Genome Architecture Facilitates Phenotypic Plasticity in the Honeybee (Apis mellifera)

Abstract Phenotypic plasticity, the ability of an organism to alter its phenotype in response to an environmental cue, facilitates rapid adaptation to changing environments. Plastic changes in morphology and behavior are underpinned by widespread gene expression changes. However, it is unknown if, o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular biology and evolution 2020-07, Vol.37 (7), p.1964-1978
Hauptverfasser: Duncan, Elizabeth J, Leask, Megan P, Dearden, Peter K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1978
container_issue 7
container_start_page 1964
container_title Molecular biology and evolution
container_volume 37
creator Duncan, Elizabeth J
Leask, Megan P
Dearden, Peter K
description Abstract Phenotypic plasticity, the ability of an organism to alter its phenotype in response to an environmental cue, facilitates rapid adaptation to changing environments. Plastic changes in morphology and behavior are underpinned by widespread gene expression changes. However, it is unknown if, or how, genomes are structured to ensure these robust responses. Here, we use repression of honeybee worker ovaries as a model of plasticity. We show that the honeybee genome is structured with respect to plasticity; genes that respond to an environmental trigger are colocated in the honeybee genome in a series of gene clusters, many of which have been assembled in the last 80 My during the evolution of the Apidae. These clusters are marked by histone modifications that prefigure the gene expression changes that occur as the ovary activates, suggesting that these genomic regions are poised to respond plastically. That the linear sequence of the honeybee genome is organized to coordinate widespread gene expression changes in response to environmental influences and that the chromatin organization in these regions is prefigured to respond to these influences is perhaps unexpected and has implications for other examples of plasticity in physiology, evolution, and human disease.
doi_str_mv 10.1093/molbev/msaa057
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7306700</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/molbev/msaa057</oup_id><sourcerecordid>2371855594</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-f19ab93223968d413155a7bd1c18b5aff433feee20b6d58982278000221b72f23</originalsourceid><addsrcrecordid>eNqNkc9rFDEcxYModm29epQcW2Tb_JzMXIRlsa1QsIe215Bkv-NGZpJxkmnZ_94ssy560lMe5PNevt88hD5QcklJw6_62Fl4vuqTMUSqV2hBJVdLqmjzGi2IKloQXp-gdyn9IIQKUVVv0QlnlBdJF-jpBkLsAa9Gt_UZXJ5GwNfG-c5nkyHh-20B8m7wDt93JmXvfN5hH3DeAr6NAXYWAJ-vBp9wD13nWxjNxRl605ouwfvDeYoer788rG-Xd99uvq5Xd0snmMjLljbGNpwx3lT1RlBOpTTKbqijtZWmbQXnLQAwYquNrJuaMVUTQhijVrGW8VP0ec4dJtvDxkHIo-n0MPrejDsdjdd_3wS_1d_js1acVIqQEnB-CBjjzwlS1r1PruxhAsQpacYVraWUjSjo5Yy6MaY0Qnt8hhK9L0PPZehDGcXw8c_hjvjv3y_Apxl4ARvb5DwEB0es7ClFxSSRRdH9qPX_0-t9fT6GdZxCLtaL2Rqn4V9T_wK-67eV</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2371855594</pqid></control><display><type>article</type><title>Genome Architecture Facilitates Phenotypic Plasticity in the Honeybee (Apis mellifera)</title><source>MEDLINE</source><source>Access via Oxford University Press (Open Access Collection)</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Duncan, Elizabeth J ; Leask, Megan P ; Dearden, Peter K</creator><contributor>Wittkopp, Patricia</contributor><creatorcontrib>Duncan, Elizabeth J ; Leask, Megan P ; Dearden, Peter K ; Wittkopp, Patricia</creatorcontrib><description>Abstract Phenotypic plasticity, the ability of an organism to alter its phenotype in response to an environmental cue, facilitates rapid adaptation to changing environments. Plastic changes in morphology and behavior are underpinned by widespread gene expression changes. However, it is unknown if, or how, genomes are structured to ensure these robust responses. Here, we use repression of honeybee worker ovaries as a model of plasticity. We show that the honeybee genome is structured with respect to plasticity; genes that respond to an environmental trigger are colocated in the honeybee genome in a series of gene clusters, many of which have been assembled in the last 80 My during the evolution of the Apidae. These clusters are marked by histone modifications that prefigure the gene expression changes that occur as the ovary activates, suggesting that these genomic regions are poised to respond plastically. That the linear sequence of the honeybee genome is organized to coordinate widespread gene expression changes in response to environmental influences and that the chromatin organization in these regions is prefigured to respond to these influences is perhaps unexpected and has implications for other examples of plasticity in physiology, evolution, and human disease.