GRHL2 induces liver fibrosis and intestinal mucosal barrier dysfunction in non‐alcoholic fatty liver disease via microRNA‐200 and the MAPK pathway
Non‐alcoholic fatty liver disease (NAFLD) serves as the most common subtype of liver diseases and cause of liver dysfunction, which is closely related to obesity and insulin resistance. In our study, we sought to investigate effect of transcription factor grainyhead‐like 2 (GRHL2) on NAFLD and the r...
Gespeichert in:
Veröffentlicht in: | Journal of cellular and molecular medicine 2020-06, Vol.24 (11), p.6107-6119 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6119 |
---|---|
container_issue | 11 |
container_start_page | 6107 |
container_title | Journal of cellular and molecular medicine |
container_volume | 24 |
creator | Wang, Ying Zeng, Zishu Guan, Lin Ao, Ran |
description | Non‐alcoholic fatty liver disease (NAFLD) serves as the most common subtype of liver diseases and cause of liver dysfunction, which is closely related to obesity and insulin resistance. In our study, we sought to investigate effect of transcription factor grainyhead‐like 2 (GRHL2) on NAFLD and the relevant mechanism. NAFLD mouse model was established with a high‐fat feed. Then, serum was extracted from NAFLD patients and mice, followed by ectopic expression and depletion experiments in NAFLD mice and L02 cells. Next, the correlation between GRHL2 and microRNA (miR)‐200 and between miR‐200 and sirtuin‐1 (SIRT1) was evaluated. The observations demonstrated that miR‐200 and GRHL2 were overexpressed in the serum of NAFLD patients and mice, while SIRT1 was poorly expressed. GRHL2 positively regulated miR‐200 by binding to miR‐200 promoter region, which negatively targeted SIRT1. The inhibition of miR‐200 and GRHL2 or SIRT1 overexpression lowered HA and LN in mouse liver tissue, occludin and ZO‐1 in mouse small intestine tissue, TNF‐α and IL‐6 in mouse serum, glucose, total cholesterol (TC), triglyceride (TG), aspartate aminotransferase (AST) and alanine aminotransferase (ALT) in mouse serum, and also inhibited liver fibrosis and intestinal mucosal barrier dysfunction. Meanwhile, GRHL2 induced activation of MAPK signalling pathway in NAFLD mice. Collectively, GRHL2 played a contributory role in NAFLD by exacerbating liver fibrosis and intestinal mucosal barrier dysfunction with the involvement of miR‐200‐dependent SIRT1 and the MAPK signalling pathway. |
doi_str_mv | 10.1111/jcmm.15212 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7294114</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2412768104</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4482-cb0cf573b11d17e51e99d9187b2b12725db59f4617658ba76c583258b2c8eb4b3</originalsourceid><addsrcrecordid>eNp9kc-O0zAQhyMEYpeFCw-ALHFBSF0y_pPEF6Sqgl2gBbSCs2U7DnXl2MVOusqNR-DEA_IkuNuyAg74Mpbm0-fx_IriMZTnkM-Lje77c2AY8J3iFFiDZ5QTevd4h4Y0J8WDlDZlSSog_H5xQjDBlEB9Wvy4uLpcYmR9O2qTkLM7E1FnVQzJJiR9m1uDSYP10qF-1CHlqmSMNnPtlLrR68EGnzHkg__57bt0OqyDsxp1chimo7K1ychk0M5K1Fsdw9X7eYZxWd48MqwNWs0_vkNbOayv5fSwuNdJl8yjYz0rPr9-9WlxOVt-uHizmC9nmtL8N61K3bGaKIAWasPAcN5yaGqFFeAas1Yx3tEK6oo1StaVZg3B-Yp1YxRV5Kx4efBuR9WbVhs_ROnENtpexkkEacXfHW_X4kvYiRpzCkCz4NlREMPXMS9K9DZp45z0JoxJYMIppoxxktGn_6CbMMa810zRPG3VQLkXPj9QeUcpRdPdDgOl2Mct9nGLm7gz_OTP8W_R3_lmAA7AtXVm-o9KvF2sVgfpL89FuKA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2412768104</pqid></control><display><type>article</type><title>GRHL2 induces liver fibrosis and intestinal