Evidence for a role of RUNX1 as recombinase cofactor for TCRβ rearrangements and pathological deletions in ETV6-RUNX1 ALL
T-cell receptor gene beta (TCRβ) gene rearrangement represents a complex, tightly regulated molecular mechanism involving excision, deletion and recombination of DNA during T-cell development. RUNX1, a well-known transcription factor for T-cell differentiation, has recently been described to act in...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2020-06, Vol.10 (1), p.10024, Article 10024 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 10024 |
container_title | Scientific reports |
container_volume | 10 |
creator | Seitz, V. Kleo, K. Dröge, A. Schaper, S. Elezkurtaj, S. Bedjaoui, N. Dimitrova, L. Sommerfeld, A. Berg, E. von der Wall, E. Müller, U. Joosten, M. Lenze, D. Heimesaat, M. M. Baldus, C. Zinser, C. Cieslak, A. Macintyre, E. Stocking, C. Hennig, S. Hummel, M. |
description | T-cell receptor gene beta (TCRβ) gene rearrangement represents a complex, tightly regulated molecular mechanism involving excision, deletion and recombination of DNA during T-cell development. RUNX1, a well-known transcription factor for T-cell differentiation, has recently been described to act in addition as a recombinase cofactor for TCRδ gene rearrangements. In this work we employed a RUNX1 knock-out mouse model and demonstrate by deep TCRβ sequencing, immunostaining and chromatin immunoprecipitation that RUNX1 binds to the initiation site of TCRβ rearrangement and its homozygous inactivation induces severe structural changes of the rearranged TCRβ gene, whereas heterozygous inactivation has almost no impact. To compare the mouse model results to the situation in Acute Lymphoblastic Leukemia (ALL) we analyzed TCRβ gene rearrangements in T-ALL samples harboring heterozygous Runx1 mutations. Comparable to the
Runx1
+/−
mouse model, heterozygous Runx1 mutations in T-ALL patients displayed no detectable impact on TCRβ rearrangements. Furthermore, we reanalyzed published sequence data from recurrent deletion borders of ALL patients carrying an
ETV6-RUNX1
translocation. RUNX1 motifs were significantly overrepresented at the deletion ends arguing for a role of RUNX1 in the deletion mechanism. Collectively, our data imply a role of RUNX1 as recombinase cofactor for both physiological and aberrant deletions. |
doi_str_mv | 10.1038/s41598-020-65744-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7308335</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2415569006</sourcerecordid><originalsourceid>FETCH-LOGICAL-c511t-256824ed010949ee8eee1d3b3165f4ae82d98661dc4ee187d2b923309a3c6b223</originalsourceid><addsrcrecordid>eNp9kd9qFDEYxQex2FL7Al5IwFvH5v9kboRlWa0wKJSteBcyyTe7U2aSNZldqI_lg_hMpp1aWy_MTQLnnN-Xj1MUrwh-RzBT54kTUasSU1xKUXFe4mfFCcVclJRR-vzR-7g4S-ka5yNozUn9ojhmVFQUM3lS_FgdegfeAupCRAbFMAAKHbq8-vyNIJNQBBvGtvcmAbKhM3bKvlvvenn562eWTYzGb2AEPyVkvEM7M23DEDa9NQNyMMDUB59Q79Fq_VWWM3nRNC-Lo84MCc7u79Pi6sNqvbwomy8fPy0XTWkFIVNJhVSUg8ME17wGUABAHGsZkaLjBhR1tZKSOMuzoCpH25oyhmvDrGwpZafF-5m727cjOJs_Gs2gd7EfTbzRwfT6qeL7rd6Eg64YVoyJDHg7A7b_xC4Wje59gjhqTJWqmFAHku1v7ufF8H0PadLXYR99XlHTXJqQNcYyu-jssjGkFKF7IBOsbxvWc8OZjPVdwxrn0OvHqzxE_vSZDWw2pCzlVuLf2f_B_gYqGrDK</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2415569006</pqid></control><display><type>article</type><title>Evidence for a role of RUNX1 as recombinase cofactor for TCRβ rearrangements and pathological deletions in ETV6-RUNX1 ALL</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Seitz, V. ; Kleo, K. ; Dröge, A. ; Schaper, S. ; Elezkurtaj, S. ; Bedjaoui, N. ; Dimitrova, L. ; Sommerfeld, A. ; Berg, E. ; von der Wall, E. ; Müller, U. ; Joosten, M. ; Lenze, D. ; Heimesaat, M. M. ; Baldus, C. ; Zinser, C. ; Cieslak, A. ; Macintyre, E. ; Stocking, C. ; Hennig, S. ; Hummel, M.