Homeostatic and pathogenic roles of GM3 ganglioside molecular species in TLR4 signaling in obesity

Innate immune signaling via TLR4 plays critical roles in pathogenesis of metabolic disorders, but the contribution of different lipid species to metabolic disorders and inflammatory diseases is less clear. GM3 ganglioside in human serum is composed of a variety of fatty acids, including long‐chain (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The EMBO journal 2020-06, Vol.39 (12), p.e101732-n/a
Hauptverfasser: Kanoh, Hirotaka, Nitta, Takahiro, Go, Shinji, Inamori, Kei‐ichiro, Veillon, Lucas, Nihei, Wataru, Fujii, Mayu, Kabayama, Kazuya, Shimoyama, Atsushi, Fukase, Koichi, Ohto, Umeharu, Shimizu, Toshiyuki, Watanabe, Taku, Shindo, Hiroki, Aoki, Sorama, Sato, Kenichi, Nagasaki, Mika, Yatomi, Yutaka, Komura, Naoko, Ando, Hiromune, Ishida, Hideharu, Kiso, Makoto, Natori, Yoshihiro, Yoshimura, Yuichi, Zonca, Asia, Cattaneo, Anna, Letizia, Marilena, Ciampa, Maria, Mauri, Laura, Prinetti, Alessandro, Sonnino, Sandro, Suzuki, Akemi, Inokuchi, Jin‐ichi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 12
container_start_page e101732
container_title The EMBO journal
container_volume 39
creator Kanoh, Hirotaka
Nitta, Takahiro
Go, Shinji
Inamori, Kei‐ichiro
Veillon, Lucas
Nihei, Wataru
Fujii, Mayu
Kabayama, Kazuya
Shimoyama, Atsushi
Fukase, Koichi
Ohto, Umeharu
Shimizu, Toshiyuki
Watanabe, Taku
Shindo, Hiroki
Aoki, Sorama
Sato, Kenichi
Nagasaki, Mika
Yatomi, Yutaka
Komura, Naoko
Ando, Hiromune
Ishida, Hideharu
Kiso, Makoto
Natori, Yoshihiro
Yoshimura, Yuichi
Zonca, Asia
Cattaneo, Anna
Letizia, Marilena
Ciampa, Maria
Mauri, Laura
Prinetti, Alessandro
Sonnino, Sandro
Suzuki, Akemi
Inokuchi, Jin‐ichi
description Innate immune signaling via TLR4 plays critical roles in pathogenesis of metabolic disorders, but the contribution of different lipid species to metabolic disorders and inflammatory diseases is less clear. GM3 ganglioside in human serum is composed of a variety of fatty acids, including long‐chain (LCFA) and very‐long‐chain (VLCFA). Analysis of circulating levels of human serum GM3 species from patients at different stages of insulin resistance and chronic inflammation reveals that levels of VLCFA‐GM3 increase significantly in metabolic disorders, while LCFA‐GM3 serum levels decrease. Specific GM3 species also correlates with disease symptoms. VLCFA‐GM3 levels increase in the adipose tissue of obese mice, and this is blocked in TLR4‐mutant mice. In cultured monocytes, GM3 by itself has no effect on TLR4 activation; however, VLCFA‐GM3 synergistically and selectively enhances TLR4 activation by LPS/HMGB1, while LCFA‐GM3 and unsaturated VLCFA‐GM3 suppresses TLR4 activation. GM3 interacts with the extracellular region of TLR4/MD2 complex to modulate dimerization/oligomerization. Ligand‐molecular docking analysis supports that VLCFA‐GM3 and LCFA‐GM3 act as agonist and antagonist of TLR4 activity, respectively, by differentially binding to the hydrophobic pocket of MD2. Our findings suggest that VLCFA‐GM3 is a risk factor for TLR4‐mediated disease progression. Synopsis Analysis of GM3 ganglioside composition in human serum under chronic inflammation conditions reveals that the fatty acid chain length of GM3 ganglioside impacts the inflammatory activation of macrophages via direct modulation of TLR4 signaling. GM3 ganglioside in human serum is composed of a variety of fatty acids including long‐chain (LCFA) and very long‐chain (VLCFA). Serum VLCFA‐GM3 levels increase and LCFA‐GM3 levels decrease in metabolic disorders. GM3 by itself has no effects on TLR4 activation; however, VLCFA‐GM3 synergistically and selectively enhanced TLR4 activation by LPS/HMGB1while LCFA‐ and unsaturated VLCFA‐GM3 suppress TLR4 activation. GM3 interacts with extracellular regions of TLR4/MD2 complex, and modulates dimerization/oligomerization. Ligand‐macromolecular docking study suggested that VLCFA‐ and LCFA‐GM3 act as agonist and antagonist against TLR4 activation, respectively, by differentially binding to hydrophobic pocket of MD2. VLCFA‐GM3 could be a risk factor for TLR4‐mediated disease progression. Graphical Abstract Analysis of GM3 ganglioside composition in human serum under c
