Genome Architecture Facilitates Phenotypic Plasticity in the Honeybee (Apis mellifera)
Abstract Phenotypic plasticity, the ability of an organism to alter its phenotype in response to an environmental cue, facilitates rapid adaptation to changing environments. Plastic changes in morphology and behavior are underpinned by widespread gene expression changes. However, it is unknown if, o...
Gespeichert in:
Veröffentlicht in: | Molecular biology and evolution 2020-07, Vol.37 (7), p.1964-1978 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1978 |
---|---|
container_issue | 7 |
container_start_page | 1964 |
container_title | Molecular biology and evolution |
container_volume | 37 |
creator | Duncan, Elizabeth J Leask, Megan P Dearden, Peter K |
description | Abstract
Phenotypic plasticity, the ability of an organism to alter its phenotype in response to an environmental cue, facilitates rapid adaptation to changing environments. Plastic changes in morphology and behavior are underpinned by widespread gene expression changes. However, it is unknown if, or how, genomes are structured to ensure these robust responses. Here, we use repression of honeybee worker ovaries as a model of plasticity. We show that the honeybee genome is structured with respect to plasticity; genes that respond to an environmental trigger are colocated in the honeybee genome in a series of gene clusters, many of which have been assembled in the last 80 My during the evolution of the Apidae. These clusters are marked by histone modifications that prefigure the gene expression changes that occur as the ovary activates, suggesting that these genomic regions are poised to respond plastically. That the linear sequence of the honeybee genome is organized to coordinate widespread gene expression changes in response to environmental influences and that the chromatin organization in these regions is prefigured to respond to these influences is perhaps unexpected and has implications for other examples of plasticity in physiology, evolution, and human disease. |
doi_str_mv | 10.1093/molbev/msaa057 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7306700</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/molbev/msaa057</oup_id><sourcerecordid>2371855594</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-f19ab93223968d413155a7bd1c18b5aff433feee20b6d58982278000221b72f23</originalsourceid><addsrcrecordid>eNqNkc9rFDEcxYModm29epQcW2Tb_JzMXIRlsa1QsIe215Bkv-NGZpJxkmnZ_94ssy560lMe5PNevt88hD5QcklJw6_62Fl4vuqTMUSqV2hBJVdLqmjzGi2IKloQXp-gdyn9IIQKUVVv0QlnlBdJF-jpBkLsAa9Gt_UZXJ5GwNfG-c5nkyHh-20B8m7wDt93JmXvfN5hH3DeAr6NAXYWAJ-vBp9wD13nWxjNxRl605ouwfvDeYoer788rG-Xd99uvq5Xd0snmMjLljbGNpwx3lT1RlBOpTTKbqijtZWmbQXnLQAwYquNrJuaMVUTQhijVrGW8VP0ec4dJtvDxkHIo-n0MPrejDsdjdd_3wS_1d_js1acVIqQEnB-CBjjzwlS1r1PruxhAsQpacYVraWUjSjo5Yy6MaY0Qnt8hhK9L0PPZehDGcXw8c_hjvjv3y_Apxl4ARvb5DwEB0es7ClFxSSRRdH9qPX_0-t9fT6GdZxCLtaL2Rqn4V9T_wK-67eV</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2371855594</pqid></control><display><type>article</type><title>Genome Architecture Facilitates Phenotypic Plasticity in the Honeybee (Apis mellifera)</title><source>MEDLINE</source><source>Access via Oxford University Press (Open Access Collection)</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Duncan, Elizabeth J ; Leask, Megan P ; Dearden, Peter K</creator><contributor>Wittkopp, Patricia</contributor><creatorcontrib>Duncan, Elizabeth J ; Leask, Megan P ; Dearden, Peter K ; Wittkopp, Patricia</creatorcontrib><description>Abstract
Phenotypic plasticity, the ability of an organism to alter its phenotype in response to an environmental cue, facilitates rapid adaptation to changing environments. Plastic changes in morphology and behavior are underpinned by widespread gene expression changes. However, it is unknown if, or how, genomes are structured to ensure these robust responses. Here, we use repression of honeybee worker ovaries as a model of plasticity. We show that the honeybee genome is structured with respect to plasticity; genes that respond to an environmental trigger are colocated in the honeybee genome in a series of gene clusters, many of which have been assembled in the last 80 My during the evolution of the Apidae. These clusters are marked by histone modifications that prefigure the gene expression changes that occur as the ovary activates, suggesting that these genomic regions are poised to respond plastically. That the linear sequence of the honeybee genome is organized to coordinate widespread gene expression changes in response to environmental influences and that the chromatin organization in these regions is prefigured to respond to these influences is perhaps unexpected and has implications for other examples of plasticity in physiology, evolution, and human disease.