N., Clegg, W. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 10082
container_title Scientific reports
container_volume 10
creator Di Gioacchino, F.
Edwards, T. E. J.
Wells, G. N.
Clegg, W. J.
description At the grain boundaries of plastically deforming polycrystals, strain transfer mechanisms can accommodate the shear strain carried by slip bands and mechanical twins to prevent stress build-ups and damage. So far, only the accommodation obtained through slip (and twinning) alone has been considered in the mechanism known as slip (and twin) transfer. Here, a strain transfer mechanism that also requires the rotation of the crystal lattice is demonstrated. A region of accumulated slip develops perpendicular to the active slip plane in the impinged grain. The slip gradients enable a localized lattice rotation that accommodates the shear strain in the incoming band, preventing the build-up of interfacial stresses. The mechanism operates preferentially at the boundaries between highly misoriented grains. Facilitating strain transfer at these interfaces opens up new possibilities to improve the mechanical properties of polycrystals, as discussed.
doi_str_mv 10.1038/s41598-020-66569-7
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7308395</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2415569405</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-127918b8c99e1ac28f4f273a2d4157eb9435e3317d14d6886c7aefa220c673ef3</originalsourceid><addsrcrecordid>eNp9UE1LAzEUDKLYUvsHPMiC59XkJbtJLkIpfkHBi55Dmk3aLd1sTVql_97UrbVezOG9BzOZGQahS4JvCKbiNjJSSJFjwHlZFqXM-QnqA2ZFDhTg9OjuoWGMC5xeAZIReY56FAqecNFHMMq8_cwaa-ba17HJWpfFddC1z9L00dmQpXvVLrcmbONaL-MFOnNp2eF-D9Dbw_3r-CmfvDw-j0eT3DDO1jkBLomYCiOlJdqAcMwBpxqqlJzbqWS0sJQSXhFWlUKUhmvrNAA2JafW0QG663RXm2ljK2N9SrRUq1A3OmxVq2v1F_H1XM3aD8UpFlQWSeB6LxDa942Na7VoN8GnzApShlQawzsWdCwT2hiDdQcHgtWuatVVrVLV6rvqZDBAV8fZDl9-ik0E2hFigvzMhl_vf2S_AMv7iSc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2415569405</pqid></control><display><type>article</type><title>A new mechanism of strain transfer in polycrystals</title><source>Nature Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Springer Nature OA/Free Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Di Gioacchino, F. ; Edwards, T. E. J. ; Wells, G. N. ; Clegg, W. J.</creator><creatorcontrib>Di Gioacchino, F. ; Edwards, T. E. J. ; Wells, G. N. ; Clegg, W. J.</creatorcontrib><description>At the grain boundaries of plastically deforming polycrystals, strain transfer mechanisms can accommodate the shear strain carried by slip bands and mechanical twins to prevent stress build-ups and damage. So far, only the accommodation obtained through slip (and twinning) alone has been considered in the mechanism known as slip (and twin) transfer. Here, a strain transfer mechanism that also requires the rotation of the crystal lattice is demonstrated. A region of accumulated slip develops perpendicular to the active slip plane in the impinged grain. The slip gradients enable a localized lattice rotation that accommodates the shear strain in the incoming band, preventing the build-up of interfacial stresses. The mechanism operates preferentially at the boundaries between highly misoriented grains. Facilitating strain transfer at these interfaces opens up new possibilities to improve the mechanical properties of polycrystals, as discussed.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-66569-7</identifier><identifier>PMID: 32572048</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/1023/1026 ; 639/301/1034/1036 ; 639/301/930/12 ; Boundaries ; Humanities and Social Sciences ; Interfaces ; Mechanical properties ; multidisciplinary ; Science ; Science (multidisciplinary) ; Shear strain ; Strain</subject><ispartof>Scientific reports, 2020-06, Vol.10 (1), p.10082, Article 10082</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-127918b8c99e1ac28f4f273a2d4157eb9435e3317d14d6886c7aefa220c673ef3</citedby><cites>FETCH-LOGICAL-c474t-127918b8c99e1ac28f4f273a2d4157eb9435e3317d14d6886c7aefa220c673ef3</cites><orcidid>0000-0002-3089-0062 ; 0000-0001-5291-7951</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7308395/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7308395/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,41120,42189,51576,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32572048$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Di Gioacchino, F.</creatorcontrib><creatorcontrib>Edwards, T. E. J.</creatorcontrib><creatorcontrib>Wells, G. N.</creatorcontrib><creatorcontrib>Clegg, W. J.</creatorcontrib><title>A new mechanism of strain transfer in polycrystals</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>At the grain boundaries of plastically deforming polycrystals, strain transfer mechanisms can accommodate the shear strain carried by slip bands and mechanical twins to prevent stress build-ups and damage. So far, only the accommodation obtained through slip (and twinning) alone has been considered in the mechanism known as slip (and twin) transfer. Here, a strain transfer mechanism that also requires the rotation of the crystal lattice is demonstrated. A region of accumulated slip develops perpendicular to the active slip plane in the impinged grain. The slip gradients enable a localized lattice rotation that accommodates the shear strain in the incoming band, preventing the build-up of interfacial stresses. The mechanism operates preferentially at the boundaries between highly misoriented grains. Facilitating strain transfer at these interfaces opens up new possibilities to improve the mechanical properties of polycrystals, as discussed.