Evidence for a role of RUNX1 as recombinase cofactor for TCRβ rearrangements and pathological deletions in ETV6-RUNX1 ALL

T-cell receptor gene beta (TCRβ) gene rearrangement represents a complex, tightly regulated molecular mechanism involving excision, deletion and recombination of DNA during T-cell development. RUNX1, a well-known transcription factor for T-cell differentiation, has recently been described to act in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2020-06, Vol.10 (1), p.10024, Article 10024
Hauptverfasser: Seitz, V., Kleo, K., Dröge, A., Schaper, S., Elezkurtaj, S., Bedjaoui, N., Dimitrova, L., Sommerfeld, A., Berg, E., von der Wall, E., Müller, U., Joosten, M., Lenze, D., Heimesaat, M. M., Baldus, C., Zinser, C., Cieslak, A., Macintyre, E., Stocking, C., Hennig, S., Hummel, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 10024
container_title Scientific reports
container_volume 10
creator Seitz, V.
Kleo, K.
Dröge, A.
Schaper, S.
Elezkurtaj, S.
Bedjaoui, N.
Dimitrova, L.
Sommerfeld, A.
Berg, E.
von der Wall, E.
Müller, U.
Joosten, M.
Lenze, D.
Heimesaat, M. M.
Baldus, C.
Zinser, C.
Cieslak, A.
Macintyre, E.
Stocking, C.
Hennig, S.
Hummel, M.
description T-cell receptor gene beta (TCRβ) gene rearrangement represents a complex, tightly regulated molecular mechanism involving excision, deletion and recombination of DNA during T-cell development. RUNX1, a well-known transcription factor for T-cell differentiation, has recently been described to act in addition as a recombinase cofactor for TCRδ gene rearrangements. In this work we employed a RUNX1 knock-out mouse model and demonstrate by deep TCRβ sequencing, immunostaining and chromatin immunoprecipitation that RUNX1 binds to the initiation site of TCRβ rearrangement and its homozygous inactivation induces severe structural changes of the rearranged TCRβ gene, whereas heterozygous inactivation has almost no impact. To compare the mouse model results to the situation in Acute Lymphoblastic Leukemia (ALL) we analyzed TCRβ gene rearrangements in T-ALL samples harboring heterozygous Runx1 mutations. Comparable to the Runx1 +/− mouse model, heterozygous Runx1 mutations in T-ALL patients displayed no detectable impact on TCRβ rearrangements. Furthermore, we reanalyzed published sequence data from recurrent deletion borders of ALL patients carrying an ETV6-RUNX1 translocation. RUNX1 motifs were significantly overrepresented at the deletion ends arguing for a role of RUNX1 in the deletion mechanism. Collectively, our data imply a role of RUNX1 as recombinase cofactor for both physiological and aberrant deletions.
doi_str_mv 10.1038/s41598-020-65744-0
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7308335</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2415569006</sourcerecordid><originalsourceid>FETCH-LOGICAL-c511t-256824ed010949ee8eee1d3b3165f4ae82d98661dc4ee187d2b923309a3c6b223</originalsourceid><addsrcrecordid>eNp9kd9qFDEYxQex2FL7Al5IwFvH5v9kboRlWa0wKJSteBcyyTe7U2aSNZldqI_lg_hMpp1aWy_MTQLnnN-Xj1MUrwh-RzBT54kTUasSU1xKUXFe4mfFCcVclJRR-vzR-7g4S-ka5yNozUn9ojhmVFQUM3lS_FgdegfeAupCRAbFMAAKHbq8-vyNIJNQBBvGtvcmAbKhM3bKvlvvenn562eWTYzGb2AEPyVkvEM7M23DEDa9NQNyMMDUB59Q79Fq_VWWM3nRNC-Lo84MCc7u79Pi6sNqvbwomy8fPy0XTWkFIVNJhVSUg8ME17wGUABAHGsZkaLjBhR1tZKSOMuzoCpH25oyhmvDrGwpZafF-5m727cjOJs_Gs2gd7EfTbzRwfT6qeL7rd6Eg64YVoyJDHg7A7b_xC4Wje59gjhqTJWqmFAHku1v7ufF8H0PadLXYR99XlHTXJqQNcYyu-jssjGkFKF7IBOsbxvWc8OZjPVdwxrn0OvHqzxE_vSZDWw2pCzlVuLf2f_B_gYqGrDK</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2415569006</pqid></control><display><type>article</type><title>Evidence for a role of RUNX1 as recombinase cofactor for TCRβ rearrangements and pathological deletions in ETV6-RUNX1 ALL</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Seitz, V. ; Kleo, K. ; Dröge, A. ; Schaper, S. ; Elezkurtaj, S. ; Bedjaoui, N. ; Dimitrova, L. ; Sommerfeld, A. ; Berg, E. ; von der Wall, E. ; Müller, U. ; Joosten, M. ; Lenze, D. ; Heimesaat, M. M. ; Baldus, C. ; Zinser, C. ; Cieslak, A. ; Macintyre, E. ; Stocking, C. ; Hennig, S. ; Hummel, M.