</description><identifier>ISSN: 0737-4038</identifier><identifier>EISSN: 1537-1719</identifier><identifier>DOI: 10.1093/molbev/msaa057</identifier><identifier>PMID: 32134461</identifier><language>eng</language><publisher>OXFORD: Oxford University Press</publisher><subject>Adaptation, Physiological ; Animals ; Bees - genetics ; Bees - metabolism ; Biochemistry & Molecular Biology ; Discoveries ; Evolutionary Biology ; Female ; Genetics & Heredity ; Genome, Insect ; Histone-Lysine N-Methyltransferase - metabolism ; Insect Proteins - metabolism ; Life Sciences & Biomedicine ; Ovary - metabolism ; Receptors, Notch - metabolism ; Science & Technology</subject><ispartof>Molecular biology and evolution, 2020-07, Vol.37 (7), p.1964-1978</ispartof><rights>The Author(s) 2020. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. 2020</rights><rights>The Author(s) 2020. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>27</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000546250500010</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c424t-f19ab93223968d413155a7bd1c18b5aff433feee20b6d58982278000221b72f23</citedby><cites>FETCH-LOGICAL-c424t-f19ab93223968d413155a7bd1c18b5aff433feee20b6d58982278000221b72f23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7306700/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7306700/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,887,1586,1606,27931,27932,28255,53798,53800</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32134461$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Wittkopp, Patricia</contributor><creatorcontrib>Duncan, Elizabeth J</creatorcontrib><creatorcontrib>Leask, Megan P</creatorcontrib><creatorcontrib>Dearden, Peter K</creatorcontrib><title>Genome Architecture Facilitates Phenotypic Plasticity in the Honeybee (Apis mellifera)</title><title>Molecular biology and evolution</title><addtitle>MOL BIOL EVOL</addtitle><addtitle>Mol Biol Evol</addtitle><description>Abstract
Phenotypic plasticity, the ability of an organism to alter its phenotype in response to an environmental cue, facilitates rapid adaptation to changing environments. Plastic changes in morphology and behavior are underpinned by widespread gene expression changes. However, it is unknown if, or how, genomes are structured to ensure these robust responses. Here, we use repression of honeybee worker ovaries as a model of plasticity. We show that the honeybee genome is structured with respect to plasticity; genes that respond to an environmental trigger are colocated in the honeybee genome in a series of gene clusters, many of which have been assembled in the last 80 My during the evolution of the Apidae. These clusters are marked by histone modifications that prefigure the gene expression changes that occur as the ovary activates, suggesting that these genomic regions are poised to respond plastically. That the linear sequence of the honeybee genome is organized to coordinate widespread gene expression changes in response to environmental influences and that the chromatin organization in these regions is prefigured to respond to these influences is perhaps unexpected and has implications for other examples of plasticity in physiology, evolution, and human disease.</description><subject>Adaptation, Physiological</subject><subject>Animals</subject><subject>Bees - genetics</subject><subject>Bees - metabolism</subject><subject>Biochemistry & Molecular Biology</subject><subject>Discoveries</subject><subject>Evolutionary Biology</subject><subject>Female</subject><subject>Genetics & Heredity</subject><subject>Genome, Insect</subject><subject>Histone-Lysine N-Methyltransferase - metabolism</subject><subject>Insect Proteins - metabolism</subject><subject>Life Sciences & Biomedicine</subject><subject>Ovary - metabolism</subject><subject>Receptors, Notch - metabolism</subject><subject>Science & Technology</subject><issn>0737-4038</issn><issn>1537-1719</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>AOWDO</sourceid><sourceid>EIF</sourceid><recordid>eNqNkc9rFDEcxYModm29epQcW2Tb_JzMXIRlsa1QsIe215Bkv-NGZpJxkmnZ_94ssy560lMe5PNevt88hD5QcklJw6_62Fl4vuqTMUSqV2hBJVdLqmjzGi2IKloQXp-gdyn9IIQKUVVv0QlnlBdJF-jpBkLsAa9Gt_UZXJ5GwNfG-c5nkyHh-20B8m7wDt93JmXvfN5hH3DeAr6NAXYWAJ-vBp9wD13nWxjNxRl605ouwfvDeYoer788rG-Xd99uvq5Xd0snmMjLljbGNpwx3lT1RlBOpTTKbqijtZWmbQXnLQAwYquNrJuaMVUTQhijVrGW8VP0ec4dJtvDxkHIo-n0MPrejDsdjdd_3wS_1d_js1acVIqQEnB-CBjjzwlS1r1PruxhAsQpacYVraWUjSjo5Yy6MaY0Qnt8hhK9L0PPZehDGcXw8c_hjvjv3y_Apxl4ARvb5DwEB0es7ClFxSSRRdH9qPX_0-t9fT6GdZxCLtaL2Rqn4V9T_wK-67eV</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Duncan, Elizabeth J</creator><creator>Leask, Megan P</creator><creator>Dearden, Peter K</creator><general>Oxford University Press</general><general>Oxford Univ Press</general><scope>TOX</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20200701</creationdate><title>Genome