doi_str_mv 10.15252/embj.2019101732
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7298289</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2399838881</sourcerecordid><originalsourceid>FETCH-LOGICAL-p3892-ff9b23d2324e30b6aac782bc0432839cf3a155b832d0d3daaa7f6ac39235a1523</originalsourceid><addsrcrecordid>eNp1kd2L1DAUxYMo7uzqu09S8MWXrsm96TQBEXTZD2UWQdbnkKZpN0Oa1KZV5r8366w7KvgUbs7vHE5yCXnB6CmroII3dmi2p0CZZJTVCI_IivE1LYHW1WOyorBmJWdCHpHjlLaU0krU7Ck5QsBa1MhXpLmKg41p1rMzhQ5tMer5NvY25HGK3qYidsXlNRa9Dr13MbnWFkMWzOL1VKTRGpchF4qbzRdeJNcH7V3o725iY5Obd8_Ik077ZJ_fnyfk68X5zdlVufl8-fHs_aYcUUgou042gC0gcIu0WWttagGNoRxBoDQdalZVjUBoaYut1rru1tqgBKyyAnhC3u1zx6UZbGtsmCft1Ti5QU87FbVTfyvB3ao-flc1SAFC5oDX9wFT_LbYNKvBJWO918HGJSlAKQUKIVhGX_2DbuMy5adnijMUPNfimXr5Z6OHKr-_PwNv98AP5-3uQWdU_VqvuluvOqxXnV9_-HQYs53t7Sk7Q2-nQ4v_ReBPS6mpog</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2413843924</pqid></control><display><type>article</type><title>Homeostatic and pathogenic roles of GM3 ganglioside molecular species in TLR4 signaling in obesity</title><source>MEDLINE</source><source>Wiley Online Library Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature OA Free Journals</source><source>Access via Wiley Online Library</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Kanoh, Hirotaka ; Nitta, Takahiro ; Go, Shinji ; Inamori, Kei‐ichiro ; Veillon, Lucas ; Nihei, Wataru ; Fujii, Mayu ; Kabayama, Kazuya ; Shimoyama, Atsushi ; Fukase, Koichi ; Ohto, Umeharu ; Shimizu, Toshiyuki ; Watanabe, Taku ; Shindo, Hiroki ; Aoki, Sorama ; Sato, Kenichi ; Nagasaki, Mika ; Yatomi, Yutaka ; Komura, Naoko ; Ando, Hiromune ; Ishida, Hideharu ; Kiso, Makoto ; Natori, Yoshihiro ; Yoshimura, Yuichi ; Zonca, Asia ; Cattaneo, Anna ; Letizia, Marilena ; Ciampa, Maria ; Mauri, Laura ; Prinetti, Alessandro ; Sonnino, Sandro ; Suzuki, Akemi ; Inokuchi, Jin‐ichi</creator><creatorcontrib>Kanoh, Hirotaka ; Nitta, Takahiro ; Go, Shinji ; Inamori, Kei‐ichiro ; Veillon, Lucas ; Nihei, Wataru ; Fujii, Mayu ; Kabayama, Kazuya ; Shimoyama, Atsushi ; Fukase, Koichi ; Ohto, Umeharu ; Shimizu, Toshiyuki ; Watanabe, Taku ; Shindo, Hiroki ; Aoki, Sorama ; Sato, Kenichi ; Nagasaki, Mika ; Yatomi, Yutaka ; Komura, Naoko ; Ando, Hiromune ; Ishida, Hideharu ; Kiso, Makoto ; Natori, Yoshihiro ; Yoshimura, Yuichi ; Zonca, Asia ; Cattaneo, Anna ; Letizia, Marilena ; Ciampa, Maria ; Mauri, Laura ; Prinetti, Alessandro ; Sonnino, Sandro ; Suzuki, Akemi ; Inokuchi, Jin‐ichi</creatorcontrib><description>Innate immune signaling via TLR4 plays critical roles in pathogenesis of metabolic disorders, but the contribution of different lipid species to metabolic disorders and inflammatory diseases is less clear. GM3 ganglioside in human serum is composed of a variety of fatty acids, including long‐chain (LCFA) and very‐long‐chain (VLCFA). Analysis of circulating levels of human serum GM3 species from patients at different stages of insulin resistance and chronic inflammation reveals that levels of VLCFA‐GM3 increase significantly in metabolic disorders, while LCFA‐GM3 serum levels decrease. Specific GM3 species also correlates with disease symptoms. VLCFA‐GM3 levels increase in the adipose tissue of obese mice, and this is blocked in TLR4‐mutant mice. In