</description><identifier>ISSN: 0737-4038</identifier><identifier>EISSN: 1537-1719</identifier><identifier>DOI: 10.1093/molbev/msaa057</identifier><identifier>PMID: 32134461</identifier><language>eng</language><publisher>OXFORD: Oxford University Press</publisher><subject>Adaptation, Physiological ; Animals ; Bees - genetics ; Bees - metabolism ; Biochemistry &amp; Molecular Biology ; Discoveries ; Evolutionary Biology ; Female ; Genetics &amp; Heredity ; Genome, Insect ; Histone-Lysine N-Methyltransferase - metabolism ; Insect Proteins - metabolism ; Life Sciences &amp; Biomedicine ; Ovary - metabolism ; Receptors, Notch - metabolism ; Science &amp; Technology</subject><ispartof>Molecular biology and evolution, 2020-07, Vol.37 (7), p.1964-1978</ispartof><rights>The Author(s) 2020. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. 2020</rights><rights>The Author(s) 2020. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>27</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000546250500010</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c424t-f19ab93223968d413155a7bd1c18b5aff433feee20b6d58982278000221b72f23</citedby><cites>FETCH-LOGICAL-c424t-f19ab93223968d413155a7bd1c18b5aff433feee20b6d58982278000221b72f23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7306700/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7306700/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,887,1586,1606,27931,27932,28255,53798,53800</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32134461$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Wittkopp, Patricia</contributor><creatorcontrib>Duncan, Elizabeth J</creatorcontrib><creatorcontrib>Leask, Megan P</creatorcontrib><creatorcontrib>Dearden, Peter K</creatorcontrib><title>Genome Architecture Facilitates Phenotypic Plasticity in the Honeybee (Apis mellifera)</title><title>Molecular biology and evolution</title><addtitle>MOL BIOL EVOL</addtitle><addtitle>Mol Biol Evol</addtitle><description>Abstract Phenotypic plasticity, the ability of an organism to alter its phenotype in response to an environmental cue, facilitates rapid adaptation to changing environments. Plastic changes in morphology and behavior are underpinned by widespread gene expression changes. However, it is unknown if, or how, genomes are structured to ensure these robust responses. Here, we use repression of honeybee worker ovaries as a model of plasticity. We show that the honeybee genome is structured with respect to plasticity; genes that respond to an environmental trigger are colocated in the honeybee genome in a series of gene clusters, many of which have been assembled in the last 80 My during the evolution of the Apidae. These clusters are marked by histone modifications that prefigure the gene expression changes that occur as the ovary activates, suggesting that these genomic regions are poised to respond plastically. That the linear sequence of the honeybee genome is organized to coordinate widespread gene expression changes in response to environmental influences and that the chromatin organization in these regions is prefigured to respond to these influences is perhaps unexpected and has implications for other examples of plasticity in physiology, evolution, and human disease.</description><subject>Adaptation, Physiological</subject><subject>Animals</subject><subject>Bees - genetics</subject><subject>Bees - metabolism</subject><subject>Biochemistry &amp; Molecular Biology</subject><subject>Discoveries</subject><subject>Evolutionary Biology</subject><subject>Female</subject><subject>Genetics &amp; Heredity</subject><subject>Genome, Insect</subject><subject>Histone-Lysine N-Methyltransferase - metabolism</subject><subject>Insect Proteins - metabolism</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>Ovary - metabolism</subject><subject>Receptors, Notch - metabolism</subject><subject>Science &amp; Technology</subject><issn>0737-4038</issn><issn>1537-1719</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>AOWDO</sourceid><sourceid>EIF</sourceid><recordid>eNqNkc9rFDEcxYModm29epQcW2Tb_JzMXIRlsa1QsIe215Bkv-NGZpJxkmnZ_94ssy560lMe5PNevt88hD5QcklJw6_62Fl4vuqTMUSqV2hBJVdLqmjzGi2IKloQXp-gdyn9IIQKUVVv0QlnlBdJF-jpBkLsAa9Gt_UZXJ5GwNfG-c5nkyHh-20B8m7wDt93JmXvfN5hH3DeAr6NAXYWAJ-vBp9wD13nWxjNxRl605ouwfvDeYoer788rG-Xd99uvq5Xd0snmMjLljbGNpwx3lT1RlBOpTTKbqijtZWmbQXnLQAwYquNrJuaMVUTQhijVrGW8VP0ec4dJtvDxkHIo-n0MPrejDsdjdd_3wS_1d_js1acVIqQEnB-CBjjzwlS1r1PruxhAsQpacYVraWUjSjo5Yy6MaY0Qnt8hhK9L0PPZehDGcXw8c_hjvjv3y_Apxl4ARvb5DwEB0es7ClFxSSRRdH9qPX_0-t9fT6GdZxCLtaL2Rqn4V9T_wK-67eV</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Duncan, Elizabeth J</creator><creator>Leask, Megan P</creator><creator>Dearden, Peter K</creator><general>Oxford University Press</general><general>Oxford Univ Press</general><scope>TOX</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20200701</creationdate><title>Genome