DESI-MSI and METASPACE indicates lipid abnormalities and altered mitochondrial membrane components in diabetic renal proximal tubules

Introduction Diabetic kidney disease (DKD) is the most prevalent complication in diabetic patients, which contributes to high morbidity and mortality. Urine and plasma metabolomics studies have been demonstrated to provide valuable insights for DKD. However, limited information on spatial distributi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metabolomics 2020-01, Vol.16 (1), p.11-11, Article 11
Hauptverfasser: Zhang, Guanshi, Zhang, Jialing, DeHoog, Rachel J., Pennathur, Subramaniam, Anderton, Christopher R., Venkatachalam, Manjeri A., Alexandrov, Theodore, Eberlin, Livia S., Sharma, Kumar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11
container_issue 1
container_start_page 11
container_title Metabolomics
container_volume 16
creator Zhang, Guanshi
Zhang, Jialing
DeHoog, Rachel J.
Pennathur, Subramaniam
Anderton, Christopher R.
Venkatachalam, Manjeri A.
Alexandrov, Theodore
Eberlin, Livia S.
Sharma, Kumar
description Introduction Diabetic kidney disease (DKD) is the most prevalent complication in diabetic patients, which contributes to high morbidity and mortality. Urine and plasma metabolomics studies have been demonstrated to provide valuable insights for DKD. However, limited information on spatial distributions of metabolites in kidney tissues have been reported. Objectives In this work, we employed an ambient desorption electrospray ionization-mass spectrometry imaging (DESI-MSI) coupled to a novel bioinformatics platform (METASPACE) to characterize the metabolome in a mouse model of DKD. Methods DESI-MSI was performed for spatial untargeted metabolomics analysis in kidneys of mouse models (F1 C57BL/6J-Ins2Akita male mice at 17 weeks of age) of type 1 diabetes (T1D, n = 5) and heathy controls (n = 6). Results Multivariate analyses (i.e., PCA and PLS-DA (a 2000 permutation test: P  
doi_str_mv 10.1007/s11306-020-1637-8
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7301343</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2343353457</sourcerecordid><originalsourceid>FETCH-LOGICAL-c497t-70258b8a34dbbe0f2b0c739cef97bac9d783e27dc16daf2acbadf8946bb98e3c3</originalsourceid><addsrcrecordid>eNp1kc-O0zAQxi0EYpfCA3BBFpwDdpzEzgWpKgUq7QqkLmfLfyZbrxK72A6CB-C9cZWlwIHTWDPf_OazPoSeU_KaEsLfJEoZ6SpSk4p2jFfiAbqkLWcVEz15eH6L-gI9SemOkKbpOXmMLhjt67btmkv08912v6uu9zusvMXX25v1_vN6s8XOW2dUhoRHd3QWK-1DnNTosiu9k1aNGSJYPLkczCF4G50a8QSTjsoDNmE6Bg8-p8LC1ikN2RkcwRfVMYbvrtBwnvU8QnqKHg1qTPDsvq7Ql_fbm83H6urTh91mfVWZYjxXnNSt0EKxxmoNZKg1MZz1Boaea2V6ywWDmltDO6uGWhmt7CD6ptO6F8AMW6G3C_c46wmsKfaiGuUxFjPxhwzKyX8n3h3kbfgmOSOUNawAXi6AkLKTybgM5mCC92CypJxywbsienV_JYavM6Qs78Icy7-TrE-QljUlmBWii8rEkFKE4WyDEnmKVy7xyhKvPMUrRdl58bf_88bvPIugXgSpjPwtxD-n_0_9BTSms0c</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2343353457</pqid></control><display><type>article</type><title>DESI-MSI and METASPACE indicates lipid abnormalities and altered mitochondrial membrane components in diabetic renal proximal tubules</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Zhang, Guanshi ; Zhang, Jialing ; DeHoog, Rachel J. ; Pennathur, Subramaniam ; Anderton, Christopher R. ; Venkatachalam, Manjeri A. ; Alexandrov, Theodore ; Eberlin, Livia S. ; Sharma, Kumar</creator><creatorcontrib>Zhang, Guanshi ; Zhang, Jialing ; DeHoog, Rachel J. ; Pennathur, Subramaniam ; Anderton, Christopher R. ; Venkatachalam, Manjeri A. ; Alexandrov, Theodore ; Eberlin, Livia S. ; Sharma, Kumar ; Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><description>Introduction Diabetic kidney disease (DKD) is the most prevalent complication in diabetic patients, which contributes to high morbidity and mortality. Urine and plasma metabolomics studies have been demonstrated to provide valuable insights for DKD. However, limited information on spatial