cultured monocytes, GM3 by itself has no effect on TLR4 activation; however, VLCFA‐GM3 synergistically and selectively enhances TLR4 activation by LPS/HMGB1, while LCFA‐GM3 and unsaturated VLCFA‐GM3 suppresses TLR4 activation. GM3 interacts with the extracellular region of TLR4/MD2 complex to modulate dimerization/oligomerization. Ligand‐molecular docking analysis supports that VLCFA‐GM3 and LCFA‐GM3 act as agonist and antagonist of TLR4 activity, respectively, by differentially binding to the hydrophobic pocket of MD2. Our findings suggest that VLCFA‐GM3 is a risk factor for TLR4‐mediated disease progression. Synopsis Analysis of GM3 ganglioside composition in human serum under chronic inflammation conditions reveals that the fatty acid chain length of GM3 ganglioside impacts the inflammatory activation of macrophages via direct modulation of TLR4 signaling. GM3 ganglioside in human serum is composed of a variety of fatty acids including long‐chain (LCFA) and very long‐chain (VLCFA). Serum VLCFA‐GM3 levels increase and LCFA‐GM3 levels decrease in metabolic disorders. GM3 by itself has no effects on TLR4 activation; however, VLCFA‐GM3 synergistically and selectively enhanced TLR4 activation by LPS/HMGB1while LCFA‐ and unsaturated VLCFA‐GM3 suppress TLR4 activation. GM3 interacts with extracellular regions of TLR4/MD2 complex, and modulates dimerization/oligomerization. Ligand‐macromolecular docking study suggested that VLCFA‐ and LCFA‐GM3 act as agonist and antagonist against TLR4 activation, respectively, by differentially binding to hydrophobic pocket of MD2. VLCFA‐GM3 could be a risk factor for TLR4‐mediated disease progression. Graphical Abstract Analysis of GM3 ganglioside composition in human serum under chronic inflammation conditions reveals that the fatty acid chain length of GM3 ganglioside impacts the inflammatory activation of macrophages via direct modulation of TLR4 signaling.</description><identifier>ISSN: 0261-4189</identifier><identifier>EISSN: 1460-2075</identifier><identifier>DOI: 10.15252/embj.2019101732</identifier><identifier>PMID: 32378734</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Adipose tissue ; Agonists ; Animals ; Binding ; Cell activation ; chronic inflammation ; Dimerization ; Disease ; EMBO19 ; Fatty acids ; G(M3) Ganglioside - chemistry ; G(M3) Ganglioside - genetics ; G(M3) Ganglioside - metabolism ; ganglioside GM3 ; HEK293 Cells ; HMGB1 protein ; Humans ; Hydrophobicity ; inflammation amplification loop ; Inflammatory diseases ; Insulin ; Ligands ; Lipids ; Lipopolysaccharides ; Macromolecules ; Macrophages ; Metabolic disorders ; Mice ; Mice, Mutant Strains ; Molecular docking ; Monocytes ; Monocytes - chemistry ; Monocytes - metabolism ; Obesity ; Obesity - genetics ; Obesity - metabolism ; Oligomerization ; Pathogenesis ; Protein Multimerization ; Risk analysis ; Risk factors ; Serum levels ; Signal Transduction ; Signaling ; Signs and symptoms ; Species ; TLR4 ; TLR4 protein ; Toll-Like Receptor 4 - chemistry ; Toll-Like Receptor 4 - genetics ; Toll-Like Receptor 4 - metabolism ; Toll-like receptors</subject><ispartof>The EMBO journal, 2020-06, Vol.39 (12), p.e101732-n/a</ispartof><rights>The Author(s) 2020</rights><rights>2020 The Authors. Published under the terms of the CC BY 4.0 license</rights><rights>2020 The Authors. Published under the terms of the CC BY 4.0 license.