NBS1 is required for SPO11-linked DNA double-strand break repair in male meiosis

DNA double-strand breaks (DSBs) pose a serious threat to genomic stability. Paradoxically, hundreds of programed DSBs are generated by SPO11 in meiotic prophase, which are exclusively repaired by homologous recombination (HR) to promote obligate crossover between homologous chromosomes. In somatic c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell death and differentiation 2020-07, Vol.27 (7), p.2176-2190
Hauptverfasser: Zhang, Bin, Tang, Zhenghui, Li, Lejun, Lu, Lin-Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2190
container_issue 7
container_start_page 2176
container_title Cell death and differentiation
container_volume 27
creator Zhang, Bin
Tang, Zhenghui
Li, Lejun
Lu, Lin-Yu
description DNA double-strand breaks (DSBs) pose a serious threat to genomic stability. Paradoxically, hundreds of programed DSBs are generated by SPO11 in meiotic prophase, which are exclusively repaired by homologous recombination (HR) to promote obligate crossover between homologous chromosomes. In somatic cells, MRE11-RAD50-NBS1 (MRN) complex-dependent DNA end resection is a prerequisite for HR repair, especially for DSBs that are covalently linked with proteins or chemicals. Interestingly, all meiotic DSBs are linked with SPO11 after being generated. Although MRN complex’s function in meiotic DSB repair has been established in lower organisms, the role of MRN complex in mammalian meiotic DSB repair is not clear. Here, we show that MRN complex is essential for repairing meiotic SPO11-linked DSBs in male mice. In male germ cells, conditional inactivation of NBS1, a key component of MRN complex, causes dramatic reduction of DNA end resection and defective HR repair in meiotic prophase. NBS1 loss severely disrupts chromosome synapsis, generates abnormal chromosome structures, and eventually leads to meiotic arrest and male infertility in mice. Unlike in somatic cells, the recruitment of NBS1 to SPO11-linked DSB sites is MDC1-independent but requires other phosphorylated proteins. Collectively, our study not only reveals the significance of MRN complex in repairing meiotic DSBs but also discovers a unique mechanism that recruits MRN complex to SPO11-linked DSB sites.
doi_str_mv 10.1038/s41418-020-0493-4
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7308329</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2475041740</sourcerecordid><originalsourceid>FETCH-LOGICAL-c498t-6492b93bef1dca659d6ca41aac0bbb921810fd0008d0307ab5ac092733fdac663</originalsourceid><addsrcrecordid>eNp9UcluFTEQHCEissAHcEGWuHAx6R5v4wtSCGGRoiRS4GzZY09wMjN-sd8g5e_jpxfCIsHJLVd1dXVX07xEeIvAusPCkWNHoQUKXDPKnzR7yJWkggN7WmsmgGrgarfZL-UaAKTS8lmzy1BLARL3mouz95dIYiE53C4xB0-GlMnlxTkiHeN8Uz8-nB0RnxY3BlrW2c6euBzsTe1Y2ZhJnMlkx0CmEFOJ5XmzM9ixhBcP70Hz7ePJ1-PP9PT805fjo1Pac92tqeS6dZq5MKDvrRTay95ytLYH55xusUMYfHXceWCgrBMV0a1ibPC2l5IdNO-2uqvFTcH3Ya7eRrPKcbL5ziQbzZ_IHL-bq_TDKAYda3UVePMgkNPtEsraTLH0YRztHNJSTMt4PR9TYjPr9V_U67Tkua5nWq4EcFT14P9loRCy6xArC7esPqdSchgeLSOYTapmm6qpqZpNqobXnle_7_rY8TPGSmi3hFKh-SrkX6P_rXoPcYCq7Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2415568811</pqid></control><display><type>article</type><title>NBS1 is required for SPO11-linked DNA double-strand break repair in male meiosis</title><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>SpringerLink Journals - AutoHoldings</source><creator>Zhang, Bin ; Tang, Zhenghui ; Li, Lejun ; Lu, Lin-Yu</creator><creatorcontrib>Zhang, Bin ; Tang, Zhenghui ; Li, Lejun ; Lu, Lin-Yu</creatorcontrib><description>DNA double-strand breaks (DSBs) pose a serious threat to genomic stability. Paradoxically, hundreds of programed DSBs are generated by SPO11 in meiotic prophase, which are exclusively