</creator><creatorcontrib>Seitz, V. ; Kleo, K. ; Dröge, A. ; Schaper, S. ; Elezkurtaj, S. ; Bedjaoui, N. ; Dimitrova, L. ; Sommerfeld, A. ; Berg, E. ; von der Wall, E. ; Müller, U. ; Joosten, M. ; Lenze, D. ; Heimesaat, M. M. ; Baldus, C. ; Zinser, C. ; Cieslak, A. ; Macintyre, E. ; Stocking, C. ; Hennig, S. ; Hummel, M.</creatorcontrib><description>T-cell receptor gene beta (TCRβ) gene rearrangement represents a complex, tightly regulated molecular mechanism involving excision, deletion and recombination of DNA during T-cell development. RUNX1, a well-known transcription factor for T-cell differentiation, has recently been described to act in addition as a recombinase cofactor for TCRδ gene rearrangements. In this work we employed a RUNX1 knock-out mouse model and demonstrate by deep TCRβ sequencing, immunostaining and chromatin immunoprecipitation that RUNX1 binds to the initiation site of TCRβ rearrangement and its homozygous inactivation induces severe structural changes of the rearranged TCRβ gene, whereas heterozygous inactivation has almost no impact. To compare the mouse model results to the situation in Acute Lymphoblastic Leukemia (ALL) we analyzed TCRβ gene rearrangements in T-ALL samples harboring heterozygous Runx1 mutations. Comparable to the Runx1 +/− mouse model, heterozygous Runx1 mutations in T-ALL patients displayed no detectable impact on TCRβ rearrangements. Furthermore, we reanalyzed published sequence data from recurrent deletion borders of ALL patients carrying an ETV6-RUNX1 translocation. RUNX1 motifs were significantly overrepresented at the deletion ends arguing for a role of RUNX1 in the deletion mechanism. Collectively, our data imply a role of RUNX1 as recombinase cofactor for both physiological and aberrant deletions.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-65744-0</identifier><identifier>PMID: 32572036</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/51 ; 45 ; 45/15 ; 45/22 ; 45/77 ; 631/181 ; 631/250/1619/554/1775 ; 631/337 ; 631/67 ; 64 ; 64/60 ; Acute lymphoblastic leukemia ; Animals ; B-Lymphocytes ; Biochemistry, Molecular Biology ; Cell differentiation ; Chromatin ; Core Binding Factor Alpha 2 Subunit - genetics ; Core Binding Factor Alpha 2 Subunit - physiology ; ETS Translocation Variant 6 Protein ; Gene Deletion ; Gene rearrangement ; Gene Rearrangement, beta-Chain T-Cell Antigen Receptor - genetics ; Hematology ; Human health and pathology ; Humanities and Social Sciences ; Immunoprecipitation ; Inactivation ; Leukemia ; Life Sciences ; Lymphatic leukemia ; Lymphocyte Count ; Lymphocytes T ; Mice, Knockout ; Molecular biology ; multidisciplinary ; Mutation ; Precursor Cell Lymphoblastic Leukemia-Lymphoma - genetics ; Proto-Oncogene Proteins c-ets - genetics ; Receptors, Antigen, T-Cell, alpha-beta - genetics ; Recombinase ; Recombination ; Repressor Proteins - genetics ; Runx1 protein ; Science ; Science (multidisciplinary) ; T cell receptors ; T-Lymphocytes ; Thymus Gland - pathology ; Translocation</subject><ispartof>Scientific reports, 2020-06, Vol.10 (1), p.10024, Article 