</rights><rights>2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-1148-2688 ; 0000-0002-0703-5746</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7298289/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7298289/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,1417,1433,27924,27925,41120,42189,45574,45575,46409,46833,51576,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32378734$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kanoh, Hirotaka</creatorcontrib><creatorcontrib>Nitta, Takahiro</creatorcontrib><creatorcontrib>Go, Shinji</creatorcontrib><creatorcontrib>Inamori, Kei‐ichiro</creatorcontrib><creatorcontrib>Veillon, Lucas</creatorcontrib><creatorcontrib>Nihei, Wataru</creatorcontrib><creatorcontrib>Fujii, Mayu</creatorcontrib><creatorcontrib>Kabayama, Kazuya</creatorcontrib><creatorcontrib>Shimoyama, Atsushi</creatorcontrib><creatorcontrib>Fukase, Koichi</creatorcontrib><creatorcontrib>Ohto, Umeharu</creatorcontrib><creatorcontrib>Shimizu, Toshiyuki</creatorcontrib><creatorcontrib>Watanabe, Taku</creatorcontrib><creatorcontrib>Shindo, Hiroki</creatorcontrib><creatorcontrib>Aoki, Sorama</creatorcontrib><creatorcontrib>Sato, Kenichi</creatorcontrib><creatorcontrib>Nagasaki, Mika</creatorcontrib><creatorcontrib>Yatomi, Yutaka</creatorcontrib><creatorcontrib>Komura, Naoko</creatorcontrib><creatorcontrib>Ando, Hiromune</creatorcontrib><creatorcontrib>Ishida, Hideharu</creatorcontrib><creatorcontrib>Kiso, Makoto</creatorcontrib><creatorcontrib>Natori, Yoshihiro</creatorcontrib><creatorcontrib>Yoshimura, Yuichi</creatorcontrib><creatorcontrib>Zonca, Asia</creatorcontrib><creatorcontrib>Cattaneo, Anna</creatorcontrib><creatorcontrib>Letizia, Marilena</creatorcontrib><creatorcontrib>Ciampa, Maria</creatorcontrib><creatorcontrib>Mauri, Laura</creatorcontrib><creatorcontrib>Prinetti, Alessandro</creatorcontrib><creatorcontrib>Sonnino, Sandro</creatorcontrib><creatorcontrib>Suzuki, Akemi</creatorcontrib><creatorcontrib>Inokuchi, Jin‐ichi</creatorcontrib><title>Homeostatic and pathogenic roles of GM3 ganglioside molecular species in TLR4 signaling in obesity</title><title>The EMBO journal</title><addtitle>EMBO J</addtitle><addtitle>EMBO J</addtitle><description>Innate immune signaling via TLR4 plays critical roles in pathogenesis of metabolic disorders, but the contribution of different lipid species to metabolic disorders and inflammatory diseases is less clear. GM3 ganglioside in human serum is composed of a variety of fatty acids, including long‐chain (LCFA) and very‐long‐chain (VLCFA). Analysis of circulating levels of human serum GM3 species from patients at different stages of insulin resistance and chronic inflammation reveals that levels of VLCFA‐GM3 increase significantly in metabolic disorders, while LCFA‐GM3 serum levels decrease. Specific GM3 species also correlates with disease symptoms. VLCFA‐GM3 levels increase in the adipose tissue of obese mice, and this is blocked in TLR4‐mutant mice. In cultured monocytes, GM3 by itself has no effect on TLR4 activation; however, VLCFA‐GM3 synergistically and selectively enhances TLR4 activation by LPS/HMGB1, while LCFA‐GM3 and unsaturated VLCFA‐GM3 suppresses TLR4 activation. GM3 interacts with the extracellular region of TLR4/MD2 complex to modulate dimerization/oligomerization. Ligand‐molecular docking analysis supports that VLCFA‐GM3 and LCFA‐GM3 act as agonist and antagonist of TLR4 activity, respectively, by differentially binding to the hydrophobic pocket of MD2. Our findings suggest that VLCFA‐GM3 is a risk factor for TLR4‐mediated disease progression. Synopsis Analysis of GM3 ganglioside composition in human serum under chronic inflammation conditions reveals that the fatty acid chain length of GM3 ganglioside impacts the inflammatory activation of macrophages via direct modulation of TLR4 signaling. GM3 ganglioside in human serum is composed of a variety of fatty acids including long‐chain (LCFA) and very long‐chain (VLCFA). Serum VLCFA‐GM3 levels increase and LCFA‐GM3 levels decrease in metabolic disorders. GM3 by itself has no effects on