TRPV1 activation stimulates NKCC1 and increases hydrostatic pressure in the mouse lens

The porcine lens response to a hyperosmotic stimulus involves an increase in the activity of an ion cotransporter sodium-potassium/two-chloride cotransporter 1 (NKCC1). Recent studies with agonists and antagonists pointed to a mechanism that appears to depend on activation of transient receptor pote...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American Journal of Physiology: Cell Physiology 2020-05, Vol.318 (5), p.C969-C980
Hauptverfasser: Shahidullah, Mohammad, Mandal, Amritlal, Mathias, Richard T, Gao, Junyuan, Križaj, David, Redmon, Sarah, Delamere, Nicholas A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page C980
container_issue 5
container_start_page C969
container_title American Journal of Physiology: Cell Physiology
container_volume 318
creator Shahidullah, Mohammad
Mandal, Amritlal
Mathias, Richard T
Gao, Junyuan
Križaj, David
Redmon, Sarah
Delamere, Nicholas A
description The porcine lens response to a hyperosmotic stimulus involves an increase in the activity of an ion cotransporter sodium-potassium/two-chloride cotransporter 1 (NKCC1). Recent studies with agonists and antagonists pointed to a mechanism that appears to depend on activation of transient receptor potential vanilloid 1 (TRPV1) ion channels. Here, we compare responses in lenses and cultured lens epithelium obtained from TRPV1 and wild type (WT) mice. Hydrostatic pressure (HP) in lens surface cells was determined using a manometer-coupled microelectrode approach. The TRPV1 agonist capsaicin (100 nM) caused a transient HP increase in WT lenses that peaked after ∼30 min and then returned toward baseline. Capsaicin did not cause a detectable change of HP in TRPV1 lenses. The NKCC inhibitor bumetanide prevented the HP response to capsaicin in WT lenses. Potassium transport was examined by measuring Rb uptake. Capsaicin increased Rb uptake in cultured WT lens epithelial cells but not in TRPV1 cells. Bumetanide, A889425, and the Akt inhibitor Akti prevented the Rb uptake response to capsaicin. The bumetanide-sensitive (NKCC-dependent) component of Rb uptake more than doubled in response to capsaicin. Capsaicin also elicited rapid (
doi_str_mv 10.1152/ajpcell.00391.2019
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7294325</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2390654790</sourcerecordid><originalsourceid>FETCH-LOGICAL-c468t-8ce8dbdb1d3a7ab85a064217fedfd0e497550c26216ec1ba95f3bf914c9fad613</originalsourceid><addsrcrecordid>eNpVkctOwzAQRS0EoqXwAyxQlmxS_EiceIOEKl4CAUKlW8uxJzRVHsV2KvXvcWmpYDWS75074zkInRM8JiSlV2qx1FDXY4yZIGOKiThAwyDQmKScHaIhZpzFnCRsgE6cW2CME8rFMRowSgUTjAzRbPr-NiOR0r5aKV91beR81fS18uCil6fJJGitiapWW1AuvM3XxnbOB6-Olhac6y0EOfJziJqudxDV0LpTdFSq2sHZro7Qx93tdPIQP7_eP05unmOd8NzHuYbcFKYghqlMFXmqME8oyUowpcGQiCxNsaacEg6aFEqkJStKQRItSmU4YSN0vc1d9kUDRkPrrarl0laNsmvZqUr-V9pqLj-7lcyoSBhNQ8DlLsB2Xz04L5vKba6qWgi_kZQJzNMkEzhY6daqwwGchXI_hmC5ASJ3QOQPELkBEpou_i64b_klwL4B7KmKzQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2390654790</pqid></control><display><type>article</type><title>TRPV1 activation stimulates NKCC1 and increases hydrostatic pressure in the mouse lens</title><source>MEDLINE</source><source>American Physiological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Shahidullah, Mohammad ; Mandal, Amritlal ; Mathias, Richard T ; Gao, Junyuan ; Križaj, David ; Redmon, Sarah ; Delamere, Nicholas A</creator><creatorcontrib>Shahidullah, Mohammad ; Mandal, Amritlal ; Mathias, Richard T ; Gao, Junyuan ; Križaj, David ; Redmon, Sarah ; Delamere, Nicholas A</creatorcontrib><description>The porcine lens response to a hyperosmotic stimulus involves an increase in the activity of an ion cotransporter sodium-potassium/two-chloride cotransporter 1 (NKCC1). Recent studies with agonists and antagonists pointed to a mechanism that appears to depend on activation of transient receptor potential vanilloid 1 (TRPV1) ion channels. Here, we compare responses in lenses and cultured lens epithelium obtained from TRPV1 and wild type (WT) mice. Hydrostatic pressure (HP) in lens surface cells was determined using a manometer-coupled microelectrode approach. The TRPV1 