</creator><creatorcontrib>Seitz, V. ; Kleo, K. ; Dröge, A. ; Schaper, S. ; Elezkurtaj, S. ; Bedjaoui, N. ; Dimitrova, L. ; Sommerfeld, A. ; Berg, E. ; von der Wall, E. ; Müller, U. ; Joosten, M. ; Lenze, D. ; Heimesaat, M. M. ; Baldus, C. ; Zinser, C. ; Cieslak, A. ; Macintyre, E. ; Stocking, C. ; Hennig, S. ; Hummel, M.</creatorcontrib><description>T-cell receptor gene beta (TCRβ) gene rearrangement represents a complex, tightly regulated molecular mechanism involving excision, deletion and recombination of DNA during T-cell development. RUNX1, a well-known transcription factor for T-cell differentiation, has recently been described to act in addition as a recombinase cofactor for TCRδ gene rearrangements. In this work we employed a RUNX1 knock-out mouse model and demonstrate by deep TCRβ sequencing, immunostaining and chromatin immunoprecipitation that RUNX1 binds to the initiation site of TCRβ rearrangement and its homozygous inactivation induces severe structural changes of the rearranged TCRβ gene, whereas heterozygous inactivation has almost no impact. To compare the mouse model results to the situation in Acute Lymphoblastic Leukemia (ALL) we analyzed TCRβ gene rearrangements in T-ALL samples harboring heterozygous Runx1 mutations. Comparable to the
Runx1
+/−
mouse model, heterozygous Runx1 mutations in T-ALL patients displayed no detectable impact on TCRβ rearrangements. Furthermore, we reanalyzed published sequence data from recurrent deletion borders of ALL patients carrying an
ETV6-RUNX1
translocation. RUNX1 motifs were significantly overrepresented at the deletion ends arguing for a role of RUNX1 in the deletion mechanism. Collectively, our data imply a role of RUNX1 as recombinase cofactor for both physiological and aberrant deletions.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-65744-0</identifier><identifier>PMID: 32572036</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/51 ; 45 ; 45/15 ; 45/22 ; 45/77 ; 631/181 ; 631/250/1619/554/1775 ; 631/337 ; 631/67 ; 64 ; 64/60 ; Acute lymphoblastic leukemia ; Animals ; B-Lymphocytes ; Biochemistry, Molecular Biology ; Cell differentiation ; Chromatin ; Core Binding Factor Alpha 2 Subunit - genetics ; Core Binding Factor Alpha 2 Subunit - physiology ; ETS Translocation Variant 6 Protein ; Gene Deletion ; Gene rearrangement ; Gene Rearrangement, beta-Chain T-Cell Antigen Receptor - genetics ; Hematology ; Human health and pathology ; Humanities and Social Sciences ; Immunoprecipitation ; Inactivation ; Leukemia ; Life Sciences ; Lymphatic leukemia ; Lymphocyte Count ; Lymphocytes T ; Mice, Knockout ; Molecular biology ; multidisciplinary ; Mutation ; Precursor Cell Lymphoblastic Leukemia-Lymphoma - genetics ; Proto-Oncogene Proteins c-ets - genetics ; Receptors, Antigen, T-Cell, alpha-beta - genetics ; Recombinase ; Recombination ; Repressor Proteins - genetics ; Runx1 protein ; Science ; Science (multidisciplinary) ; T cell receptors ; T-Lymphocytes ; Thymus Gland - pathology ; Translocation</subject><ispartof>Scientific reports, 2020-06, Vol.10 (1), p.10024, Article 10024</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c511t-256824ed010949ee8eee1d3b3165f4ae82d98661dc4ee187d2b923309a3c6b223</citedby><cites>FETCH-LOGICAL-c511t-256824ed010949ee8eee1d3b3165f4ae82d98661dc4ee187d2b923309a3c6b223</cites><orcidid>0000-0003-1015-9448 ; 0000-0003-0520-0493</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7308335/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7308335/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,27905,27906,41101,42170,51557,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32572036$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://inserm.hal.science/inserm-02887358$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Seitz, V.</creatorcontrib><creatorcontrib>Kleo, K.</creatorcontrib><creatorcontrib>Dröge, A.</creatorcontrib><creatorcontrib>Schaper, S.</creatorcontrib><creatorcontrib>Elezkurtaj, S.</creatorcontrib><creatorcontrib>Bedjaoui, N.</creatorcontrib><creatorcontrib>Dimitrova, L.</creatorcontrib><creatorcontrib>Sommerfeld, A.</creatorcontrib><creatorcontrib>Berg, E.</creatorcontrib><creatorcontrib>von der Wall, E.</creatorcontrib><creatorcontrib>Müller, U.</creatorcontrib><creatorcontrib>Joosten, M.</creatorcontrib><creatorcontrib>Lenze, D.</creatorcontrib><creatorcontrib>Heimesaat, M. M.</creatorcontrib><creatorcontrib>Baldus, C.</creatorcontrib><creatorcontrib>Zinser, C.</creatorcontrib><creatorcontrib>Cieslak, A.</creatorcontrib><creatorcontrib>Macintyre, E.</creatorcontrib><creatorcontrib>Stocking, C.</creatorcontrib><creatorcontrib>Hennig, S.</creatorcontrib><creatorcontrib>Hummel, M.</creatorcontrib><title>Evidence for a role of RUNX1 as recombinase cofactor for TCRβ rearrangements and pathological deletions in ETV6-RUNX1 ALL</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>T-cell receptor gene beta (TCRβ) gene rearrangement represents a complex, tightly regulated molecular mechanism involving excision, deletion and recombination of DNA during T-cell development. RUNX1, a well-known transcription factor for T-cell differentiation, has recently been described to act in addition as a recombinase cofactor for TCRδ gene rearrangements. In this work we employed a RUNX1 knock-out mouse model and demonstrate by deep TCRβ sequencing, immunostaining and chromatin immunoprecipitation that RUNX1 binds to the initiation site of TCRβ rearrangement and its homozygous inactivation induces severe structural changes of the rearranged TCRβ gene, whereas heterozygous inactivation has almost no impact. To compare the mouse model results to the situation in Acute Lymphoblastic Leukemia (ALL) we analyzed TCRβ gene rearrangements in T-ALL samples harboring heterozygous Runx1 mutations. Comparable to the
Runx1
+/−
mouse model, heterozygous Runx1 mutations in T-ALL patients displayed no detectable impact on TCRβ rearrangements. Furthermore, we reanalyzed published sequence data from recurrent deletion borders of ALL patients carrying an
ETV6-RUNX1
translocation. RUNX1 motifs were significantly overrepresented at the deletion ends arguing for a role of RUNX1 in the deletion mechanism. Collectively, our data imply a role of RUNX1 as recombinase cofactor for both physiological and aberrant deletions.