TLR4 activation; however, VLCFA‐GM3 synergistically and selectively enhanced TLR4 activation by LPS/HMGB1while LCFA‐ and unsaturated VLCFA‐GM3 suppress TLR4 activation. GM3 interacts with extracellular regions of TLR4/MD2 complex, and modulates dimerization/oligomerization. Ligand‐macromolecular docking study suggested that VLCFA‐ and LCFA‐GM3 act as agonist and antagonist against TLR4 activation, respectively, by differentially binding to hydrophobic pocket of MD2. VLCFA‐GM3 could be a risk factor for TLR4‐mediated disease progression. Graphical Abstract Analysis of GM3 ganglioside composition in human serum under chronic inflammation conditions reveals that the fatty acid chain length of GM3 ganglioside impacts the inflammatory activation of macrophages via direct modulation of TLR4 signaling.</description><subject>Adipose tissue</subject><subject>Agonists</subject><subject>Animals</subject><subject>Binding</subject><subject>Cell activation</subject><subject>chronic inflammation</subject><subject>Dimerization</subject><subject>Disease</subject><subject>EMBO19</subject><subject>Fatty acids</subject><subject>G(M3) Ganglioside - chemistry</subject><subject>G(M3) Ganglioside - genetics</subject><subject>G(M3) Ganglioside - metabolism</subject><subject>ganglioside GM3</subject><subject>HEK293 Cells</subject><subject>HMGB1 protein</subject><subject>Humans</subject><subject>Hydrophobicity</subject><subject>inflammation amplification loop</subject><subject>Inflammatory diseases</subject><subject>Insulin</subject><subject>Ligands</subject><subject>Lipids</subject><subject>Lipopolysaccharides</subject><subject>Macromolecules</subject><subject>Macrophages</subject><subject>Metabolic disorders</subject><subject>Mice</subject><subject>Mice, Mutant Strains</subject><subject>Molecular docking</subject><subject>Monocytes</subject><subject>Monocytes - chemistry</subject><subject>Monocytes - metabolism</subject><subject>Obesity</subject><subject>Obesity - genetics</subject><subject>Obesity - metabolism</subject><subject>Oligomerization</subject><subject>Pathogenesis</subject><subject>Protein Multimerization</subject><subject>Risk analysis</subject><subject>Risk factors</subject><subject>Serum levels</subject><subject>Signal Transduction</subject><subject>Signaling</subject><subject>Signs and symptoms</subject><subject>Species</subject><subject>TLR4</subject><subject>TLR4 protein</subject><subject>Toll-Like Receptor 4 - chemistry</subject><subject>Toll-Like Receptor 4 - genetics</subject><subject>Toll-Like Receptor 4 - metabolism</subject><subject>Toll-like receptors</subject><issn>0261-4189</issn><issn>1460-2075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNp1kd2L1DAUxYMo7uzqu09S8MWXrsm96TQBEXTZD2UWQdbnkKZpN0Oa1KZV5r8366w7KvgUbs7vHE5yCXnB6CmroII3dmi2p0CZZJTVCI_IivE1LYHW1WOyorBmJWdCHpHjlLaU0krU7Ck5QsBa1MhXpLmKg41p1rMzhQ5tMer5NvY25HGK3qYidsXlNRa9Dr13MbnWFkMWzOL1VKTRGpchF4qbzRdeJNcH7V3o725iY5Obd8_Ik077ZJ_fnyfk68X5zdlVufl8-fHs_aYcUUgou042gC0gcIu0WWttagGNoRxBoDQdalZVjUBoaYut1rru1tqgBKyyAnhC3u1zx6UZbGtsmCft1Ti5QU87FbVTfyvB3ao-flc1SAFC5oDX9wFT_LbYNKvBJWO918HGJSlAKQUKIVhGX_2DbuMy5adnijMUPNfimXr5Z6OHKr-_PwNv98AP5-3uQWdU_VqvuluvOqxXnV9_-HQYs53t7Sk7Q2-nQ4v_ReBPS6mpog</recordid><startdate>20200617</startdate><enddate>20200617</enddate><creator>Kanoh, Hirotaka</creator><creator>Nitta, Takahiro</creator><creator>Go, Shinji</creator><creator>Inamori, Kei‐ichiro</creator><creator>Veillon, Lucas</creator><creator>Nihei, Wataru</creator><creator>Fujii, Mayu</creator><creator>Kabayama, Kazuya</creator><creator>Shimoyama, Atsushi</creator><creator>Fukase, Koichi</creator><creator>Ohto, Umeharu</creator><creator>Shimizu, Toshiyuki</creator><creator>Watanabe, Taku</creator><creator>Shindo, Hiroki</creator