agonist capsaicin (100 nM) caused a transient HP increase in WT lenses that peaked after ∼30 min and then returned toward baseline. Capsaicin did not cause a detectable change of HP in TRPV1 lenses. The NKCC inhibitor bumetanide prevented the HP response to capsaicin in WT lenses. Potassium transport was examined by measuring Rb uptake. Capsaicin increased Rb uptake in cultured WT lens epithelial cells but not in TRPV1 cells. Bumetanide, A889425, and the Akt inhibitor Akti prevented the Rb uptake response to capsaicin. The bumetanide-sensitive (NKCC-dependent) component of Rb uptake more than doubled in response to capsaicin. Capsaicin also elicited rapid (&lt;2 min) NKCC1 phosphorylation in WT but not TRPV1 cells. HP recovery was shown to be absent in TRPV1 lenses exposed to hyperosmotic solution. Bumetanide and Akti prevented HP recovery in WT lenses exposed to hyperosmotic solution. Taken together, responses to capsaicin and hyperosmotic solution point to a functional role for TRPV1 channels in mouse lens. Lack of NKCC1 phosphorylation and Rb uptake responses in TRPV1 mouse epithelium reinforces the notion that a hyperosmotic challenge causes TRPV1-dependent NKCC1 activation. The results are consistent with a role for the TRPV1-activated signaling pathway leading to NKCC1 stimulation in lens osmotic homeostasis.</description><identifier>ISSN: 0363-6143</identifier><identifier>EISSN: 1522-1563</identifier><identifier>DOI: 10.1152/ajpcell.00391.2019</identifier><identifier>PMID: 32293931</identifier><language>eng</language><publisher>United States: American Physiological Society</publisher><subject>Animals ; Bumetanide - pharmacology ; Capsaicin - pharmacology ; Cell Line ; Epithelium - drug effects ; Epithelium - metabolism ; Humans ; Hydrostatic Pressure - adverse effects ; Lens, Crystalline - drug effects ; Lens, Crystalline - metabolism ; Mice ; Mice, Knockout ; Phosphorylation - drug effects ; Signal Transduction - drug effects ; Solute Carrier Family 12, Member 2 - genetics ; Swine ; TRPV Cation Channels - genetics</subject><ispartof>American Journal of Physiology: Cell Physiology, 2020-05, Vol.318 (5), p.C969-C980</ispartof><rights>Copyright © 2020 the American Physiological Society 2020 American Physiological Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c468t-8ce8dbdb1d3a7ab85a064217fedfd0e497550c26216ec1ba95f3bf914c9fad613</citedby><cites>FETCH-LOGICAL-c468t-8ce8dbdb1d3a7ab85a064217fedfd0e497550c26216ec1ba95f3bf914c9fad613</cites><orcidid>0000-0003-4468-3029 ; 0000-0002-1142-4242</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,3026,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32293931$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shahidullah, Mohammad</creatorcontrib><creatorcontrib>Mandal, Amritlal</creatorcontrib><creatorcontrib>Mathias, Richard T</creatorcontrib><creatorcontrib>Gao, Junyuan</creatorcontrib><creatorcontrib>Križaj, David</creatorcontrib><creatorcontrib>Redmon, Sarah</creatorcontrib><creatorcontrib>Delamere, Nicholas A</creatorcontrib><title>TRPV1 activation stimulates NKCC1 and increases hydrostatic pressure in the mouse lens</title><title>American Journal of Physiology: Cell Physiology</title><addtitle>Am J Physiol Cell Physiol</addtitle><description>The porcine lens response to a hyperosmotic stimulus involves an increase in the activity of an ion cotransporter sodium-potassium/two-chloride cotransporter 1 (NKCC1). Recent studies with agonists and antagonists pointed to a mechanism that appears to depend on activation of transient receptor potential vanilloid 1 (TRPV1) ion channels. Here, we compare responses in lenses and cultured lens epithelium obtained from TRPV1 and wild type (WT) mice. Hydrostatic pressure (HP) in lens surface cells was determined using a manometer-coupled microelectrode approach. The TRPV1 agonist capsaicin (100 nM) caused a transient HP increase in WT lenses that peaked after ∼30 min and then returned toward baseline. Capsaicin did not cause a detectable change of HP in TRPV1 lenses. The NKCC inhibitor bumetanide prevented the HP response to capsaicin in WT lenses. Potassium transport was examined by measuring Rb uptake. Capsaicin increased Rb uptake in cultured WT