mucosal barrier dysfunction in non‐alcoholic fatty liver disease via microRNA‐200 and the MAPK pathway</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Wiley-Blackwell Open Access Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library All Journals</source><source>PubMed Central</source><creator>Wang, Ying ; Zeng, Zishu ; Guan, Lin ; Ao, Ran</creator><creatorcontrib>Wang, Ying ; Zeng, Zishu ; Guan, Lin ; Ao, Ran</creatorcontrib><description>Non‐alcoholic fatty liver disease (NAFLD) serves as the most common subtype of liver diseases and cause of liver dysfunction, which is closely related to obesity and insulin resistance. In our study, we sought to investigate effect of transcription factor grainyhead‐like 2 (GRHL2) on NAFLD and the relevant mechanism. NAFLD mouse model was established with a high‐fat feed. Then, serum was extracted from NAFLD patients and mice, followed by ectopic expression and depletion experiments in NAFLD mice and L02 cells. Next, the correlation between GRHL2 and microRNA (miR)‐200 and between miR‐200 and sirtuin‐1 (SIRT1) was evaluated. The observations demonstrated that miR‐200 and GRHL2 were overexpressed in the serum of NAFLD patients and mice, while SIRT1 was poorly expressed. GRHL2 positively regulated miR‐200 by binding to miR‐200 promoter region, which negatively targeted SIRT1. The inhibition of miR‐200 and GRHL2 or SIRT1 overexpression lowered HA and LN in mouse liver tissue, occludin and ZO‐1 in mouse small intestine tissue, TNF‐α and IL‐6 in mouse serum, glucose, total cholesterol (TC), triglyceride (TG), aspartate aminotransferase (AST) and alanine aminotransferase (ALT) in mouse serum, and also inhibited liver fibrosis and intestinal mucosal barrier dysfunction. Meanwhile, GRHL2 induced activation of MAPK signalling pathway in NAFLD mice. Collectively, GRHL2 played a contributory role in NAFLD by exacerbating liver fibrosis and intestinal mucosal barrier dysfunction with the involvement of miR‐200‐dependent SIRT1 and the MAPK signalling pathway.</description><identifier>ISSN: 1582-1838</identifier><identifier>EISSN: 1582-4934</identifier><identifier>DOI: 10.1111/jcmm.15212</identifier><identifier>PMID: 32324317</identifier><language>eng</language><publisher>England: John Wiley & Sons, Inc</publisher><subject>Adult ; Alanine ; Alanine transaminase ; Alcoholism ; Animals ; Aspartate aminotransferase ; Cardiovascular disease ; Cholesterol ; Deoxyribonucleic acid ; Diabetes ; DNA ; DNA-Binding Proteins - metabolism ; Ectopic expression ; Ethanol ; Fatty liver ; Female ; Fibrosis ; Gene Expression Regulation ; Gene Silencing ; Glucose ; Grainyhead‐like 2 ; Hepatitis ; Hospitals ; Humans ; Hypertension ; Insulin ; Intestinal Mucosa - pathology ; Intestinal Mucosa - physiopathology ; intestinal mucosal barrier dysfunction ; Kinases ; Laboratory animals ; Liver Cirrhosis - blood ; Liver Cirrhosis - genetics ; Liver diseases ; liver fibrosis ; Male ; MAP kinase ; MAP Kinase Signaling System - genetics ; MAPK signalling pathway ; Mice, Inbred C57BL ; MicroRNAs - blood ; MicroRNAs - genetics ; MicroRNAs - metabolism ; microRNA‐200 ; Middle Aged ; miRNA ; Models, Biological ; Mucosa ; Non-alcoholic Fatty Liver Disease - blood ; Non-alcoholic Fatty Liver Disease - genetics ; non‐alcoholic fatty liver disease ; Original ; Plasma ; Plasmids ; Proteins ; Signal transduction ; SIRT1 protein ; Sirtuin 1 - metabolism ; sirtuin‐1 ; Small intestine ; Studies ; transcription factor ; Transcription factors ; Transcription Factors - metabolism ; Young Adult</subject><ispartof>Journal of cellular and molecular medicine, 2020-06, Vol.24 (11), p.6107-6119</ispartof><rights>2020 The Authors. published by Foundation for Cellular and Molecular Medicine and John Wiley & Sons Ltd</rights><rights>2020 The Authors. Journal of Cellular and Molecular Medicine published by Foundation for Cellular and Molecular Medicine and John Wiley & Sons Ltd.