10024</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c511t-256824ed010949ee8eee1d3b3165f4ae82d98661dc4ee187d2b923309a3c6b223</citedby><cites>FETCH-LOGICAL-c511t-256824ed010949ee8eee1d3b3165f4ae82d98661dc4ee187d2b923309a3c6b223</cites><orcidid>0000-0003-1015-9448 ; 0000-0003-0520-0493</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7308335/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7308335/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,27905,27906,41101,42170,51557,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32572036$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://inserm.hal.science/inserm-02887358$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Seitz, V.</creatorcontrib><creatorcontrib>Kleo, K.</creatorcontrib><creatorcontrib>Dröge, A.</creatorcontrib><creatorcontrib>Schaper, S.</creatorcontrib><creatorcontrib>Elezkurtaj, S.</creatorcontrib><creatorcontrib>Bedjaoui, N.</creatorcontrib><creatorcontrib>Dimitrova, L.</creatorcontrib><creatorcontrib>Sommerfeld, A.</creatorcontrib><creatorcontrib>Berg, E.</creatorcontrib><creatorcontrib>von der Wall, E.</creatorcontrib><creatorcontrib>Müller, U.</creatorcontrib><creatorcontrib>Joosten, M.</creatorcontrib><creatorcontrib>Lenze, D.</creatorcontrib><creatorcontrib>Heimesaat, M. M.</creatorcontrib><creatorcontrib>Baldus, C.</creatorcontrib><creatorcontrib>Zinser, C.</creatorcontrib><creatorcontrib>Cieslak, A.</creatorcontrib><creatorcontrib>Macintyre, E.</creatorcontrib><creatorcontrib>Stocking, C.</creatorcontrib><creatorcontrib>Hennig, S.</creatorcontrib><creatorcontrib>Hummel, M.</creatorcontrib><title>Evidence for a role of RUNX1 as recombinase cofactor for TCRβ rearrangements and pathological deletions in ETV6-RUNX1 ALL</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>T-cell receptor gene beta (TCRβ) gene rearrangement represents a complex, tightly regulated molecular mechanism involving excision, deletion and recombination of DNA during T-cell development. RUNX1, a well-known transcription factor for T-cell differentiation, has recently been described to act in addition as a recombinase cofactor for TCRδ gene rearrangements. In this work we employed a RUNX1 knock-out mouse model and demonstrate by deep TCRβ sequencing, immunostaining and chromatin immunoprecipitation that RUNX1 binds to the initiation site of TCRβ rearrangement and its homozygous inactivation induces severe structural changes of the rearranged TCRβ gene, whereas heterozygous inactivation has almost no impact. To compare the mouse model results to the situation in Acute Lymphoblastic Leukemia (ALL) we analyzed TCRβ gene rearrangements in T-ALL samples harboring heterozygous Runx1 mutations. Comparable to the Runx1 +/− mouse model, heterozygous Runx1 mutations in T-ALL patients displayed no detectable impact on TCRβ rearrangements. Furthermore, we reanalyzed published sequence data from recurrent deletion borders of ALL patients carrying an ETV6-RUNX1 translocation. RUNX1 motifs were significantly overrepresented at the deletion ends arguing for a role of RUNX1 in the deletion mechanism. Collectively, our data imply a role of RUNX1 as recombinase cofactor for both physiological and aberrant deletions.