repaired by homologous recombination (HR) to promote obligate crossover between homologous chromosomes. In somatic cells, MRE11-RAD50-NBS1 (MRN) complex-dependent DNA end resection is a prerequisite for HR repair, especially for DSBs that are covalently linked with proteins or chemicals. Interestingly, all meiotic DSBs are linked with SPO11 after being generated. Although MRN complex’s function in meiotic DSB repair has been established in lower organisms, the role of MRN complex in mammalian meiotic DSB repair is not clear. Here, we show that MRN complex is essential for repairing meiotic SPO11-linked DSBs in male mice. In male germ cells, conditional inactivation of NBS1, a key component of MRN complex, causes dramatic reduction of DNA end resection and defective HR repair in meiotic prophase. NBS1 loss severely disrupts chromosome synapsis, generates abnormal chromosome structures, and eventually leads to meiotic arrest and male infertility in mice. Unlike in somatic cells, the recruitment of NBS1 to SPO11-linked DSB sites is MDC1-independent but requires other phosphorylated proteins. Collectively, our study not only reveals the significance of MRN complex in repairing meiotic DSBs but also discovers a unique mechanism that recruits MRN complex to SPO11-linked DSB sites.</description><identifier>ISSN: 1350-9047</identifier><identifier>EISSN: 1476-5403</identifier><identifier>DOI: 10.1038/s41418-020-0493-4</identifier><identifier>PMID: 31965061</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/95 ; 14/19 ; 631/337 ; 631/80 ; 82/80 ; Apoptosis ; Biochemistry ; Biomedical and Life Sciences ; Cell Biology ; Cell Cycle Analysis ; Chromosomes ; Deoxyribonucleic acid ; DNA ; DNA damage ; DNA repair ; Double-strand break repair ; Germ cells ; Homologous recombination ; Infertility ; Life Sciences ; Meiosis ; MRE11 protein ; Prophase ; Somatic cells ; Stem Cells ; Yeast ; Zebrafish</subject><ispartof>Cell death and differentiation, 2020-07, Vol.27 (7), p.2176-2190</ispartof><rights>The Author(s), under exclusive licence to ADMC Associazione Differenziamento e Morte Cellulare 2020</rights><rights>The Author(s), under exclusive licence to ADMC Associazione Differenziamento e Morte Cellulare 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s), under exclusive licence to ADMC Associazione Differenziamento e Morte Cellulare 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c498t-6492b93bef1dca659d6ca41aac0bbb921810fd0008d0307ab5ac092733fdac663</citedby><cites>FETCH-LOGICAL-c498t-6492b93bef1dca659d6ca41aac0bbb921810fd0008d0307ab5ac092733fdac663</cites><orcidid>0000-0002-7665-6650</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7308329/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7308329/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,41488,42557,51319,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31965061$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Bin</creatorcontrib><creatorcontrib>Tang, Zhenghui</creatorcontrib><creatorcontrib>Li, Lejun</creatorcontrib><creatorcontrib>Lu, Lin-Yu</creatorcontrib><title>NBS1 is required for SPO11-linked DNA double-strand break repair in male meiosis</title><title>Cell death and differentiation</title><addtitle>Cell Death Differ</addtitle><addtitle>Cell Death Differ</addtitle><description>DNA double-strand breaks (DSBs) pose a serious threat to genomic stability. Paradoxically, hundreds of programed DSBs are generated by SPO11 in meiotic prophase, which are exclusively repaired by homologous recombination (HR) to promote obligate crossover between homologous chromosomes. In somatic cells, MRE11-RAD50-NBS1 (MRN) complex-dependent DNA end resection is a prerequisite for HR repair, especially for DSBs that are covalently linked