</description><subject>13/51</subject><subject>45</subject><subject>45/15</subject><subject>45/22</subject><subject>45/77</subject><subject>631/181</subject><subject>631/250/1619/554/1775</subject><subject>631/337</subject><subject>631/67</subject><subject>64</subject><subject>64/60</subject><subject>Acute lymphoblastic leukemia</subject><subject>Animals</subject><subject>B-Lymphocytes</subject><subject>Biochemistry, Molecular Biology</subject><subject>Cell differentiation</subject><subject>Chromatin</subject><subject>Core Binding Factor Alpha 2 Subunit - genetics</subject><subject>Core Binding Factor Alpha 2 Subunit - physiology</subject><subject>ETS Translocation Variant 6 Protein</subject><subject>Gene Deletion</subject><subject>Gene rearrangement</subject><subject>Gene Rearrangement, beta-Chain T-Cell Antigen Receptor - genetics</subject><subject>Hematology</subject><subject>Human health and pathology</subject><subject>Humanities and Social Sciences</subject><subject>Immunoprecipitation</subject><subject>Inactivation</subject><subject>Leukemia</subject><subject>Life Sciences</subject><subject>Lymphatic leukemia</subject><subject>Lymphocyte Count</subject><subject>Lymphocytes T</subject><subject>Mice, Knockout</subject><subject>Molecular biology</subject><subject>multidisciplinary</subject><subject>Mutation</subject><subject>Precursor Cell Lymphoblastic Leukemia-Lymphoma - genetics</subject><subject>Proto-Oncogene Proteins c-ets - genetics</subject><subject>Receptors, Antigen, T-Cell, alpha-beta - genetics</subject><subject>Recombinase</subject><subject>Recombination</subject><subject>Repressor Proteins - genetics</subject><subject>Runx1 protein</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>T cell receptors</subject><subject>T-Lymphocytes</subject><subject>Thymus Gland - pathology</subject><subject>Translocation</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kd9qFDEYxQex2FL7Al5IwFvH5v9kboRlWa0wKJSteBcyyTe7U2aSNZldqI_lg_hMpp1aWy_MTQLnnN-Xj1MUrwh-RzBT54kTUasSU1xKUXFe4mfFCcVclJRR-vzR-7g4S-ka5yNozUn9ojhmVFQUM3lS_FgdegfeAupCRAbFMAAKHbq8-vyNIJNQBBvGtvcmAbKhM3bKvlvvenn562eWTYzGb2AEPyVkvEM7M23DEDa9NQNyMMDUB59Q79Fq_VWWM3nRNC-Lo84MCc7u79Pi6sNqvbwomy8fPy0XTWkFIVNJhVSUg8ME17wGUABAHGsZkaLjBhR1tZKSOMuzoCpH25oyhmvDrGwpZafF-5m727cjOJs_Gs2gd7EfTbzRwfT6qeL7rd6Eg64YVoyJDHg7A7b_xC4Wje59gjhqTJWqmFAHku1v7ufF8H0PadLXYR99XlHTXJqQNcYyu-jssjGkFKF7IBOsbxvWc8OZjPVdwxrn0OvHqzxE_vSZDWw2pCzlVuLf2f_B_gYqGrDK</recordid><startdate>20200622</startdate><enddate>20200622</enddate><creator>Seitz, V.</creator><creator>Kleo, K.</creator><creator>Dröge, A.</creator><creator>Schaper, S.</creator><creator>Elezkurtaj, S.</creator><creator>Bedjaoui, N.</creator><creator>Dimitrova, L.</creator><creator>Sommerfeld, A.</creator><creator>Berg, E.</creator><creator>von der Wall, E.</creator><creator>Müller, U.</creator><creator>Joosten, M.</creator><creator>Lenze, D.</creator><creator>Heimesaat, M. M.</creator><creator>Baldus, C.</creator><creator>Zinser, C.</creator><creator>Cieslak, A.</creator><creator>Macintyre, E.</creator><creator>Stocking, C.</creator><creator>Hennig, S.</creator><creator>Hummel, M.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1015-9448</orcidid><orcidid>https://orcid.org/0000-0003-0520-0493</orcidid></search><sort><creationdate>20200622</creationdate><title>Evidence for a role of RUNX1 as recombinase cofactor for TCRβ rearrangements and pathological deletions in ETV6-RUNX1 ALL</title><author>Seitz, V. ; Kleo, K. ; Dröge, A. ; Schaper, S. ; Elezkurtaj, S. ; Bedjaoui, N. ; Dimitrova, L. ; Sommerfeld, A. ; Berg, E. ; von der Wall, E. ; Müller, U. ; Joosten, M. ; Lenze, D. ; Heimesaat, M. M. ; Baldus, C. ; Zinser, C. ; Cieslak, A. ; Macintyre, E. ; Stocking, C. ; Hennig, S. ; Hummel, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c511t-256824ed010949ee8eee1d3b3165f4ae82d98661dc4ee187d2b923309a3c6b223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>13/51</topic><topic>45</topic><topic>45/15</topic><topic>45/22</topic><topic>45/77</topic><topic>631/181</topic><topic>631/250/1619/554/1775</topic><topic>631/337</topic><topic>631/67</topic><topic>64</topic><topic>64/60</topic><topic>Acute