GRHL2 induces liver fibrosis and intestinal mucosal barrier dysfunction in non‐alcoholic fatty liver disease via microRNA‐200 and the MAPK pathway

Non‐alcoholic fatty liver disease (NAFLD) serves as the most common subtype of liver diseases and cause of liver dysfunction, which is closely related to obesity and insulin resistance. In our study, we sought to investigate effect of transcription factor grainyhead‐like 2 (GRHL2) on NAFLD and the r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cellular and molecular medicine 2020-06, Vol.24 (11), p.6107-6119
Hauptverfasser: Wang, Ying, Zeng, Zishu, Guan, Lin, Ao, Ran
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6119
container_issue 11
container_start_page 6107
container_title Journal of cellular and molecular medicine
container_volume 24
creator Wang, Ying
Zeng, Zishu
Guan, Lin
Ao, Ran
description Non‐alcoholic fatty liver disease (NAFLD) serves as the most common subtype of liver diseases and cause of liver dysfunction, which is closely related to obesity and insulin resistance. In our study, we sought to investigate effect of transcription factor grainyhead‐like 2 (GRHL2) on NAFLD and the relevant mechanism. NAFLD mouse model was established with a high‐fat feed. Then, serum was extracted from NAFLD patients and mice, followed by ectopic expression and depletion experiments in NAFLD mice and L02 cells. Next, the correlation between GRHL2 and microRNA (miR)‐200 and between miR‐200 and sirtuin‐1 (SIRT1) was evaluated. The observations demonstrated that miR‐200 and GRHL2 were overexpressed in the serum of NAFLD patients and mice, while SIRT1 was poorly expressed. GRHL2 positively regulated miR‐200 by binding to miR‐200 promoter region, which negatively targeted SIRT1. The inhibition of miR‐200 and GRHL2 or SIRT1 overexpression lowered HA and LN in mouse liver tissue, occludin and ZO‐1 in mouse small intestine tissue, TNF‐α and IL‐6 in mouse serum, glucose, total cholesterol (TC), triglyceride (TG), aspartate aminotransferase (AST) and alanine aminotransferase (ALT) in mouse serum, and also inhibited liver fibrosis and intestinal mucosal barrier dysfunction. Meanwhile, GRHL2 induced activation of MAPK signalling pathway in NAFLD mice. Collectively, GRHL2 played a contributory role in NAFLD by exacerbating liver fibrosis and intestinal mucosal barrier dysfunction with the involvement of miR‐200‐dependent SIRT1 and the MAPK signalling pathway.
doi_str_mv 10.1111/jcmm.15212
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7294114</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2412768104</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4482-cb0cf573b11d17e51e99d9187b2b12725db59f4617658ba76c583258b2c8eb4b3</originalsourceid><addsrcrecordid>eNp9kc-O0zAQhyMEYpeFCw-ALHFBSF0y_pPEF6Sqgl2gBbSCs2U7DnXl2MVOusqNR-DEA_IkuNuyAg74Mpbm0-fx_IriMZTnkM-Lje77c2AY8J3iFFiDZ5QTevd4h4Y0J8WDlDZlSSog_H5xQjDBlEB9Wvy4uLpcYmR9O2qTkLM7E1FnVQzJJiR9m1uDSYP10qF-1CHlqmSMNnPtlLrR68EGnzHkg__57bt0OqyDsxp1chimo7K1ychk0M5K1Fsdw9X7eYZxWd48MqwNWs0_vkNbOayv5fSwuNdJl8yjYz0rPr9-9WlxOVt-uHizmC9nmtL8N61K3bGaKIAWasPAcN5yaGqFFeAas1Yx3tEK6oo1StaVZg3B-Yp1YxRV5Kx4efBuR9WbVhs_ROnENtpexkkEacXfHW_X4kvYiRpzCkCz4NlREMPXMS9K9DZp45z0JoxJYMIppoxxktGn_6CbMMa810zRPG3VQLkXPj9QeUcpRdPdDgOl2Mct9nGLm7gz_OTP8W_R3_lmAA7AtXVm-o9KvF2sVgfpL89FuKA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2412768104</pqid></control><display><type>article</type><title>GRHL2 induces liver fibrosis and intestinal mucosal barrier dysfunction in non‐alcoholic fatty liver disease via microRNA‐200 and the