distributions of metabolites in kidney tissues have been reported. Objectives In this work, we employed an ambient desorption electrospray ionization-mass spectrometry imaging (DESI-MSI) coupled to a novel bioinformatics platform (METASPACE) to characterize the metabolome in a mouse model of DKD. Methods DESI-MSI was performed for spatial untargeted metabolomics analysis in kidneys of mouse models (F1 C57BL/6J-Ins2Akita male mice at 17 weeks of age) of type 1 diabetes (T1D, n = 5) and heathy controls (n = 6). Results Multivariate analyses (i.e., PCA and PLS-DA (a 2000 permutation test: P  &lt; 0.001)) showed clearly separated clusters for the two groups of mice on the basis of 878 measured m / z ’s in kidney cortical tissues. Specifically, mice with T1D had increased relative abundances of pseudouridine, accumulation of free polyunsaturated fatty acids (PUFAs), and decreased relative abundances of cardiolipins in cortical proximal tubules when compared with healthy controls. Conclusion Results from the current study support potential key roles of pseudouridine and cardiolipins for maintaining normal RNA structure and normal mitochondrial function, respectively, in cortical proximal tubules with DKD. DESI-MSI technology coupled with METASPACE could serve as powerful new tools to provide insight on fundamental pathways in DKD.</description><identifier>ISSN: 1573-3882</identifier><identifier>EISSN: 1573-3890</identifier><identifier>DOI: 10.1007/s11306-020-1637-8</identifier><identifier>PMID: 31925564</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Animal models ; Animals ; BASIC BIOLOGICAL SCIENCES ; Biochemistry ; Bioinformatics ; Biomedical and Life Sciences ; Biomedicine ; Cardiolipins - metabolism ; Cell Biology ; Computational Biology ; DESI-MSI ; Developmental Biology ; Diabetes ; Diabetes mellitus (insulin dependent) ; Diabetic kidney disease ; Diabetic Nephropathies - metabolism ; Fatty Acids, Omega-3 - metabolism ; Kidney diseases ; Kidney Tubules, Proximal - metabolism ; Kidneys ; Life Sciences ; lipid metabolism ; Male ; Mass spectroscopy ; Metabolic Networks and Pathways ; Metabolites ; Metabolome ; Metabolomics ; Mice ; Mice, Inbred C57BL ; Mitochondria ; Mitochondrial Membranes - metabolism ; Molecular Medicine ; Morbidity ; Original Article ; Polyunsaturated fatty acids ; Proximal tubules ; Pseudouridine - metabolism ; renal proximal tubule ; Ribonucleic acid ; RNA ; Spatial distribution ; Spectrometry, Mass, Electrospray Ionization ; Urine</subject><ispartof>Metabolomics, 2020-01, Vol.16 (1), p.11-11, Article 11</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Metabolomics is a copyright of Springer, (2020). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c497t-70258b8a34dbbe0f2b0c739cef97bac9d783e27dc16daf2acbadf8946bb98e3c3</citedby><cites>FETCH-LOGICAL-c497t-70258b8a34dbbe0f2b0c739cef97bac9d783e27dc16daf2acbadf8946bb98e3c3</cites><orcidid>0000-0002-7550-8525 ; 0000000275508525</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11306-020-1637-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11306-020-1637-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31925564$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1717876$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Guanshi</creatorcontrib><creatorcontrib>Zhang, Jialing</creatorcontrib><creatorcontrib>DeHoog, Rachel J.</creatorcontrib><creatorcontrib>Pennathur, Subramaniam</creatorcontrib><creatorcontrib>Anderton, Christopher R.</creatorcontrib><creatorcontrib>Venkatachalam, Manjeri A.</creatorcontrib><creatorcontrib>Alexandrov, Theodore</creatorcontrib><creatorcontrib>Eberlin, Livia S.