</description><subject>13/51</subject><subject>45</subject><subject>45/15</subject><subject>45/22</subject><subject>45/77</subject><subject>631/181</subject><subject>631/250/1619/554/1775</subject><subject>631/337</subject><subject>631/67</subject><subject>64</subject><subject>64/60</subject><subject>Acute lymphoblastic leukemia</subject><subject>Animals</subject><subject>B-Lymphocytes</subject><subject>Biochemistry, Molecular Biology</subject><subject>Cell differentiation</subject><subject>Chromatin</subject><subject>Core Binding Factor Alpha 2 Subunit - genetics</subject><subject>Core Binding Factor Alpha 2 Subunit - physiology</subject><subject>ETS Translocation Variant 6 Protein</subject><subject>Gene Deletion</subject><subject>Gene rearrangement</subject><subject>Gene Rearrangement, beta-Chain T-Cell Antigen Receptor - genetics</subject><subject>Hematology</subject><subject>Human health and pathology</subject><subject>Humanities and Social Sciences</subject><subject>Immunoprecipitation</subject><subject>Inactivation</subject><subject>Leukemia</subject><subject>Life Sciences</subject><subject>Lymphatic leukemia</subject><subject>Lymphocyte Count</subject><subject>Lymphocytes T</subject><subject>Mice, Knockout</subject><subject>Molecular biology</subject><subject>multidisciplinary</subject><subject>Mutation</subject><subject>Precursor Cell Lymphoblastic Leukemia-Lymphoma - genetics</subject><subject>Proto-Oncogene Proteins c-ets - genetics</subject><subject>Receptors, Antigen, T-Cell, alpha-beta - genetics</subject><subject>Recombinase</subject><subject>Recombination</subject><subject>Repressor Proteins - genetics</subject><subject>Runx1 protein</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>T cell receptors</subject><subject>T-Lymphocytes</subject><subject>Thymus Gland - pathology</subject><subject>Translocation</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kd9qFDEYxQex2FL7Al5IwFvH5v9kboRlWa0wKJSteBcyyTe7U2aSNZldqI_lg_hMpp1aWy_MTQLnnN-Xj1MUrwh-RzBT54kTUasSU1xKUXFe4mfFCcVclJRR-vzR-7g4S-ka5yNozUn9ojhmVFQUM3lS_FgdegfeAupCRAbFMAAKHbq8-vyNIJNQBBvGtvcmAbKhM3bKvlvvenn562eWTYzGb2AEPyVkvEM7M23DEDa9NQNyMMDUB59Q79Fq_VWWM3nRNC-Lo84MCc7u79Pi6sNqvbwomy8fPy0XTWkFIVNJhVSUg8ME17wGUABAHGsZkaLjBhR1tZKSOMuzoCpH25oyhmvDrGwpZafF-5m727cjOJs_Gs2gd7EfTbzRwfT6qeL7rd6Eg64YVoyJDHg7A7b_xC4Wje59gjhqTJWqmFAHku1v7ufF8H0PadLXYR99XlHTXJqQNcYyu-jssjGkFKF7IBOsbxvWc8OZjPVdwxrn0OvHqzxE_vSZDWw2pCzlVuLf2f_B_gYqGrDK</recordid><startdate>20200622</startdate><enddate>20200622</enddate><creator>Seitz, V.</creator><creator>Kleo, K.</creator><creator>Dröge, A.</creator><creator>Schaper, S.</creator><creator>Elezkurtaj, S.</creator><creator>Bedjaoui, N.</creator><creator>Dimitrova, L.</creator><creator>Sommerfeld, A.</creator><creator>Berg, E.</creator><creator>von der Wall, E.</creator><creator>Müller, U.</creator><creator>Joosten, M.</creator><creator>Lenze, D.</creator><creator>Heimesaat, M. M.</creator><creator>Baldus, C.</creator><creator>Zinser, C.</creator><creator>Cieslak, A.</creator><creator>Macintyre, E.</creator><creator>Stocking, C.</creator><creator>Hennig, S.</creator><creator>Hummel, M.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1015-9448</orcidid><orcidid>https://orcid.org/0000-0003-0520-0493</orcidid></search><sort><creationdate>20200622</creationdate><title>Evidence for a role of RUNX1 as recombinase cofactor for TCRβ rearrangements and pathological deletions in ETV6-RUNX1 ALL</title><author>Seitz, V. ; Kleo, K. ; Dröge, A. ; Schaper, S. ; Elezkurtaj, S. ; Bedjaoui, N. ; Dimitrova, L. ; Sommerfeld, A. ; Berg, E. ; von der Wall, E. ; Müller, U. ; Joosten, M. ; Lenze, D. ; Heimesaat, M. M. ; Baldus, C. ; Zinser, C. ; Cieslak, A. ; Macintyre, E. ; Stocking, C. ; Hennig, S. ; Hummel, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c511t-256824ed010949ee8eee1d3b3165f4ae82d98661dc4ee187d2b923309a3c6b223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>13/51</topic><topic>45</topic><topic>45/15</topic><topic>45/22</topic><topic>45/77</topic><topic>631/181</topic><topic>631/250/1619/554/1775</topic><topic>631/337</topic><topic>631/67</topic><topic>64</topic><topic>64/60</topic><topic>Acute