MAPK pathway</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Wiley-Blackwell Open Access Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library All Journals</source><source>PubMed Central</source><creator>Wang, Ying ; Zeng, Zishu ; Guan, Lin ; Ao, Ran</creator><creatorcontrib>Wang, Ying ; Zeng, Zishu ; Guan, Lin ; Ao, Ran</creatorcontrib><description>Non‐alcoholic fatty liver disease (NAFLD) serves as the most common subtype of liver diseases and cause of liver dysfunction, which is closely related to obesity and insulin resistance. In our study, we sought to investigate effect of transcription factor grainyhead‐like 2 (GRHL2) on NAFLD and the relevant mechanism. NAFLD mouse model was established with a high‐fat feed. Then, serum was extracted from NAFLD patients and mice, followed by ectopic expression and depletion experiments in NAFLD mice and L02 cells. Next, the correlation between GRHL2 and microRNA (miR)‐200 and between miR‐200 and sirtuin‐1 (SIRT1) was evaluated. The observations demonstrated that miR‐200 and GRHL2 were overexpressed in the serum of NAFLD patients and mice, while SIRT1 was poorly expressed. GRHL2 positively regulated miR‐200 by binding to miR‐200 promoter region, which negatively targeted SIRT1. The inhibition of miR‐200 and GRHL2 or SIRT1 overexpression lowered HA and LN in mouse liver tissue, occludin and ZO‐1 in mouse small intestine tissue, TNF‐α and IL‐6 in mouse serum, glucose, total cholesterol (TC), triglyceride (TG), aspartate aminotransferase (AST) and alanine aminotransferase (ALT) in mouse serum, and also inhibited liver fibrosis and intestinal mucosal barrier dysfunction. Meanwhile, GRHL2 induced activation of MAPK signalling pathway in NAFLD mice. Collectively, GRHL2 played a contributory role in NAFLD by exacerbating liver fibrosis and intestinal mucosal barrier dysfunction with the involvement of miR‐200‐dependent SIRT1 and the MAPK signalling pathway.</description><identifier>ISSN: 1582-1838</identifier><identifier>EISSN: 1582-4934</identifier><identifier>DOI: 10.1111/jcmm.15212</identifier><identifier>PMID: 32324317</identifier><language>eng</language><publisher>England: John Wiley &amp; Sons, Inc</publisher><subject>Adult ; Alanine ; Alanine transaminase ; Alcoholism ; Animals ; Aspartate aminotransferase ; Cardiovascular disease ; Cholesterol ; Deoxyribonucleic acid ; Diabetes ; DNA ; DNA-Binding Proteins - metabolism ; Ectopic expression ; Ethanol ; Fatty liver ; Female ; Fibrosis ; Gene Expression Regulation ; Gene Silencing ; Glucose ; Grainyhead‐like 2 ; Hepatitis ; Hospitals ; Humans ; Hypertension ; Insulin ; Intestinal Mucosa - pathology ; Intestinal Mucosa - physiopathology ; intestinal mucosal barrier dysfunction ; Kinases ; Laboratory animals ; Liver Cirrhosis - blood ; Liver Cirrhosis - genetics ; Liver diseases ; liver fibrosis ; Male ; MAP kinase ; MAP Kinase Signaling System - genetics ; MAPK signalling pathway ; Mice, Inbred C57BL ; MicroRNAs - blood ; MicroRNAs - genetics ; MicroRNAs - metabolism ; microRNA‐200 ; Middle Aged ; miRNA ; Models, Biological ; Mucosa ; Non-alcoholic Fatty Liver Disease - blood ; Non-alcoholic Fatty Liver Disease - genetics ; non‐alcoholic fatty liver disease ; Original ; Plasma ; Plasmids ; Proteins ; Signal transduction ; SIRT1 protein ; Sirtuin 1 - metabolism ; sirtuin‐1 ; Small intestine ; Studies ; transcription factor ; Transcription factors ; Transcription Factors - metabolism ; Young Adult</subject><ispartof>Journal of cellular and molecular medicine, 2020-06, Vol.24 (11), p.6107-6119</ispartof><rights>2020 The Authors. published by Foundation for Cellular and Molecular Medicine and John Wiley &amp; Sons Ltd</rights><rights>2020 The Authors. Journal of Cellular and Molecular Medicine published by Foundation for Cellular and Molecular Medicine and John Wiley &amp; Sons Ltd.