</creatorcontrib><creatorcontrib>Sharma, Kumar</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><title>DESI-MSI and METASPACE indicates lipid abnormalities and altered mitochondrial membrane components in diabetic renal proximal tubules</title><title>Metabolomics</title><addtitle>Metabolomics</addtitle><addtitle>Metabolomics</addtitle><description>Introduction Diabetic kidney disease (DKD) is the most prevalent complication in diabetic patients, which contributes to high morbidity and mortality. Urine and plasma metabolomics studies have been demonstrated to provide valuable insights for DKD. However, limited information on spatial distributions of metabolites in kidney tissues have been reported. Objectives In this work, we employed an ambient desorption electrospray ionization-mass spectrometry imaging (DESI-MSI) coupled to a novel bioinformatics platform (METASPACE) to characterize the metabolome in a mouse model of DKD. Methods DESI-MSI was performed for spatial untargeted metabolomics analysis in kidneys of mouse models (F1 C57BL/6J-Ins2Akita male mice at 17 weeks of age) of type 1 diabetes (T1D, n = 5) and heathy controls (n = 6). Results Multivariate analyses (i.e., PCA and PLS-DA (a 2000 permutation test: P  &lt; 0.001)) showed clearly separated clusters for the two groups of mice on the basis of 878 measured m / z ’s in kidney cortical tissues. Specifically, mice with T1D had increased relative abundances of pseudouridine, accumulation of free polyunsaturated fatty acids (PUFAs), and decreased relative abundances of cardiolipins in cortical proximal tubules when compared with healthy controls. Conclusion Results from the current study support potential key roles of pseudouridine and cardiolipins for maintaining normal RNA structure and normal mitochondrial function, respectively, in cortical proximal tubules with DKD. DESI-MSI technology coupled with METASPACE could serve as powerful new tools to provide insight on fundamental pathways in DKD.</description><subject>Animal models</subject><subject>Animals</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Biochemistry</subject><subject>Bioinformatics</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cardiolipins - metabolism</subject><subject>Cell Biology</subject><subject>Computational Biology</subject><subject>DESI-MSI</subject><subject>Developmental Biology</subject><subject>Diabetes</subject><subject>Diabetes mellitus (insulin dependent)</subject><subject>Diabetic kidney disease</subject><subject>Diabetic Nephropathies - metabolism</subject><subject>Fatty Acids, Omega-3 - metabolism</subject><subject>Kidney diseases</subject><subject>Kidney Tubules, Proximal - metabolism</subject><subject>Kidneys</subject><subject>Life Sciences</subject><subject>lipid metabolism</subject><subject>Male</subject><subject>Mass spectroscopy</subject><subject>Metabolic Networks and Pathways</subject><subject>Metabolites</subject><subject>Metabolome</subject><subject>Metabolomics</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mitochondria</subject><subject>Mitochondrial Membranes - metabolism</subject><subject>Molecular Medicine</subject><subject>Morbidity</subject><subject>Original Article</subject><subject>Polyunsaturated fatty acids</subject><subject>Proximal tubules</subject><subject>Pseudouridine - metabolism</subject><subject>renal proximal tubule</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Spatial distribution</subject><subject>Spectrometry, Mass, Electrospray Ionization</subject><subject>Urine</subject><issn>1573-3882</issn><issn>1573-3890</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kc-O0zAQxi0EYpfCA3BBFpwDdpzEzgWpKgUq7QqkLmfLfyZbrxK72A6CB-C9cZWlwIHTWDPf_OazPoSeU_KaEsLfJEoZ6SpSk4p2jFfiAbqkLWcVEz15eH6L-gI9SemOkKbpOXmMLhjt67btmkv08912v6uu9zusvMXX25v1_vN6s8XOW2dUhoRHd3QWK-1DnNTosiu9k1aNGSJYPLkczCF4G50a8QSTjsoDNmE6Bg8-p8LC1ikN2RkcwRfVMYbvrtBwnvU8QnqKHg1qTPDsvq7Ql_fbm83H6urTh91mfVWZYjxXnNSt0EKxxmoNZKg1MZz1Boaea2V6ywWDmltDO6uGWhmt7CD6ptO6F8AMW6G3C_c46wmsKfaiGuUxFjPxhwzKyX8n3h3kbfgmOSOUNawAXi6AkLKTybgM5mCC92CypJxywbsienV_JYavM6Qs78Icy7-TrE-QljUlmBWii8rEkFKE4WyDEnmKVy7xyhKvPMUrRdl58bf_88bvPIugXgSpjPwtxD-n_0_9BTSms0c</recordid><startdate>20200110</startdate><enddate>20200110</enddate><creator>Zhang, Guanshi</creator><creator>Zhang, Jialing</creator><creator>DeHoog, Rachel J.