</rights><rights>2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4482-cb0cf573b11d17e51e99d9187b2b12725db59f4617658ba76c583258b2c8eb4b3</citedby><cites>FETCH-LOGICAL-c4482-cb0cf573b11d17e51e99d9187b2b12725db59f4617658ba76c583258b2c8eb4b3</cites><orcidid>0000-0002-6535-2926</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7294114/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7294114/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,1417,11561,27923,27924,45573,45574,46051,46475,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32324317$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Ying</creatorcontrib><creatorcontrib>Zeng, Zishu</creatorcontrib><creatorcontrib>Guan, Lin</creatorcontrib><creatorcontrib>Ao, Ran</creatorcontrib><title>GRHL2 induces liver fibrosis and intestinal mucosal barrier dysfunction in non‐alcoholic fatty liver disease via microRNA‐200 and the MAPK pathway</title><title>Journal of cellular and molecular medicine</title><addtitle>J Cell Mol Med</addtitle><description>Non‐alcoholic fatty liver disease (NAFLD) serves as the most common subtype of liver diseases and cause of liver dysfunction, which is closely related to obesity and insulin resistance. In our study, we sought to investigate effect of transcription factor grainyhead‐like 2 (GRHL2) on NAFLD and the relevant mechanism. NAFLD mouse model was established with a high‐fat feed. Then, serum was extracted from NAFLD patients and mice, followed by ectopic expression and depletion experiments in NAFLD mice and L02 cells. Next, the correlation between GRHL2 and microRNA (miR)‐200 and between miR‐200 and sirtuin‐1 (SIRT1) was evaluated. The observations demonstrated that miR‐200 and GRHL2 were overexpressed in the serum of NAFLD patients and mice, while SIRT1 was poorly expressed. GRHL2 positively regulated miR‐200 by binding to miR‐200 promoter region, which negatively targeted SIRT1. The inhibition of miR‐200 and GRHL2 or SIRT1 overexpression lowered HA and LN in mouse liver tissue, occludin and ZO‐1 in mouse small intestine tissue, TNF‐α and IL‐6 in mouse serum, glucose, total cholesterol (TC), triglyceride (TG), aspartate aminotransferase (AST) and alanine aminotransferase (ALT) in mouse serum, and also inhibited liver fibrosis and intestinal mucosal barrier dysfunction. Meanwhile, GRHL2 induced activation of MAPK signalling pathway in NAFLD mice. Collectively, GRHL2 played a contributory role in NAFLD by exacerbating liver fibrosis and intestinal mucosal barrier dysfunction with the involvement of miR‐200‐dependent SIRT1 and the MAPK signalling pathway.