</rights><rights>2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4482-cb0cf573b11d17e51e99d9187b2b12725db59f4617658ba76c583258b2c8eb4b3</citedby><cites>FETCH-LOGICAL-c4482-cb0cf573b11d17e51e99d9187b2b12725db59f4617658ba76c583258b2c8eb4b3</cites><orcidid>0000-0002-6535-2926</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7294114/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7294114/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,1417,11561,27923,27924,45573,45574,46051,46475,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32324317$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Ying</creatorcontrib><creatorcontrib>Zeng, Zishu</creatorcontrib><creatorcontrib>Guan, Lin</creatorcontrib><creatorcontrib>Ao, Ran</creatorcontrib><title>GRHL2 induces liver fibrosis and intestinal mucosal barrier dysfunction in non‐alcoholic fatty liver disease via microRNA‐200 and the MAPK pathway</title><title>Journal of cellular and molecular medicine</title><addtitle>J Cell Mol Med</addtitle><description>Non‐alcoholic fatty liver disease (NAFLD) serves as the most common subtype of liver diseases and cause of liver dysfunction, which is closely related to obesity and insulin resistance. In our study, we sought to investigate effect of transcription factor grainyhead‐like 2 (GRHL2) on NAFLD and the relevant mechanism. NAFLD mouse model was established with a high‐fat feed. Then, serum was extracted from NAFLD patients and mice, followed by ectopic expression and depletion experiments in NAFLD mice and L02 cells. Next, the correlation between GRHL2 and microRNA (miR)‐200 and between miR‐200 and sirtuin‐1 (SIRT1) was evaluated. The observations demonstrated that miR‐200 and GRHL2 were overexpressed in the serum of NAFLD patients and mice, while SIRT1 was poorly expressed. GRHL2 positively regulated miR‐200 by binding to miR‐200 promoter region, which negatively targeted SIRT1. The inhibition of miR‐200 and GRHL2 or SIRT1 overexpression lowered HA and LN in mouse liver tissue, occludin and ZO‐1 in mouse small intestine tissue, TNF‐α and IL‐6 in mouse serum, glucose, total cholesterol (TC), triglyceride (TG), aspartate aminotransferase (AST) and alanine aminotransferase (ALT) in mouse serum, and also inhibited liver fibrosis and intestinal mucosal barrier dysfunction. Meanwhile, GRHL2 induced activation of MAPK signalling pathway in NAFLD mice. Collectively, GRHL2 played a contributory role in NAFLD by exacerbating liver fibrosis and intestinal mucosal barrier dysfunction with the involvement of miR‐200‐dependent SIRT1 and the MAPK signalling pathway.</description><subject>Adult</subject><subject>Alanine</subject><subject>Alanine transaminase</subject><subject>Alcoholism</subject><subject>Animals</subject><subject>Aspartate aminotransferase</subject><subject>Cardiovascular disease</subject><subject>Cholesterol</subject><subject>Deoxyribonucleic acid</subject><subject>Diabetes</subject><subject>DNA</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Ectopic expression</subject><subject>Ethanol</subject><subject>Fatty liver</subject><subject>Female</subject><subject>Fibrosis</subject><subject>Gene Expression Regulation</subject><subject>Gene Silencing</subject><subject>Glucose</subject><subject>Grainyhead‐like 