with proteins or chemicals. Interestingly, all meiotic DSBs are linked with SPO11 after being generated. Although MRN complex’s function in meiotic DSB repair has been established in lower organisms, the role of MRN complex in mammalian meiotic DSB repair is not clear. Here, we show that MRN complex is essential for repairing meiotic SPO11-linked DSBs in male mice. In male germ cells, conditional inactivation of NBS1, a key component of MRN complex, causes dramatic reduction of DNA end resection and defective HR repair in meiotic prophase. NBS1 loss severely disrupts chromosome synapsis, generates abnormal chromosome structures, and eventually leads to meiotic arrest and male infertility in mice. Unlike in somatic cells, the recruitment of NBS1 to SPO11-linked DSB sites is MDC1-independent but requires other phosphorylated proteins. Collectively, our study not only reveals the significance of MRN complex in repairing meiotic DSBs but also discovers a unique mechanism that recruits MRN complex to SPO11-linked DSB sites.</description><subject>13/95</subject><subject>14/19</subject><subject>631/337</subject><subject>631/80</subject><subject>82/80</subject><subject>Apoptosis</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Cell Biology</subject><subject>Cell Cycle Analysis</subject><subject>Chromosomes</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA damage</subject><subject>DNA repair</subject><subject>Double-strand break repair</subject><subject>Germ cells</subject><subject>Homologous recombination</subject><subject>Infertility</subject><subject>Life Sciences</subject><subject>Meiosis</subject><subject>MRE11 protein</subject><subject>Prophase</subject><subject>Somatic cells</subject><subject>Stem Cells</subject><subject>Yeast</subject><subject>Zebrafish</subject><issn>1350-9047</issn><issn>1476-5403</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9UcluFTEQHCEissAHcEGWuHAx6R5v4wtSCGGRoiRS4GzZY09wMjN-sd8g5e_jpxfCIsHJLVd1dXVX07xEeIvAusPCkWNHoQUKXDPKnzR7yJWkggN7WmsmgGrgarfZL-UaAKTS8lmzy1BLARL3mouz95dIYiE53C4xB0-GlMnlxTkiHeN8Uz8-nB0RnxY3BlrW2c6euBzsTe1Y2ZhJnMlkx0CmEFOJ5XmzM9ixhBcP70Hz7ePJ1-PP9PT805fjo1Pac92tqeS6dZq5MKDvrRTay95ytLYH55xusUMYfHXceWCgrBMV0a1ibPC2l5IdNO-2uqvFTcH3Ya7eRrPKcbL5ziQbzZ_IHL-bq_TDKAYda3UVePMgkNPtEsraTLH0YRztHNJSTMt4PR9TYjPr9V_U67Tkua5nWq4EcFT14P9loRCy6xArC7esPqdSchgeLSOYTapmm6qpqZpNqobXnle_7_rY8TPGSmi3hFKh-SrkX6P_rXoPcYCq7Q</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Zhang, Bin</creator><creator>Tang, Zhenghui</creator><creator>Li, Lejun</creator><creator>Lu, Lin-Yu</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7665-6650</orcidid></search><sort><creationdate>20200701</creationdate><title>NBS1 is required for SPO11-linked DNA double-strand break repair in male meiosis</title><author>Zhang, Bin ; Tang, Zhenghui ; Li, Lejun ; Lu, Lin-Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c498t-6492b93bef1dca659d6ca41aac0bbb921810fd0008d0307ab5ac092733fdac663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>13/95</topic><topic>14/19</topic><topic>631/337</topic><topic>631/80</topic><topic>82/80</topic><topic>Apoptosis</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Cell Biology</topic><topic>Cell Cycle Analysis</topic><topic>Chromosomes</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA damage</topic><topic>DNA repair</topic><topic>Double-strand break repair</topic><topic>Germ cells</topic><topic>Homologous recombination</topic><topic>Infertility</topic><topic>Life Sciences</topic><topic>Meiosis</topic><topic>MRE11 protein</topic><topic>Prophase</topic><topic>Somatic cells</topic><topic>Stem