</description><subject>Adult</subject><subject>Alanine</subject><subject>Alanine transaminase</subject><subject>Alcoholism</subject><subject>Animals</subject><subject>Aspartate aminotransferase</subject><subject>Cardiovascular disease</subject><subject>Cholesterol</subject><subject>Deoxyribonucleic acid</subject><subject>Diabetes</subject><subject>DNA</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Ectopic expression</subject><subject>Ethanol</subject><subject>Fatty liver</subject><subject>Female</subject><subject>Fibrosis</subject><subject>Gene Expression Regulation</subject><subject>Gene Silencing</subject><subject>Glucose</subject><subject>Grainyhead‐like 2</subject><subject>Hepatitis</subject><subject>Hospitals</subject><subject>Humans</subject><subject>Hypertension</subject><subject>Insulin</subject><subject>Intestinal Mucosa - pathology</subject><subject>Intestinal Mucosa - physiopathology</subject><subject>intestinal mucosal barrier dysfunction</subject><subject>Kinases</subject><subject>Laboratory animals</subject><subject>Liver Cirrhosis - blood</subject><subject>Liver Cirrhosis - genetics</subject><subject>Liver diseases</subject><subject>liver fibrosis</subject><subject>Male</subject><subject>MAP kinase</subject><subject>MAP Kinase Signaling System - genetics</subject><subject>MAPK signalling pathway</subject><subject>Mice, Inbred C57BL</subject><subject>MicroRNAs - blood</subject><subject>MicroRNAs - genetics</subject><subject>MicroRNAs - metabolism</subject><subject>microRNA‐200</subject><subject>Middle Aged</subject><subject>miRNA</subject><subject>Models, Biological</subject><subject>Mucosa</subject><subject>Non-alcoholic Fatty Liver Disease - blood</subject><subject>Non-alcoholic Fatty Liver Disease - genetics</subject><subject>non‐alcoholic fatty liver disease</subject><subject>Original</subject><subject>Plasma</subject><subject>Plasmids</subject><subject>Proteins</subject><subject>Signal transduction</subject><subject>SIRT1 protein</subject><subject>Sirtuin 1 - metabolism</subject><subject>sirtuin‐1</subject><subject>Small intestine</subject><subject>Studies</subject><subject>transcription factor</subject><subject>Transcription factors</subject><subject>Transcription Factors - metabolism</subject><subject>Young Adult</subject><issn>1582-1838</issn><issn>1582-4934</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kc-O0zAQhyMEYpeFCw-ALHFBSF0y_pPEF6Sqgl2gBbSCs2U7DnXl2MVOusqNR-DEA_IkuNuyAg74Mpbm0-fx_IriMZTnkM-Lje77c2AY8J3iFFiDZ5QTevd4h4Y0J8WDlDZlSSog_H5xQjDBlEB9Wvy4uLpcYmR9O2qTkLM7E1FnVQzJJiR9m1uDSYP10qF-1CHlqmSMNnPtlLrR68EGnzHkg__57bt0OqyDsxp1chimo7K1ychk0M5K1Fsdw9X7eYZxWd48MqwNWs0_vkNbOayv5fSwuNdJl8yjYz0rPr9-9WlxOVt-uHizmC9nmtL8N61K3bGaKIAWasPAcN5yaGqFFeAas1Yx3tEK6oo1StaVZg3B-Yp1YxRV5Kx4efBuR9WbVhs_ROnENtpexkkEacXfHW_X4kvYiRpzCkCz4NlREMPXMS9K9DZp45z0JoxJYMIppoxxktGn_6CbMMa810zRPG3VQLkXPj9QeUcpRdPdDgOl2Mct9nGLm7gz_OTP8W_R3_lmAA7AtXVm-o9KvF2sVgfpL89FuKA</recordid><startdate>202006</startdate><enddate>202006</enddate><creator>Wang, Ying</creator><creator>Zeng, Zishu</creator><creator>Guan, Lin</creator><creator>Ao, Ran</creator><general>John Wiley & Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6535-2926</orcidid></search><sort><creationdate>202006</creationdate><title>GRHL2 induces liver fibrosis and intestinal mucosal barrier dysfunction in non‐alcoholic fatty liver disease via microRNA‐200 and the MAPK pathway</title><author>Wang, Ying ; Zeng, Zishu ; Guan, Lin ; Ao, Ran</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4482-cb0cf573b11d17e51e99d9187b2b12725db59f4617658ba76c583258b2c8eb4b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adult</topic><topic>Alanine</topic><topic>Alanine transaminase</topic><topic>Alcoholism</topic><topic>Animals</topic><topic>Aspartate