><creator>Aoki, Sorama</creator><creator>Sato, Kenichi</creator><creator>Nagasaki, Mika</creator><creator>Yatomi, Yutaka</creator><creator>Komura, Naoko</creator><creator>Ando, Hiromune</creator><creator>Ishida, Hideharu</creator><creator>Kiso, Makoto</creator><creator>Natori, Yoshihiro</creator><creator>Yoshimura, Yuichi</creator><creator>Zonca, Asia</creator><creator>Cattaneo, Anna</creator><creator>Letizia, Marilena</creator><creator>Ciampa, Maria</creator><creator>Mauri, Laura</creator><creator>Prinetti, Alessandro</creator><creator>Sonnino, Sandro</creator><creator>Suzuki, Akemi</creator><creator>Inokuchi, Jin‐ichi</creator><general>Nature Publishing Group UK</general><general>Blackwell Publishing Ltd</general><general>John Wiley and Sons Inc</general><scope>C6C</scope><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1148-2688</orcidid><orcidid>https://orcid.org/0000-0002-0703-5746</orcidid></search><sort><creationdate>20200617</creationdate><title>Homeostatic and pathogenic roles of GM3 ganglioside molecular species in TLR4 signaling in obesity</title><author>Kanoh, Hirotaka ; Nitta, Takahiro ; Go, Shinji ; Inamori, Kei‐ichiro ; Veillon, Lucas ; Nihei, Wataru ; Fujii, Mayu ; Kabayama, Kazuya ; Shimoyama, Atsushi ; Fukase, Koichi ; Ohto, Umeharu ; Shimizu, Toshiyuki ; Watanabe, Taku ; Shindo, Hiroki ; Aoki, Sorama ; Sato, Kenichi ; Nagasaki, Mika ; Yatomi, Yutaka ; Komura, Naoko ; Ando, Hiromune ; Ishida, Hideharu ; Kiso, Makoto ; Natori, Yoshihiro ; Yoshimura, Yuichi ; Zonca, Asia ; Cattaneo, Anna ; Letizia, Marilena ; Ciampa, Maria ; Mauri, Laura ; Prinetti, Alessandro ; Sonnino, Sandro ; Suzuki, Akemi ; Inokuchi, Jin‐ichi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p3892-ff9b23d2324e30b6aac782bc0432839cf3a155b832d0d3daaa7f6ac39235a1523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adipose tissue</topic><topic>Agonists</topic><topic>Animals</topic><topic>Binding</topic><topic>Cell activation</topic><topic>chronic inflammation</topic><topic>Dimerization</topic><topic>Disease</topic><topic>EMBO19</topic><topic>Fatty acids</topic><topic>G(M3) Ganglioside - chemistry</topic><topic>G(M3) Ganglioside - genetics</topic><topic>G(M3) Ganglioside - metabolism</topic><topic>ganglioside GM3</topic><topic>HEK293 Cells</topic><topic>HMGB1 protein</topic><topic>Humans</topic><topic>Hydrophobicity</topic><topic>inflammation amplification loop</topic><topic>Inflammatory diseases</topic><topic>Insulin</topic><topic>Ligands</topic><topic>Lipids</topic><topic>Lipopolysaccharides</topic><topic>Macromolecules</topic><topic>Macrophages</topic><topic>Metabolic disorders</topic><topic>Mice</topic><topic>Mice, Mutant Strains</topic><topic>Molecular docking</topic><topic>Monocytes</topic><topic>Monocytes - chemistry</topic><topic>Monocytes - metabolism</topic><topic>Obesity</topic><topic>Obesity - genetics</topic><topic>Obesity - metabolism</topic><topic>Oligomerization</topic><topic>Pathogenesis</topic><topic>Protein Multimerization</topic><topic>Risk analysis</topic><topic>Risk factors</topic><topic>Serum levels</topic><topic>Signal Transduction</topic><topic>Signaling</topic><topic>Signs and symptoms</topic><topic>Species</topic><topic>TLR4</topic><topic>TLR4 protein</topic><topic>Toll-Like Receptor 4 - chemistry</topic><topic>Toll-Like Receptor 4 - genetics</topic><topic>Toll-Like Receptor 4 - metabolism</topic><topic>Toll-like