lens epithelial cells but not in TRPV1 cells. Bumetanide, A889425, and the Akt inhibitor Akti prevented the Rb uptake response to capsaicin. The bumetanide-sensitive (NKCC-dependent) component of Rb uptake more than doubled in response to capsaicin. Capsaicin also elicited rapid (&lt;2 min) NKCC1 phosphorylation in WT but not TRPV1 cells. HP recovery was shown to be absent in TRPV1 lenses exposed to hyperosmotic solution. Bumetanide and Akti prevented HP recovery in WT lenses exposed to hyperosmotic solution. Taken together, responses to capsaicin and hyperosmotic solution point to a functional role for TRPV1 channels in mouse lens. Lack of NKCC1 phosphorylation and Rb uptake responses in TRPV1 mouse epithelium reinforces the notion that a hyperosmotic challenge causes TRPV1-dependent NKCC1 activation. The results are consistent with a role for the TRPV1-activated signaling pathway leading to NKCC1 stimulation in lens osmotic homeostasis.</description><subject>Animals</subject><subject>Bumetanide - pharmacology</subject><subject>Capsaicin - pharmacology</subject><subject>Cell Line</subject><subject>Epithelium - drug effects</subject><subject>Epithelium - metabolism</subject><subject>Humans</subject><subject>Hydrostatic Pressure - adverse effects</subject><subject>Lens, Crystalline - drug effects</subject><subject>Lens, Crystalline - metabolism</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Phosphorylation - drug effects</subject><subject>Signal Transduction - drug effects</subject><subject>Solute Carrier Family 12, Member 2 - genetics</subject><subject>Swine</subject><subject>TRPV Cation Channels - genetics</subject><issn>0363-6143</issn><issn>1522-1563</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkctOwzAQRS0EoqXwAyxQlmxS_EiceIOEKl4CAUKlW8uxJzRVHsV2KvXvcWmpYDWS75074zkInRM8JiSlV2qx1FDXY4yZIGOKiThAwyDQmKScHaIhZpzFnCRsgE6cW2CME8rFMRowSgUTjAzRbPr-NiOR0r5aKV91beR81fS18uCil6fJJGitiapWW1AuvM3XxnbOB6-Olhac6y0EOfJziJqudxDV0LpTdFSq2sHZro7Qx93tdPIQP7_eP05unmOd8NzHuYbcFKYghqlMFXmqME8oyUowpcGQiCxNsaacEg6aFEqkJStKQRItSmU4YSN0vc1d9kUDRkPrrarl0laNsmvZqUr-V9pqLj-7lcyoSBhNQ8DlLsB2Xz04L5vKba6qWgi_kZQJzNMkEzhY6daqwwGchXI_hmC5ASJ3QOQPELkBEpou_i64b_klwL4B7KmKzQ</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Shahidullah, Mohammad</creator><creator>Mandal, Amritlal</creator><creator>Mathias, Richard T</creator><creator>Gao, Junyuan</creator><creator>Križaj, David</creator><creator>Redmon, Sarah</creator><creator>Delamere, Nicholas A</creator><general>American Physiological Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4468-3029</orcidid><orcidid>https://orcid.org/0000-0002-1142-4242</orcidid></search><sort><creationdate>20200501</creationdate><title>TRPV1 activation stimulates NKCC1 and increases hydrostatic pressure in the mouse lens</title><author>Shahidullah, Mohammad ; Mandal, Amritlal ; Mathias, Richard T ; Gao, Junyuan ; Križaj, David ; Redmon, Sarah ; Delamere, Nicholas A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c468t-8ce8dbdb1d3a7ab85a064217fedfd0e497550c26216ec1ba95f3bf914c9fad613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Bumetanide - pharmacology</topic><topic>Capsaicin - pharmacology</topic><topic>Cell Line</topic><topic>Epithelium - drug effects</topic><topic>Epithelium - metabolism</topic><topic>Humans</topic><topic>Hydrostatic Pressure - adverse effects</topic><topic>Lens, Crystalline - drug effects</topic><topic>Lens, Crystalline - metabolism</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Phosphorylation - drug effects</topic><topic>Signal Transduction - drug effects</topic><topic>Solute Carrier Family 12, Member 2 - genetics</topic><topic>Swine</topic><topic>TRPV Cation Channels - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shahidullah, Mohammad</creatorcontrib><creatorcontrib>Mandal, Amritlal</creatorcontrib><creatorcontrib>Mathias, Richard T</creatorcontrib><creatorcontrib>Gao, Junyuan</creatorcontrib><creatorcontrib>Križaj, David</creatorcontrib><creatorcontrib>Redmon, Sarah</creatorcontrib><creatorcontrib>Delamere, Nicholas A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>American Journal of Physiology: Cell Physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shahidullah, Mohammad</au><au>Mandal, Amritlal</au><au>Mathias, Richard