aminotransferase</topic><topic>Cardiovascular disease</topic><topic>Cholesterol</topic><topic>Deoxyribonucleic acid</topic><topic>Diabetes</topic><topic>DNA</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Ectopic expression</topic><topic>Ethanol</topic><topic>Fatty liver</topic><topic>Female</topic><topic>Fibrosis</topic><topic>Gene Expression Regulation</topic><topic>Gene Silencing</topic><topic>Glucose</topic><topic>Grainyhead‐like 2</topic><topic>Hepatitis</topic><topic>Hospitals</topic><topic>Humans</topic><topic>Hypertension</topic><topic>Insulin</topic><topic>Intestinal Mucosa - pathology</topic><topic>Intestinal Mucosa - physiopathology</topic><topic>intestinal mucosal barrier dysfunction</topic><topic>Kinases</topic><topic>Laboratory animals</topic><topic>Liver Cirrhosis - blood</topic><topic>Liver Cirrhosis - genetics</topic><topic>Liver diseases</topic><topic>liver fibrosis</topic><topic>Male</topic><topic>MAP kinase</topic><topic>MAP Kinase Signaling System - genetics</topic><topic>MAPK signalling pathway</topic><topic>Mice, Inbred C57BL</topic><topic>MicroRNAs - blood</topic><topic>MicroRNAs - genetics</topic><topic>MicroRNAs - metabolism</topic><topic>microRNA‐200</topic><topic>Middle Aged</topic><topic>miRNA</topic><topic>Models, Biological</topic><topic>Mucosa</topic><topic>Non-alcoholic Fatty Liver Disease - blood</topic><topic>Non-alcoholic Fatty Liver Disease - genetics</topic><topic>non‐alcoholic fatty liver disease</topic><topic>Original</topic><topic>Plasma</topic><topic>Plasmids</topic><topic>Proteins</topic><topic>Signal transduction</topic><topic>SIRT1 protein</topic><topic>Sirtuin 1 - metabolism</topic><topic>sirtuin‐1</topic><topic>Small intestine</topic><topic>Studies</topic><topic>transcription factor</topic><topic>Transcription factors</topic><topic>Transcription Factors - metabolism</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Ying</creatorcontrib><creatorcontrib>Zeng, Zishu</creatorcontrib><creatorcontrib>Guan, Lin</creatorcontrib><creatorcontrib>Ao, Ran</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of cellular and molecular medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Ying</au><au>Zeng, Zishu</au><au>Guan, Lin</au><au>Ao, Ran</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GRHL2 induces liver fibrosis and intestinal mucosal barrier dysfunction in non‐alcoholic fatty liver disease via microRNA‐200 and the MAPK pathway</atitle><jtitle>Journal of cellular and molecular medicine</jtitle><addtitle>J Cell Mol Med</addtitle><date>2020-06</date><risdate>2020</risdate><volume>24</volume><issue>11</issue><spage>6107</spage><epage>6119</epage><pages>6107-6119</pages><issn>1582-1838</issn><eissn>1582-4934</eissn><abstract>Non‐alcoholic fatty liver disease (NAFLD) serves as the most common subtype of liver diseases and cause of liver dysfunction, which is closely related to obesity and insulin resistance. In our study, we sought to investigate effect of transcription factor grainyhead‐like 2 (GRHL2) on NAFLD and the relevant mechanism. NAFLD mouse model was established with a high‐fat feed. Then, serum was extracted from NAFLD patients and mice, followed by ectopic expression and depletion experiments in NAFLD mice and L02 cells. Next, the correlation between GRHL2 and microRNA (miR)‐200 and between miR‐200 and sirtuin‐1 (SIRT1) was evaluated. The observations demonstrated that miR‐200 and GRHL2 were overexpressed in the serum of NAFLD patients