2</subject><subject>Hepatitis</subject><subject>Hospitals</subject><subject>Humans</subject><subject>Hypertension</subject><subject>Insulin</subject><subject>Intestinal Mucosa - pathology</subject><subject>Intestinal Mucosa - physiopathology</subject><subject>intestinal mucosal barrier dysfunction</subject><subject>Kinases</subject><subject>Laboratory animals</subject><subject>Liver Cirrhosis - blood</subject><subject>Liver Cirrhosis - genetics</subject><subject>Liver diseases</subject><subject>liver fibrosis</subject><subject>Male</subject><subject>MAP kinase</subject><subject>MAP Kinase Signaling System - genetics</subject><subject>MAPK signalling pathway</subject><subject>Mice, Inbred C57BL</subject><subject>MicroRNAs - blood</subject><subject>MicroRNAs - genetics</subject><subject>MicroRNAs - metabolism</subject><subject>microRNA‐200</subject><subject>Middle Aged</subject><subject>miRNA</subject><subject>Models, Biological</subject><subject>Mucosa</subject><subject>Non-alcoholic Fatty Liver Disease - blood</subject><subject>Non-alcoholic Fatty Liver Disease - genetics</subject><subject>non‐alcoholic fatty liver disease</subject><subject>Original</subject><subject>Plasma</subject><subject>Plasmids</subject><subject>Proteins</subject><subject>Signal transduction</subject><subject>SIRT1 protein</subject><subject>Sirtuin 1 - metabolism</subject><subject>sirtuin‐1</subject><subject>Small intestine</subject><subject>Studies</subject><subject>transcription factor</subject><subject>Transcription factors</subject><subject>Transcription Factors - metabolism</subject><subject>Young Adult</subject><issn>1582-1838</issn><issn>1582-4934</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kc-O0zAQhyMEYpeFCw-ALHFBSF0y_pPEF6Sqgl2gBbSCs2U7DnXl2MVOusqNR-DEA_IkuNuyAg74Mpbm0-fx_IriMZTnkM-Lje77c2AY8J3iFFiDZ5QTevd4h4Y0J8WDlDZlSSog_H5xQjDBlEB9Wvy4uLpcYmR9O2qTkLM7E1FnVQzJJiR9m1uDSYP10qF-1CHlqmSMNnPtlLrR68EGnzHkg__57bt0OqyDsxp1chimo7K1ychk0M5K1Fsdw9X7eYZxWd48MqwNWs0_vkNbOayv5fSwuNdJl8yjYz0rPr9-9WlxOVt-uHizmC9nmtL8N61K3bGaKIAWasPAcN5yaGqFFeAas1Yx3tEK6oo1StaVZg3B-Yp1YxRV5Kx4efBuR9WbVhs_ROnENtpexkkEacXfHW_X4kvYiRpzCkCz4NlREMPXMS9K9DZp45z0JoxJYMIppoxxktGn_6CbMMa810zRPG3VQLkXPj9QeUcpRdPdDgOl2Mct9nGLm7gz_OTP8W_R3_lmAA7AtXVm-o9KvF2sVgfpL89FuKA</recordid><startdate>202006</startdate><enddate>202006</enddate><creator>Wang, Ying</creator><creator>Zeng, Zishu</creator><creator>Guan, Lin</creator><creator>Ao, Ran</creator><general>John Wiley &amp; Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6535-2926</orcidid></search><sort><creationdate>202006</creationdate><title>GRHL2 induces liver fibrosis and intestinal mucosal barrier dysfunction in non‐alcoholic fatty liver disease via microRNA‐200 and the MAPK pathway</title><author>Wang, Ying ; Zeng, Zishu ; Guan, Lin ; Ao, Ran</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4482-cb0cf573b11d17e51e99d9187b2b12725db59f4617658ba76c583258b2c8eb4b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adult</topic><topic>Alanine</topic><topic>Alanine transaminase</topic><topic>Alcoholism</topic><topic>Animals</topic><topic>Aspartate aminotransferase</topic><topic>Cardiovascular disease</topic><topic>Cholesterol</topic><topic>Deoxyribonucleic acid</topic><topic>Diabetes</topic><topic>DNA</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Ectopic expression</topic><topic>Ethanol</topic><topic>Fatty liver</topic><topic>Female</topic><topic>Fibrosis</topic><topic>Gene Expression Regulation</topic><topic>Gene Silencing</topic><topic>Glucose</topic><topic>Grainyhead‐like 