lymphoblastic leukemia</topic><topic>Animals</topic><topic>B-Lymphocytes</topic><topic>Biochemistry, Molecular Biology</topic><topic>Cell differentiation</topic><topic>Chromatin</topic><topic>Core Binding Factor Alpha 2 Subunit - genetics</topic><topic>Core Binding Factor Alpha 2 Subunit - physiology</topic><topic>ETS Translocation Variant 6 Protein</topic><topic>Gene Deletion</topic><topic>Gene rearrangement</topic><topic>Gene Rearrangement, beta-Chain T-Cell Antigen Receptor - genetics</topic><topic>Hematology</topic><topic>Human health and pathology</topic><topic>Humanities and Social Sciences</topic><topic>Immunoprecipitation</topic><topic>Inactivation</topic><topic>Leukemia</topic><topic>Life Sciences</topic><topic>Lymphatic leukemia</topic><topic>Lymphocyte Count</topic><topic>Lymphocytes T</topic><topic>Mice, Knockout</topic><topic>Molecular biology</topic><topic>multidisciplinary</topic><topic>Mutation</topic><topic>Precursor Cell Lymphoblastic Leukemia-Lymphoma - genetics</topic><topic>Proto-Oncogene Proteins c-ets - genetics</topic><topic>Receptors, Antigen, T-Cell, alpha-beta - genetics</topic><topic>Recombinase</topic><topic>Recombination</topic><topic>Repressor Proteins - genetics</topic><topic>Runx1 protein</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>T cell receptors</topic><topic>T-Lymphocytes</topic><topic>Thymus Gland - pathology</topic><topic>Translocation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Seitz, V.</creatorcontrib><creatorcontrib>Kleo, K.</creatorcontrib><creatorcontrib>Dröge, A.</creatorcontrib><creatorcontrib>Schaper, S.</creatorcontrib><creatorcontrib>Elezkurtaj, S.</creatorcontrib><creatorcontrib>Bedjaoui, N.</creatorcontrib><creatorcontrib>Dimitrova, L.</creatorcontrib><creatorcontrib>Sommerfeld, A.</creatorcontrib><creatorcontrib>Berg, E.</creatorcontrib><creatorcontrib>von der Wall, E.</creatorcontrib><creatorcontrib>Müller, U.</creatorcontrib><creatorcontrib>Joosten, M.</creatorcontrib><creatorcontrib>Lenze, D.</creatorcontrib><creatorcontrib>Heimesaat, M. M.</creatorcontrib><creatorcontrib>Baldus, C.</creatorcontrib><creatorcontrib>Zinser, C.</creatorcontrib><creatorcontrib>Cieslak, A.</creatorcontrib><creatorcontrib>Macintyre, E.</creatorcontrib><creatorcontrib>Stocking, C.</creatorcontrib><creatorcontrib>Hennig, S.</creatorcontrib><creatorcontrib>Hummel, M.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Seitz, V.</au><au>Kleo, K.</au><au>Dröge, A.</au><au>Schaper, S.</au><au>Elezkurtaj, S.</au><au>Bedjaoui, N.</au><au>Dimitrova, L.</au><au>Sommerfeld, A.</au><au>Berg, E.</au><au>von der Wall, E.</au><au>Müller, U.</au><au>Joosten, M.</au><au>Lenze, D.</au><au>Heimesaat, M. M.</au><au>Baldus, C.</au><au>Zinser, C.</au><au>Cieslak, A.</au><au>Macintyre, E.</au><au>Stocking, C.</au><au>Hennig, S.