lymphoblastic leukemia</topic><topic>Animals</topic><topic>B-Lymphocytes</topic><topic>Biochemistry, Molecular Biology</topic><topic>Cell differentiation</topic><topic>Chromatin</topic><topic>Core Binding Factor Alpha 2 Subunit - genetics</topic><topic>Core Binding Factor Alpha 2 Subunit - physiology</topic><topic>ETS Translocation Variant 6 Protein</topic><topic>Gene Deletion</topic><topic>Gene rearrangement</topic><topic>Gene Rearrangement, beta-Chain T-Cell Antigen Receptor - genetics</topic><topic>Hematology</topic><topic>Human health and pathology</topic><topic>Humanities and Social Sciences</topic><topic>Immunoprecipitation</topic><topic>Inactivation</topic><topic>Leukemia</topic><topic>Life Sciences</topic><topic>Lymphatic leukemia</topic><topic>Lymphocyte Count</topic><topic>Lymphocytes T</topic><topic>Mice, Knockout</topic><topic>Molecular biology</topic><topic>multidisciplinary</topic><topic>Mutation</topic><topic>Precursor Cell Lymphoblastic Leukemia-Lymphoma - genetics</topic><topic>Proto-Oncogene Proteins c-ets - genetics</topic><topic>Receptors, Antigen, T-Cell, alpha-beta - genetics</topic><topic>Recombinase</topic><topic>Recombination</topic><topic>Repressor Proteins - genetics</topic><topic>Runx1 protein</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>T cell receptors</topic><topic>T-Lymphocytes</topic><topic>Thymus Gland - pathology</topic><topic>Translocation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Seitz, V.</creatorcontrib><creatorcontrib>Kleo, K.</creatorcontrib><creatorcontrib>Dröge, A.</creatorcontrib><creatorcontrib>Schaper, S.</creatorcontrib><creatorcontrib>Elezkurtaj, S.</creatorcontrib><creatorcontrib>Bedjaoui, N.</creatorcontrib><creatorcontrib>Dimitrova, L.</creatorcontrib><creatorcontrib>Sommerfeld, A.</creatorcontrib><creatorcontrib>Berg, E.</creatorcontrib><creatorcontrib>von der Wall, E.</creatorcontrib><creatorcontrib>Müller, U.</creatorcontrib><creatorcontrib>Joosten, M.</creatorcontrib><creatorcontrib>Lenze, D.</creatorcontrib><creatorcontrib>Heimesaat, M. M.</creatorcontrib><creatorcontrib>Baldus, C.</creatorcontrib><creatorcontrib>Zinser, C.</creatorcontrib><creatorcontrib>Cieslak, A.</creatorcontrib><creatorcontrib>Macintyre, E.</creatorcontrib><creatorcontrib>Stocking, C.</creatorcontrib><creatorcontrib>Hennig, S.</creatorcontrib><creatorcontrib>Hummel, M.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Seitz, V.</au><au>Kleo, K.</au><au>Dröge, A.</au><au>Schaper, S.</au><au>Elezkurtaj, S.</au><au>Bedjaoui, N.</au><au>Dimitrova, L.</au><au>Sommerfeld, A.</au><au>Berg, E.</au><au>von der Wall, E.</au><au>Müller, U.</au><au>Joosten, M.</au><au>Lenze, D.</au><au>Heimesaat, M. M.</au><au>Baldus, C.</au><au>Zinser, C.</au><au>Cieslak, A.</au><au>Macintyre, E.</au><au>Stocking, C.</au><au>Hennig, S.</au><au>Hummel, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evidence for a role of RUNX1 as recombinase cofactor for TCRβ rearrangements and pathological deletions in ETV6-RUNX1 ALL</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2020-06-22</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>10024</spage><pages>10024-</pages><artnum>10024</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>T-cell receptor gene beta (TCRβ) gene rearrangement represents a complex, tightly regulated molecular mechanism involving excision, deletion and recombination