</creator><creator>Pennathur, Subramaniam</creator><creator>Anderton, Christopher R.</creator><creator>Venkatachalam, Manjeri A.</creator><creator>Alexandrov, Theodore</creator><creator>Eberlin, Livia S.</creator><creator>Sharma, Kumar</creator><general>Springer US</general><general>Springer Nature B.V</general><general>Springer</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7550-8525</orcidid><orcidid>https://orcid.org/0000000275508525</orcidid></search><sort><creationdate>20200110</creationdate><title>DESI-MSI and METASPACE indicates lipid abnormalities and altered mitochondrial membrane components in diabetic renal proximal tubules</title><author>Zhang, Guanshi ; Zhang, Jialing ; DeHoog, Rachel J. ; Pennathur, Subramaniam ; Anderton, Christopher R. ; Venkatachalam, Manjeri A. ; Alexandrov, Theodore ; Eberlin, Livia S. ; Sharma, Kumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c497t-70258b8a34dbbe0f2b0c739cef97bac9d783e27dc16daf2acbadf8946bb98e3c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animal models</topic><topic>Animals</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Biochemistry</topic><topic>Bioinformatics</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cardiolipins - metabolism</topic><topic>Cell Biology</topic><topic>Computational Biology</topic><topic>DESI-MSI</topic><topic>Developmental Biology</topic><topic>Diabetes</topic><topic>Diabetes mellitus (insulin dependent)</topic><topic>Diabetic kidney disease</topic><topic>Diabetic Nephropathies - metabolism</topic><topic>Fatty Acids, Omega-3 - metabolism</topic><topic>Kidney diseases</topic><topic>Kidney Tubules, Proximal - metabolism</topic><topic>Kidneys</topic><topic>Life Sciences</topic><topic>lipid metabolism</topic><topic>Male</topic><topic>Mass spectroscopy</topic><topic>Metabolic Networks and Pathways</topic><topic>Metabolites</topic><topic>Metabolome</topic><topic>Metabolomics</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mitochondria</topic><topic>Mitochondrial Membranes - metabolism</topic><topic>Molecular Medicine</topic><topic>Morbidity</topic><topic>Original Article</topic><topic>Polyunsaturated fatty acids</topic><topic>Proximal tubules</topic><topic>Pseudouridine - metabolism</topic><topic>renal proximal tubule</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Spatial distribution</topic><topic>Spectrometry, Mass, Electrospray Ionization</topic><topic>Urine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Guanshi</creatorcontrib><creatorcontrib>Zhang, Jialing</creatorcontrib><creatorcontrib>DeHoog, Rachel J.</creatorcontrib><creatorcontrib>Pennathur, Subramaniam</creatorcontrib><creatorcontrib>Anderton, Christopher R.</creatorcontrib><creatorcontrib>Venkatachalam, Manjeri A.</creatorcontrib><creatorcontrib>Alexandrov, Theodore</creatorcontrib><creatorcontrib>Eberlin, Livia S.</creatorcontrib><creatorcontrib>Sharma, Kumar</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Metabolomics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Guanshi</au><au>Zhang, Jialing</au><au>DeHoog, Rachel J.</au><au>Pennathur, Subramaniam</au><au>Anderton, Christopher R.</au><au>Venkatachalam, Manjeri A.</au><au>Alexandrov, Theodore</au><au>Eberlin, Livia S.