</au><au>Hummel, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evidence for a role of RUNX1 as recombinase cofactor for TCRβ rearrangements and pathological deletions in ETV6-RUNX1 ALL</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2020-06-22</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>10024</spage><pages>10024-</pages><artnum>10024</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>T-cell receptor gene beta (TCRβ) gene rearrangement represents a complex, tightly regulated molecular mechanism involving excision, deletion and recombination of DNA during T-cell development. RUNX1, a well-known transcription factor for T-cell differentiation, has recently been described to act in addition as a recombinase cofactor for TCRδ gene rearrangements. In this work we employed a RUNX1 knock-out mouse model and demonstrate by deep TCRβ sequencing, immunostaining and chromatin immunoprecipitation that RUNX1 binds to the initiation site of TCRβ rearrangement and its homozygous inactivation induces severe structural changes of the rearranged TCRβ gene, whereas heterozygous inactivation has almost no impact. To compare the mouse model results to the situation in Acute Lymphoblastic Leukemia (ALL) we analyzed TCRβ gene rearrangements in T-ALL samples harboring heterozygous Runx1 mutations. Comparable to the Runx1 +/− mouse model, heterozygous Runx1 mutations in T-ALL patients displayed no detectable impact on TCRβ rearrangements. Furthermore, we reanalyzed published sequence data from recurrent deletion borders of ALL patients carrying an ETV6-RUNX1 translocation. RUNX1 motifs were significantly overrepresented at the deletion ends arguing for a role of RUNX1 in the deletion mechanism. Collectively, our data imply a role of RUNX1 as recombinase cofactor for both physiological and aberrant deletions.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32572036</pmid><doi>10.1038/s41598-020-65744-0</doi><orcidid>https://orcid.org/0000-0003-1015-9448</orcidid><orcidid>https://orcid.org/0000-0003-0520-0493</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2020-06, Vol.10 (1), p.10024, Article 10024
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7308335
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature OA Free Journals; Nature Free; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects 13/51
45
45/15
45/22
45/77
631/181
631/250/1619/554/1775
631/337
631/67
64
64/60
Acute lymphoblastic leukemia
Animals
B-Lymphocytes
Biochemistry, Molecular Biology
Cell differentiation
Chromatin
Core Binding Factor Alpha 2 Subunit - genetics
Core Binding Factor Alpha 2 Subunit - physiology
ETS Translocation Variant 6 Protein
Gene Deletion
Gene rearrangement
Gene Rearrangement, beta-Chain T-Cell Antigen Receptor - genetics
Hematology
Human health and pathology
Humanities and Social Sciences
Immunoprecipitation
Inactivation
Leukemia
Life Sciences
Lymphatic leukemia
Lymphocyte Count
Lymphocytes T
Mice, Knockout
Molecular biology
multidisciplinary
Mutation
Precursor Cell Lymphoblastic Leukemia-Lymphoma - genetics
Proto-Oncogene Proteins c-ets - genetics
Receptors, Antigen, T-Cell, alpha-beta - genetics
Recombinase
Recombination
Repressor Proteins - genetics
Runx1 protein
Science
Science (multidisciplinary)
T cell receptors
T-Lymphocytes
Thymus Gland - pathology
Translocation
title Evidence for a role of RUNX1 as recombinase cofactor for TCRβ rearrangements and pathological deletions in ETV6-RUNX1 ALL
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T07%3A39%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evidence%20for%20a%20role%20of%20RUNX1%20as%20recombinase%20cofactor%20for%20TCR%CE%B2%20rearrangements%20and%20pathological%20deletions%20in%20ETV6-RUNX1%20ALL&rft.jtitle=Scientific%20reports&rft.au=Seitz,%20V.&rft.date=2020-06-22&rft.volume=10&rft.issue=1&rft.spage=10024&rft.pages=10024-&rft.artnum=10024&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-65744-0&rft_dat=%3Cproquest_pubme%3E2415569006%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2415569006&rft_id=info:pmid/32572036&rfr_iscdi=true