Architecture Facilitates Phenotypic Plasticity in the Honeybee (Apis mellifera)</title><author>Duncan, Elizabeth J ; Leask, Megan P ; Dearden, Peter K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-f19ab93223968d413155a7bd1c18b5aff433feee20b6d58982278000221b72f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adaptation, Physiological</topic><topic>Animals</topic><topic>Bees - genetics</topic><topic>Bees - metabolism</topic><topic>Biochemistry & Molecular Biology</topic><topic>Discoveries</topic><topic>Evolutionary Biology</topic><topic>Female</topic><topic>Genetics & Heredity</topic><topic>Genome, Insect</topic><topic>Histone-Lysine N-Methyltransferase - metabolism</topic><topic>Insect Proteins - metabolism</topic><topic>Life Sciences & Biomedicine</topic><topic>Ovary - metabolism</topic><topic>Receptors, Notch - metabolism</topic><topic>Science & Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duncan, Elizabeth J</creatorcontrib><creatorcontrib>Leask, Megan P</creatorcontrib><creatorcontrib>Dearden, Peter K</creatorcontrib><collection>Access via Oxford University Press (Open Access Collection)</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular biology and evolution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duncan, Elizabeth J</au><au>Leask, Megan P</au><au>Dearden, Peter K</au><au>Wittkopp, Patricia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genome Architecture Facilitates Phenotypic Plasticity in the Honeybee (Apis mellifera)</atitle><jtitle>Molecular biology and evolution</jtitle><stitle>MOL BIOL EVOL</stitle><addtitle>Mol Biol Evol</addtitle><date>2020-07-01</date><risdate>2020</risdate><volume>37</volume><issue>7</issue><spage>1964</spage><epage>1978</epage><pages>1964-1978</pages><issn>0737-4038</issn><eissn>1537-1719</eissn><abstract>Abstract
Phenotypic plasticity, the ability of an organism to alter its phenotype in response to an environmental cue, facilitates rapid adaptation to changing environments. Plastic changes in morphology and behavior are underpinned by widespread gene expression changes. However, it is unknown if, or how, genomes are structured to ensure these robust responses. Here, we use repression of honeybee worker ovaries as a model of plasticity. We show that the honeybee genome is structured with respect to plasticity; genes that respond to an environmental trigger are colocated in the honeybee genome in a series of gene clusters, many of which have been assembled in the last 80 My during the evolution of the Apidae. These clusters are marked by histone modifications that prefigure the gene expression changes that occur as the ovary activates, suggesting that these genomic regions are poised to respond plastically. That the linear sequence of the honeybee genome is organized to coordinate widespread gene expression changes in response to environmental influences and that the chromatin organization in these regions is prefigured to respond to these influences is perhaps unexpected and has implications for other examples of plasticity in physiology, evolution, and human disease.</abstract><cop>OXFORD</cop><pub>Oxford University Press</pub><pmid>32134461</pmid><doi>10.1093/molbev/msaa057</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0737-4038 |
ispartof | Molecular biology and evolution, 2020-07, Vol.37 (7), p.1964-1978 |
issn | 0737-4038 1537-1719 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7306700 |
source | MEDLINE; Access via Oxford University Press (Open Access Collection); Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Oxford University Press Journals All Titles (1996-Current); Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Adaptation, Physiological Animals Bees - genetics Bees - metabolism Biochemistry & Molecular Biology Discoveries Evolutionary Biology Female Genetics & Heredity Genome, Insect Histone-Lysine N-Methyltransferase - metabolism Insect Proteins - metabolism Life Sciences & Biomedicine Ovary - metabolism Receptors, Notch - metabolism Science & Technology |
title | Genome Architecture Facilitates Phenotypic Plasticity in the Honeybee (Apis mellifera) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T09%3A12%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genome%20Architecture%20Facilitates%20Phenotypic%20Plasticity%20in%20the%20Honeybee%20(Apis%20mellifera)&rft.jtitle=Molecular%20biology%20and%20evolution&rft.au=Duncan,%20Elizabeth%20J&rft.date=2020-07-01&rft.volume=37&rft.issue=7&rft.spage=1964&rft.epage=1978&rft.pages=1964-1978&rft.issn=0737-4038&rft.eissn=1537-1719&rft_id=info:doi/10.1093/molbev/msaa057&rft_dat=%3Cproquest_pubme%3E2371855594%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2371855594&rft_id=info:pmid/32134461&rft_oup_id=10.1093/molbev/msaa057&rfr_iscdi=true |