and mice, while SIRT1 was poorly expressed. GRHL2 positively regulated miR‐200 by binding to miR‐200 promoter region, which negatively targeted SIRT1. The inhibition of miR‐200 and GRHL2 or SIRT1 overexpression lowered HA and LN in mouse liver tissue, occludin and ZO‐1 in mouse small intestine tissue, TNF‐α and IL‐6 in mouse serum, glucose, total cholesterol (TC), triglyceride (TG), aspartate aminotransferase (AST) and alanine aminotransferase (ALT) in mouse serum, and also inhibited liver fibrosis and intestinal mucosal barrier dysfunction. Meanwhile, GRHL2 induced activation of MAPK signalling pathway in NAFLD mice. Collectively, GRHL2 played a contributory role in NAFLD by exacerbating liver fibrosis and intestinal mucosal barrier dysfunction with the involvement of miR‐200‐dependent SIRT1 and the MAPK signalling pathway.</abstract><cop>England</cop><pub>John Wiley & Sons, Inc</pub><pmid>32324317</pmid><doi>10.1111/jcmm.15212</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-6535-2926</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1582-1838 |
ispartof | Journal of cellular and molecular medicine, 2020-06, Vol.24 (11), p.6107-6119 |
issn | 1582-1838 1582-4934 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7294114 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Wiley-Blackwell Open Access Titles; EZB-FREE-00999 freely available EZB journals; Wiley Online Library All Journals; PubMed Central |
subjects | Adult Alanine Alanine transaminase Alcoholism Animals Aspartate aminotransferase Cardiovascular disease Cholesterol Deoxyribonucleic acid Diabetes DNA DNA-Binding Proteins - metabolism Ectopic expression Ethanol Fatty liver Female Fibrosis Gene Expression Regulation Gene Silencing Glucose Grainyhead‐like 2 Hepatitis Hospitals Humans Hypertension Insulin Intestinal Mucosa - pathology Intestinal Mucosa - physiopathology intestinal mucosal barrier dysfunction Kinases Laboratory animals Liver Cirrhosis - blood Liver Cirrhosis - genetics Liver diseases liver fibrosis Male MAP kinase MAP Kinase Signaling System - genetics MAPK signalling pathway Mice, Inbred C57BL MicroRNAs - blood MicroRNAs - genetics MicroRNAs - metabolism microRNA‐200 Middle Aged miRNA Models, Biological Mucosa Non-alcoholic Fatty Liver Disease - blood Non-alcoholic Fatty Liver Disease - genetics non‐alcoholic fatty liver disease Original Plasma Plasmids Proteins Signal transduction SIRT1 protein Sirtuin 1 - metabolism sirtuin‐1 Small intestine Studies transcription factor Transcription factors Transcription Factors - metabolism Young Adult |
title | GRHL2 induces liver fibrosis and intestinal mucosal barrier dysfunction in non‐alcoholic fatty liver disease via microRNA‐200 and the MAPK pathway |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T15%3A25%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GRHL2%20induces%20liver%20fibrosis%20and%20intestinal%20mucosal%20barrier%20dysfunction%20in%20non%E2%80%90alcoholic%20fatty%20liver%20disease%20via%20microRNA%E2%80%90200%20and%20the%20MAPK%20pathway&rft.jtitle=Journal%20of%20cellular%20and%20molecular%20medicine&rft.au=Wang,%20Ying&rft.date=2020-06&rft.volume=24&rft.issue=11&rft.spage=6107&rft.epage=6119&rft.pages=6107-6119&rft.issn=1582-1838&rft.eissn=1582-4934&rft_id=info:doi/10.1111/jcmm.15212&rft_dat=%3Cproquest_pubme%3E2412768104%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2412768104&rft_id=info:pmid/32324317&rfr_iscdi=true |