T</au><au>Gao, Junyuan</au><au>Križaj, David</au><au>Redmon, Sarah</au><au>Delamere, Nicholas A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TRPV1 activation stimulates NKCC1 and increases hydrostatic pressure in the mouse lens</atitle><jtitle>American Journal of Physiology: Cell Physiology</jtitle><addtitle>Am J Physiol Cell Physiol</addtitle><date>2020-05-01</date><risdate>2020</risdate><volume>318</volume><issue>5</issue><spage>C969</spage><epage>C980</epage><pages>C969-C980</pages><issn>0363-6143</issn><eissn>1522-1563</eissn><abstract>The porcine lens response to a hyperosmotic stimulus involves an increase in the activity of an ion cotransporter sodium-potassium/two-chloride cotransporter 1 (NKCC1). Recent studies with agonists and antagonists pointed to a mechanism that appears to depend on activation of transient receptor potential vanilloid 1 (TRPV1) ion channels. Here, we compare responses in lenses and cultured lens epithelium obtained from TRPV1 and wild type (WT) mice. Hydrostatic pressure (HP) in lens surface cells was determined using a manometer-coupled microelectrode approach. The TRPV1 agonist capsaicin (100 nM) caused a transient HP increase in WT lenses that peaked after ∼30 min and then returned toward baseline. Capsaicin did not cause a detectable change of HP in TRPV1 lenses. The NKCC inhibitor bumetanide prevented the HP response to capsaicin in WT lenses. Potassium transport was examined by measuring Rb uptake. Capsaicin increased Rb uptake in cultured WT lens epithelial cells but not in TRPV1 cells. Bumetanide, A889425, and the Akt inhibitor Akti prevented the Rb uptake response to capsaicin. The bumetanide-sensitive (NKCC-dependent) component of Rb uptake more than doubled in response to capsaicin. Capsaicin also elicited rapid (&lt;2 min) NKCC1 phosphorylation in WT but not TRPV1 cells. HP recovery was shown to be absent in TRPV1 lenses exposed to hyperosmotic solution. Bumetanide and Akti prevented HP recovery in WT lenses exposed to hyperosmotic solution. Taken together, responses to capsaicin and hyperosmotic solution point to a functional role for TRPV1 channels in mouse lens. Lack of NKCC1 phosphorylation and Rb uptake responses in TRPV1 mouse epithelium reinforces the notion that a hyperosmotic challenge causes TRPV1-dependent NKCC1 activation. The results are consistent with a role for the TRPV1-activated signaling pathway leading to NKCC1 stimulation in lens osmotic homeostasis.</abstract><cop>United States</cop><pub>American Physiological Society</pub><pmid>32293931</pmid><doi>10.1152/ajpcell.00391.2019</doi><orcidid>https://orcid.org/0000-0003-4468-3029</orcidid><orcidid>https://orcid.org/0000-0002-1142-4242</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0363-6143
ispartof American Journal of Physiology: Cell Physiology, 2020-05, Vol.318 (5), p.C969-C980
issn 0363-6143
1522-1563
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7294325
source MEDLINE; American Physiological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Animals
Bumetanide - pharmacology
Capsaicin - pharmacology
Cell Line
Epithelium - drug effects
Epithelium - metabolism
Humans
Hydrostatic Pressure - adverse effects
Lens, Crystalline - drug effects
Lens, Crystalline - metabolism
Mice
Mice, Knockout
Phosphorylation - drug effects
Signal Transduction - drug effects
Solute Carrier Family 12, Member 2 - genetics
Swine
TRPV Cation Channels - genetics
title TRPV1 activation stimulates NKCC1 and increases hydrostatic pressure in the mouse lens
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T00%3A17%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TRPV1%20activation%20stimulates%20NKCC1%20and%20increases%20hydrostatic%20pressure%20in%20the%20mouse%20lens&rft.jtitle=American%20Journal%20of%20Physiology:%20Cell%20Physiology&rft.au=Shahidullah,%20Mohammad&rft.date=2020-05-01&rft.volume=318&rft.issue=5&rft.spage=C969&rft.epage=C980&rft.pages=C969-C980&rft.issn=0363-6143&rft.eissn=1522-1563&rft_id=info:doi/10.1152/ajpcell.00391.2019&rft_dat=%3Cproquest_pubme%3E2390654790%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2390654790&rft_id=info:pmid/32293931&rfr_iscdi=true