Architecture Facilitates Phenotypic Plasticity in the Honeybee (Apis mellifera)</title><author>Duncan, Elizabeth J ; Leask, Megan P ; Dearden, Peter K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-f19ab93223968d413155a7bd1c18b5aff433feee20b6d58982278000221b72f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adaptation, Physiological</topic><topic>Animals</topic><topic>Bees - genetics</topic><topic>Bees - metabolism</topic><topic>Biochemistry &amp; Molecular Biology</topic><topic>Discoveries</topic><topic>Evolutionary Biology</topic><topic>Female</topic><topic>Genetics &amp; Heredity</topic><topic>Genome, Insect</topic><topic>Histone-Lysine N-Methyltransferase - metabolism</topic><topic>Insect Proteins - metabolism</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>Ovary - metabolism</topic><topic>Receptors, Notch - metabolism</topic><topic>Science &amp; Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duncan, Elizabeth J</creatorcontrib><creatorcontrib>Leask, Megan P</creatorcontrib><creatorcontrib>Dearden, Peter K</creatorcontrib><collection>Access via Oxford University Press (Open Access Collection)</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular biology and evolution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duncan, Elizabeth J</au><au>Leask, Megan P</au><au>Dearden, Peter K</au><au>Wittkopp, Patricia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genome Architecture Facilitates Phenotypic Plasticity in the Honeybee (Apis mellifera)</atitle><jtitle>Molecular biology and evolution</jtitle><stitle>MOL BIOL EVOL</stitle><addtitle>Mol Biol Evol</addtitle><date>2020-07-01</date><risdate>2020</risdate><volume>37</volume><issue>7</issue><spage>1964</spage><epage>1978</epage><pages>1964-1978</pages><issn>0737-4038</issn><eissn>1537-1719</eissn><abstract>Abstract Phenotypic plasticity, the ability of an organism to alter its phenotype in response to an environmental cue, facilitates rapid adaptation to changing environments. Plastic changes in morphology and behavior are underpinned by widespread gene expression changes. However, it is unknown if, or how, genomes are structured to ensure these robust responses. Here, we use repression of honeybee worker ovaries as a model of plasticity. We show that the honeybee genome is structured with respect to plasticity; genes that respond to an environmental trigger are colocated in the honeybee genome in a series of gene clusters, many of which have been assembled in the last 80 My during the evolution of the Apidae. These clusters are marked by histone modifications that prefigure the gene expression changes that occur as the ovary activates, suggesting that these genomic regions are poised to respond plastically. That the linear sequence of the honeybee genome is organized to coordinate widespread gene expression changes in response to environmental influences and that the chromatin organization in these regions is prefigured to respond to these influences is perhaps unexpected and has implications for other examples of plasticity in physiology, evolution, and human disease.</abstract><cop>OXFORD</cop><pub>Oxford University Press</pub><pmid>32134461</pmid><doi>10.1093/molbev/msaa057</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0737-4038
ispartof Molecular biology and evolution, 2020-07, Vol.37 (7), p.1964-1978
issn 0737-4038
1537-1719
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7306700
source MEDLINE; Access via Oxford University Press (Open Access Collection); Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Oxford University Press Journals All Titles (1996-Current); Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; PubMed Central; Free Full-Text Journals in Chemistry
subjects Adaptation, Physiological
Animals
Bees - genetics
Bees - metabolism
Biochemistry & Molecular Biology
Discoveries
Evolutionary Biology
Female
Genetics & Heredity
Genome, Insect
Histone-Lysine N-Methyltransferase - metabolism
Insect Proteins - metabolism
Life Sciences & Biomedicine
Ovary - metabolism
Receptors, Notch - metabolism
Science & Technology
title Genome Architecture Facilitates Phenotypic Plasticity in the Honeybee (Apis mellifera)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T09%3A12%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genome%20Architecture%20Facilitates%20Phenotypic%20Plasticity%20in%20the%20Honeybee%20(Apis%20mellifera)&rft.jtitle=Molecular%20biology%20and%20evolution&rft.au=Duncan,%20Elizabeth%20J&rft.date=2020-07-01&rft.volume=37&rft.issue=7&rft.spage=1964&rft.epage=1978&rft.pages=1964-1978&rft.issn=0737-4038&rft.eissn=1537-1719&rft_id=info:doi/10.1093/molbev/msaa057&rft_dat=%3Cproquest_pubme%3E2371855594%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2371855594&rft_id=info:pmid/32134461&rft_oup_id=10.1093/molbev/msaa057&rfr_iscdi=true