receptors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kanoh, Hirotaka</creatorcontrib><creatorcontrib>Nitta, Takahiro</creatorcontrib><creatorcontrib>Go, Shinji</creatorcontrib><creatorcontrib>Inamori, Kei‐ichiro</creatorcontrib><creatorcontrib>Veillon, Lucas</creatorcontrib><creatorcontrib>Nihei, Wataru</creatorcontrib><creatorcontrib>Fujii, Mayu</creatorcontrib><creatorcontrib>Kabayama, Kazuya</creatorcontrib><creatorcontrib>Shimoyama, Atsushi</creatorcontrib><creatorcontrib>Fukase, Koichi</creatorcontrib><creatorcontrib>Ohto, Umeharu</creatorcontrib><creatorcontrib>Shimizu, Toshiyuki</creatorcontrib><creatorcontrib>Watanabe, Taku</creatorcontrib><creatorcontrib>Shindo, Hiroki</creatorcontrib><creatorcontrib>Aoki, Sorama</creatorcontrib><creatorcontrib>Sato, Kenichi</creatorcontrib><creatorcontrib>Nagasaki, Mika</creatorcontrib><creatorcontrib>Yatomi, Yutaka</creatorcontrib><creatorcontrib>Komura, Naoko</creatorcontrib><creatorcontrib>Ando, Hiromune</creatorcontrib><creatorcontrib>Ishida, Hideharu</creatorcontrib><creatorcontrib>Kiso, Makoto</creatorcontrib><creatorcontrib>Natori, Yoshihiro</creatorcontrib><creatorcontrib>Yoshimura, Yuichi</creatorcontrib><creatorcontrib>Zonca, Asia</creatorcontrib><creatorcontrib>Cattaneo, Anna</creatorcontrib><creatorcontrib>Letizia, Marilena</creatorcontrib><creatorcontrib>Ciampa, Maria</creatorcontrib><creatorcontrib>Mauri, Laura</creatorcontrib><creatorcontrib>Prinetti, Alessandro</creatorcontrib><creatorcontrib>Sonnino, Sandro</creatorcontrib><creatorcontrib>Suzuki, Akemi</creatorcontrib><creatorcontrib>Inokuchi, Jin‐ichi</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The EMBO journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kanoh, Hirotaka</au><au>Nitta, Takahiro</au><au>Go, Shinji</au><au>Inamori, Kei‐ichiro</au><au>Veillon, Lucas</au><au>Nihei, Wataru</au><au>Fujii, Mayu</au><au>Kabayama, Kazuya</au><au>Shimoyama, Atsushi</au><au>Fukase, Koichi</au><au>Ohto, Umeharu</au><au>Shimizu, Toshiyuki</au><au>Watanabe, Taku</au><au>Shindo, Hiroki</au><au>Aoki, Sorama</au><au>Sato, Kenichi</au><au>Nagasaki, Mika</au><au>Yatomi, Yutaka</au><au>Komura, Naoko</au><au>Ando, Hiromune</au><au>Ishida, Hideharu</au><au>Kiso, Makoto</au><au>Natori, Yoshihiro</au><au>Yoshimura, Yuichi</au><au>Zonca, Asia</au><au>Cattaneo, Anna</au><au>Letizia, Marilena</au><au>Ciampa, Maria</au><au>Mauri, Laura</au><au>Prinetti, Alessandro</au><au>Sonnino, Sandro</au><au>Suzuki, Akemi</au><au>Inokuchi, Jin‐ichi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Homeostatic and pathogenic roles of GM3 ganglioside molecular species in TLR4 signaling in obesity</atitle><jtitle>The EMBO journal</jtitle><stitle>EMBO J</stitle><addtitle>EMBO J</addtitle><date>2020-06-17</date><risdate>2020</risdate><volume>39</volume><issue>12</issue><spage>e101732</spage><epage>n/a</epage><pages>e101732-n/a</pages><issn>0261-4189</issn><eissn>1460-2075</eissn><abstract>Innate immune signaling via TLR4 plays critical roles in pathogenesis of metabolic disorders, but the contribution of different lipid species to metabolic disorders and inflammatory diseases is less clear. GM3 ganglioside in human serum is composed of a variety of fatty acids, including long‐chain (LCFA) and very‐long‐chain (VLCFA). Analysis of circulating levels of human serum GM3 species from patients at different stages of insulin resistance and chronic inflammation reveals that levels of VLCFA‐GM3 increase significantly in metabolic disorders, while LCFA‐GM3 serum levels decrease. Specific GM3 species also correlates with disease symptoms. VLCFA‐GM3 levels increase in the adipose tissue of obese mice, and this is blocked in TLR4‐mutant mice. In cultured monocytes, GM3 by itself has no effect on TLR4 activation; however, VLCFA‐GM3 synergistically and selectively enhances TLR4 activation by LPS/HMGB1, while LCFA‐GM3 and unsaturated VLCFA‐GM3 suppresses TLR4 activation. GM3 interacts with the extracellular region of TLR4/MD2 complex to modulate dimerization/oligomerization. Ligand‐molecular docking analysis supports that VLCFA‐GM3 and