Cells</topic><topic>Yeast</topic><topic>Zebrafish</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Bin</creatorcontrib><creatorcontrib>Tang, Zhenghui</creatorcontrib><creatorcontrib>Li, Lejun</creatorcontrib><creatorcontrib>Lu, Lin-Yu</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell death and differentiation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Bin</au><au>Tang, Zhenghui</au><au>Li, Lejun</au><au>Lu, Lin-Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NBS1 is required for SPO11-linked DNA double-strand break repair in male meiosis</atitle><jtitle>Cell death and differentiation</jtitle><stitle>Cell Death Differ</stitle><addtitle>Cell Death Differ</addtitle><date>2020-07-01</date><risdate>2020</risdate><volume>27</volume><issue>7</issue><spage>2176</spage><epage>2190</epage><pages>2176-2190</pages><issn>1350-9047</issn><eissn>1476-5403</eissn><abstract>DNA double-strand breaks (DSBs) pose a serious threat to genomic stability. Paradoxically, hundreds of programed DSBs are generated by SPO11 in meiotic prophase, which are exclusively repaired by homologous recombination (HR) to promote obligate crossover between homologous chromosomes. In somatic cells, MRE11-RAD50-NBS1 (MRN) complex-dependent DNA end resection is a prerequisite for HR repair, especially for DSBs that are covalently linked with proteins or chemicals. Interestingly, all meiotic DSBs are linked with SPO11 after being generated. Although MRN complex’s function in meiotic DSB repair has been established in lower organisms, the role of MRN complex in mammalian meiotic DSB repair is not clear. Here, we show that MRN complex is essential for repairing meiotic SPO11-linked DSBs in male mice. In male germ cells, conditional inactivation of NBS1, a key component of MRN complex, causes dramatic reduction of DNA end resection and defective HR repair in meiotic prophase. NBS1 loss severely disrupts chromosome synapsis, generates abnormal chromosome structures, and eventually leads to meiotic arrest and male infertility in mice. Unlike in somatic cells, the recruitment of NBS1 to SPO11-linked DSB sites is MDC1-independent but requires other phosphorylated proteins. Collectively, our study not only reveals the significance of MRN complex in repairing meiotic DSBs but also discovers a unique mechanism that recruits MRN complex to SPO11-linked DSB sites.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31965061</pmid><doi>10.1038/s41418-020-0493-4</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-7665-6650</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1350-9047
ispartof Cell death and differentiation, 2020-07, Vol.27 (7), p.2176-2190
issn 1350-9047
1476-5403
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7308329
source EZB-FREE-00999 freely available EZB journals; PubMed Central; SpringerLink Journals - AutoHoldings
subjects 13/95
14/19
631/337
631/80
82/80
Apoptosis
Biochemistry
Biomedical and Life Sciences
Cell Biology
Cell Cycle Analysis
Chromosomes
Deoxyribonucleic acid
DNA
DNA damage
DNA repair
Double-strand break repair
Germ cells
Homologous recombination
Infertility
Life Sciences
Meiosis
MRE11 protein
Prophase
Somatic cells
Stem Cells
Yeast
Zebrafish
title NBS1 is required for SPO11-linked DNA double-strand break repair in male meiosis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A21%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NBS1%20is%20required%20for%20SPO11-linked%20DNA%20double-strand%20break%20repair%20in%20male%20meiosis&rft.jtitle=Cell%20death%20and%20differentiation&rft.au=Zhang,%20Bin&rft.date=2020-07-01&rft.volume=27&rft.issue=7&rft.spage=2176&rft.epage=2190&rft.pages=2176-2190&rft.issn=1350-9047&rft.eissn=1476-5403&rft_id=info:doi/10.1038/s41418-020-0493-4&rft_dat=%3Cproquest_pubme%3E2475041740%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2415568811&rft_id=info:pmid/31965061&rfr_iscdi=true