</description><subject>639/301/1023/1026</subject><subject>639/301/1034/1036</subject><subject>639/301/930/12</subject><subject>Boundaries</subject><subject>Humanities and Social Sciences</subject><subject>Interfaces</subject><subject>Mechanical properties</subject><subject>multidisciplinary</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Shear strain</subject><subject>Strain</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9UE1LAzEUDKLYUvsHPMiC59XkJbtJLkIpfkHBi55Dmk3aLd1sTVql_97UrbVezOG9BzOZGQahS4JvCKbiNjJSSJFjwHlZFqXM-QnqA2ZFDhTg9OjuoWGMC5xeAZIReY56FAqecNFHMMq8_cwaa-ba17HJWpfFddC1z9L00dmQpXvVLrcmbONaL-MFOnNp2eF-D9Dbw_3r-CmfvDw-j0eT3DDO1jkBLomYCiOlJdqAcMwBpxqqlJzbqWS0sJQSXhFWlUKUhmvrNAA2JafW0QG663RXm2ljK2N9SrRUq1A3OmxVq2v1F_H1XM3aD8UpFlQWSeB6LxDa942Na7VoN8GnzApShlQawzsWdCwT2hiDdQcHgtWuatVVrVLV6rvqZDBAV8fZDl9-ik0E2hFigvzMhl_vf2S_AMv7iSc</recordid><startdate>20200622</startdate><enddate>20200622</enddate><creator>Di Gioacchino, F.</creator><creator>Edwards, T. E. J.</creator><creator>Wells, G. N.</creator><creator>Clegg, W. J.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3089-0062</orcidid><orcidid>https://orcid.org/0000-0001-5291-7951</orcidid></search><sort><creationdate>20200622</creationdate><title>A new mechanism of strain transfer in polycrystals</title><author>Di Gioacchino, F. ; Edwards, T. E. J. ; Wells, G. N. ; Clegg, W. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-127918b8c99e1ac28f4f273a2d4157eb9435e3317d14d6886c7aefa220c673ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/301/1023/1026</topic><topic>639/301/1034/1036</topic><topic>639/301/930/12</topic><topic>Boundaries</topic><topic>Humanities and Social Sciences</topic><topic>Interfaces</topic><topic>Mechanical properties</topic><topic>multidisciplinary</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Shear strain</topic><topic>Strain</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Di Gioacchino, F.</creatorcontrib><creatorcontrib>Edwards, T. E. J.</creatorcontrib><creatorcontrib>Wells, G. N.</creatorcontrib><creatorcontrib>Clegg, W. J.</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Di Gioacchino, F.</au><au>Edwards, T. E. J.</au><au>Wells, G. N.</au><au>Clegg, W. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new mechanism of strain transfer in polycrystals</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2020-06-22</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>10082</spage><pages>10082-</pages><artnum>10082</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>At the grain boundaries of plastically deforming polycrystals, strain transfer mechanisms can accommodate the shear strain carried by slip bands and mechanical twins to prevent stress build-ups and damage. So far, only the accommodation obtained through slip (and twinning) alone has been considered in the mechanism known as slip (and twin) transfer. Here, a strain transfer mechanism that also requires the rotation of the crystal lattice is demonstrated. A region of accumulated slip develops perpendicular to the active slip plane in the impinged grain. The slip gradients enable a localized lattice rotation that accommodates the shear strain in the incoming band, preventing the build-up of interfacial stresses. The mechanism operates preferentially at the boundaries between highly misoriented grains. Facilitating strain transfer at these interfaces opens up new possibilities to improve the mechanical properties of polycrystals, as discussed.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32572048</pmid><doi>10.1038/s41598-020-66569-7</doi><orcidid>https://orcid.org/0000-0002-3089-0062</orcidid><orcidid>https://orcid.org/0000-0001-5291-7951</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2020-06, Vol.10 (1), p.10082, Article 10082
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7308395
source Nature Open Access; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Springer Nature OA/Free Journals; Free Full-Text Journals in Chemistry
subjects 639/301/1023/1026
639/301/1034/1036
639/301/930/12
Boundaries
Humanities and Social Sciences
Interfaces
Mechanical properties
multidisciplinary
Science
Science (multidisciplinary)
Shear strain
Strain
title A new mechanism of strain transfer in polycrystals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T04%3A16%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20mechanism%20of%20strain%20transfer%20in%20polycrystals&rft.jtitle=Scientific%20reports&rft.au=Di%20Gioacchino,%20F.&rft.date=2020-06-22&rft.volume=10&rft.issue=1&rft.spage=10082&rft.pages=10082-&rft.artnum=10082&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-66569-7&rft_dat=%3Cproquest_pubme%3E2415569405%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2415569405&rft_id=info:pmid/32572048&rfr_iscdi=true