</au><au>Sharma, Kumar</au><aucorp>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DESI-MSI and METASPACE indicates lipid abnormalities and altered mitochondrial membrane components in diabetic renal proximal tubules</atitle><jtitle>Metabolomics</jtitle><stitle>Metabolomics</stitle><addtitle>Metabolomics</addtitle><date>2020-01-10</date><risdate>2020</risdate><volume>16</volume><issue>1</issue><spage>11</spage><epage>11</epage><pages>11-11</pages><artnum>11</artnum><issn>1573-3882</issn><eissn>1573-3890</eissn><abstract>Introduction Diabetic kidney disease (DKD) is the most prevalent complication in diabetic patients, which contributes to high morbidity and mortality. Urine and plasma metabolomics studies have been demonstrated to provide valuable insights for DKD. However, limited information on spatial distributions of metabolites in kidney tissues have been reported. Objectives In this work, we employed an ambient desorption electrospray ionization-mass spectrometry imaging (DESI-MSI) coupled to a novel bioinformatics platform (METASPACE) to characterize the metabolome in a mouse model of DKD. Methods DESI-MSI was performed for spatial untargeted metabolomics analysis in kidneys of mouse models (F1 C57BL/6J-Ins2Akita male mice at 17 weeks of age) of type 1 diabetes (T1D, n = 5) and heathy controls (n = 6). Results Multivariate analyses (i.e., PCA and PLS-DA (a 2000 permutation test: P  &lt; 0.001)) showed clearly separated clusters for the two groups of mice on the basis of 878 measured m / z ’s in kidney cortical tissues. Specifically, mice with T1D had increased relative abundances of pseudouridine, accumulation of free polyunsaturated fatty acids (PUFAs), and decreased relative abundances of cardiolipins in cortical proximal tubules when compared with healthy controls. Conclusion Results from the current study support potential key roles of pseudouridine and cardiolipins for maintaining normal RNA structure and normal mitochondrial function, respectively, in cortical proximal tubules with DKD. DESI-MSI technology coupled with METASPACE could serve as powerful new tools to provide insight on fundamental pathways in DKD.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>31925564</pmid><doi>10.1007/s11306-020-1637-8</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-7550-8525</orcidid><orcidid>https://orcid.org/0000000275508525</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1573-3882
ispartof Metabolomics, 2020-01, Vol.16 (1), p.11-11, Article 11
issn 1573-3882
1573-3890
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7301343
source MEDLINE; SpringerNature Journals
subjects Animal models
Animals
BASIC BIOLOGICAL SCIENCES
Biochemistry
Bioinformatics
Biomedical and Life Sciences
Biomedicine
Cardiolipins - metabolism
Cell Biology
Computational Biology
DESI-MSI
Developmental Biology
Diabetes
Diabetes mellitus (insulin dependent)
Diabetic kidney disease
Diabetic Nephropathies - metabolism
Fatty Acids, Omega-3 - metabolism
Kidney diseases
Kidney Tubules, Proximal - metabolism
Kidneys
Life Sciences
lipid metabolism
Male
Mass spectroscopy
Metabolic Networks and Pathways
Metabolites
Metabolome
Metabolomics
Mice
Mice, Inbred C57BL
Mitochondria
Mitochondrial Membranes - metabolism
Molecular Medicine
Morbidity
Original Article
Polyunsaturated fatty acids
Proximal tubules
Pseudouridine - metabolism
renal proximal tubule
Ribonucleic acid
RNA
Spatial distribution
Spectrometry, Mass, Electrospray Ionization
Urine
title DESI-MSI and METASPACE indicates lipid abnormalities and altered mitochondrial membrane components in diabetic renal proximal tubules
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T09%3A55%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DESI-MSI%20and%20METASPACE%20indicates%20lipid%20abnormalities%20and%20altered%20mitochondrial%20membrane%20components%20in%20diabetic%20renal%20proximal%20tubules&rft.jtitle=Metabolomics&rft.au=Zhang,%20Guanshi&rft.aucorp=Pacific%20Northwest%20National%20Laboratory%20(PNNL),%20Richland,%20WA%20(United%20States)&rft.date=2020-01-10&rft.volume=16&rft.issue=1&rft.spage=11&rft.epage=11&rft.pages=11-11&rft.artnum=11&rft.issn=1573-3882&rft.eissn=1573-3890&rft_id=info:doi/10.1007/s11306-020-1637-8&rft_dat=%3Cproquest_pubme%3E2343353457%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2343353457&rft_id=info:pmid/31925564&rfr_iscdi=true