of DNA during T-cell development. RUNX1, a well-known transcription factor for T-cell differentiation, has recently been described to act in addition as a recombinase cofactor for TCRδ gene rearrangements. In this work we employed a RUNX1 knock-out mouse model and demonstrate by deep TCRβ sequencing, immunostaining and chromatin immunoprecipitation that RUNX1 binds to the initiation site of TCRβ rearrangement and its homozygous inactivation induces severe structural changes of the rearranged TCRβ gene, whereas heterozygous inactivation has almost no impact. To compare the mouse model results to the situation in Acute Lymphoblastic Leukemia (ALL) we analyzed TCRβ gene rearrangements in T-ALL samples harboring heterozygous Runx1 mutations. Comparable to the
Runx1
+/−
mouse model, heterozygous Runx1 mutations in T-ALL patients displayed no detectable impact on TCRβ rearrangements. Furthermore, we reanalyzed published sequence data from recurrent deletion borders of ALL patients carrying an
ETV6-RUNX1
translocation. RUNX1 motifs were significantly overrepresented at the deletion ends arguing for a role of RUNX1 in the deletion mechanism. Collectively, our data imply a role of RUNX1 as recombinase cofactor for both physiological and aberrant deletions.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32572036</pmid><doi>10.1038/s41598-020-65744-0</doi><orcidid>https://orcid.org/0000-0003-1015-9448</orcidid><orcidid>https://orcid.org/0000-0003-0520-0493</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2020-06, Vol.10 (1), p.10024, Article 10024 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7308335 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature OA Free Journals; Nature Free; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | 13/51 45 45/15 45/22 45/77 631/181 631/250/1619/554/1775 631/337 631/67 64 64/60 Acute lymphoblastic leukemia Animals B-Lymphocytes Biochemistry, Molecular Biology Cell differentiation Chromatin Core Binding Factor Alpha 2 Subunit - genetics Core Binding Factor Alpha 2 Subunit - physiology ETS Translocation Variant 6 Protein Gene Deletion Gene rearrangement Gene Rearrangement, beta-Chain T-Cell Antigen Receptor - genetics Hematology Human health and pathology Humanities and Social Sciences Immunoprecipitation Inactivation Leukemia Life Sciences Lymphatic leukemia Lymphocyte Count Lymphocytes T Mice, Knockout Molecular biology multidisciplinary Mutation Precursor Cell Lymphoblastic Leukemia-Lymphoma - genetics Proto-Oncogene Proteins c-ets - genetics Receptors, Antigen, T-Cell, alpha-beta - genetics Recombinase Recombination Repressor Proteins - genetics Runx1 protein Science Science (multidisciplinary) T cell receptors T-Lymphocytes Thymus Gland - pathology Translocation |
title | Evidence for a role of RUNX1 as recombinase cofactor for TCRβ rearrangements and pathological deletions in ETV6-RUNX1 ALL |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T07%3A39%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evidence%20for%20a%20role%20of%20RUNX1%20as%20recombinase%20cofactor%20for%20TCR%CE%B2%20rearrangements%20and%20pathological%20deletions%20in%20ETV6-RUNX1%20ALL&rft.jtitle=Scientific%20reports&rft.au=Seitz,%20V.&rft.date=2020-06-22&rft.volume=10&rft.issue=1&rft.spage=10024&rft.pages=10024-&rft.artnum=10024&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-65744-0&rft_dat=%3Cproquest_pubme%3E2415569006%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2415569006&rft_id=info:pmid/32572036&rfr_iscdi=true |