LCFA‐GM3 act as agonist and antagonist of TLR4 activity, respectively, by differentially binding to the hydrophobic pocket of MD2. Our findings suggest that VLCFA‐GM3 is a risk factor for TLR4‐mediated disease progression. Synopsis Analysis of GM3 ganglioside composition in human serum under chronic inflammation conditions reveals that the fatty acid chain length of GM3 ganglioside impacts the inflammatory activation of macrophages via direct modulation of TLR4 signaling. GM3 ganglioside in human serum is composed of a variety of fatty acids including long‐chain (LCFA) and very long‐chain (VLCFA). Serum VLCFA‐GM3 levels increase and LCFA‐GM3 levels decrease in metabolic disorders. GM3 by itself has no effects on TLR4 activation; however, VLCFA‐GM3 synergistically and selectively enhanced TLR4 activation by LPS/HMGB1while LCFA‐ and unsaturated VLCFA‐GM3 suppress TLR4 activation. GM3 interacts with extracellular regions of TLR4/MD2 complex, and modulates dimerization/oligomerization. Ligand‐macromolecular docking study suggested that VLCFA‐ and LCFA‐GM3 act as agonist and antagonist against TLR4 activation, respectively, by differentially binding to hydrophobic pocket of MD2. VLCFA‐GM3 could be a risk factor for TLR4‐mediated disease progression. Graphical Abstract Analysis of GM3 ganglioside composition in human serum under chronic inflammation conditions reveals that the fatty acid chain length of GM3 ganglioside impacts the inflammatory activation of macrophages via direct modulation of TLR4 signaling.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32378734</pmid><doi>10.15252/embj.2019101732</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-1148-2688</orcidid><orcidid>https://orcid.org/0000-0002-0703-5746</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0261-4189
ispartof The EMBO journal, 2020-06, Vol.39 (12), p.e101732-n/a
issn 0261-4189
1460-2075
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7298289
source MEDLINE; Wiley Online Library Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature OA Free Journals; Access via Wiley Online Library; PubMed Central; Free Full-Text Journals in Chemistry
subjects Adipose tissue
Agonists
Animals
Binding
Cell activation
chronic inflammation
Dimerization
Disease
EMBO19
Fatty acids
G(M3) Ganglioside - chemistry
G(M3) Ganglioside - genetics
G(M3) Ganglioside - metabolism
ganglioside GM3
HEK293 Cells
HMGB1 protein
Humans
Hydrophobicity
inflammation amplification loop
Inflammatory diseases
Insulin
Ligands
Lipids
Lipopolysaccharides
Macromolecules
Macrophages
Metabolic disorders
Mice
Mice, Mutant Strains
Molecular docking
Monocytes
Monocytes - chemistry
Monocytes - metabolism
Obesity
Obesity - genetics
Obesity - metabolism
Oligomerization
Pathogenesis
Protein Multimerization
Risk analysis
Risk factors
Serum levels
Signal Transduction
Signaling
Signs and symptoms
Species
TLR4
TLR4 protein
Toll-Like Receptor 4 - chemistry
Toll-Like Receptor 4 - genetics
Toll-Like Receptor 4 - metabolism
Toll-like receptors
title Homeostatic and pathogenic roles of GM3 ganglioside molecular species in TLR4 signaling in obesity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T04%3A23%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Homeostatic%20and%20pathogenic%20roles%20of%20GM3%20ganglioside%20molecular%20species%20in%20TLR4%20signaling%20in%20obesity&rft.jtitle=The%20EMBO%20journal&rft.au=Kanoh,%20Hirotaka&rft.date=2020-06-17&rft.volume=39&rft.issue=12&rft.spage=e101732&rft.epage=n/a&rft.pages=e101732-n/a&rft.issn=0261-4189&rft.eissn=1460-2075&rft_id=info:doi/10.15252/embj.2019101732&rft_dat=%3Cproquest_pubme%3E2399838881%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2413843924&rft_id=info:pmid/32378734&rfr_iscdi=true