2</topic><topic>Hepatitis</topic><topic>Hospitals</topic><topic>Humans</topic><topic>Hypertension</topic><topic>Insulin</topic><topic>Intestinal Mucosa - pathology</topic><topic>Intestinal Mucosa - physiopathology</topic><topic>intestinal mucosal barrier dysfunction</topic><topic>Kinases</topic><topic>Laboratory animals</topic><topic>Liver Cirrhosis - blood</topic><topic>Liver Cirrhosis - genetics</topic><topic>Liver diseases</topic><topic>liver fibrosis</topic><topic>Male</topic><topic>MAP kinase</topic><topic>MAP Kinase Signaling System - genetics</topic><topic>MAPK signalling pathway</topic><topic>Mice, Inbred C57BL</topic><topic>MicroRNAs - blood</topic><topic>MicroRNAs - genetics</topic><topic>MicroRNAs - metabolism</topic><topic>microRNA‐200</topic><topic>Middle Aged</topic><topic>miRNA</topic><topic>Models, Biological</topic><topic>Mucosa</topic><topic>Non-alcoholic Fatty Liver Disease - blood</topic><topic>Non-alcoholic Fatty Liver Disease - genetics</topic><topic>non‐alcoholic fatty liver disease</topic><topic>Original</topic><topic>Plasma</topic><topic>Plasmids</topic><topic>Proteins</topic><topic>Signal transduction</topic><topic>SIRT1 protein</topic><topic>Sirtuin 1 - metabolism</topic><topic>sirtuin‐1</topic><topic>Small intestine</topic><topic>Studies</topic><topic>transcription factor</topic><topic>Transcription factors</topic><topic>Transcription Factors - metabolism</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Ying</creatorcontrib><creatorcontrib>Zeng, Zishu</creatorcontrib><creatorcontrib>Guan, Lin</creatorcontrib><creatorcontrib>Ao, Ran</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of cellular and molecular medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Ying</au><au>Zeng, Zishu</au><au>Guan, Lin</au><au>Ao, Ran</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GRHL2 induces liver fibrosis and intestinal mucosal barrier dysfunction in non‐alcoholic fatty liver disease via microRNA‐200 and the MAPK pathway</atitle><jtitle>Journal of cellular and molecular medicine</jtitle><addtitle>J Cell Mol Med</addtitle><date>2020-06</date><risdate>2020</risdate><volume>24</volume><issue>11</issue><spage>6107</spage><epage>6119</epage><pages>6107-6119</pages><issn>1582-1838</issn><eissn>1582-4934</eissn><abstract>Non‐alcoholic fatty liver disease (NAFLD) serves as the most common subtype of liver diseases and cause of liver dysfunction, which is closely related to obesity and insulin resistance. In our study, we sought to investigate effect of transcription factor grainyhead‐like 2 (GRHL2) on NAFLD and the relevant mechanism. NAFLD mouse model was established with a high‐fat feed. Then, serum was extracted from NAFLD patients and mice, followed by ectopic expression and depletion experiments in NAFLD mice and L02 cells. Next, the correlation between GRHL2 and microRNA (miR)‐200 and between miR‐200 and sirtuin‐1 (SIRT1) was evaluated. The observations demonstrated that miR‐200 and GRHL2 were overexpressed in the serum of NAFLD patients and mice, while SIRT1 was poorly expressed. GRHL2 positively regulated miR‐200 by binding to miR‐200 promoter region, which negatively targeted SIRT1. The inhibition of miR‐200 and GRHL2 or SIRT1 overexpression lowered HA and LN in mouse liver tissue, occludin and ZO‐1 in mouse small intestine tissue, TNF‐α and IL‐6 in mouse serum, glucose, total cholesterol (TC), triglyceride (TG), aspartate aminotransferase (AST) and alanine aminotransferase (ALT) in mouse serum, and also inhibited liver fibrosis and intestinal mucosal barrier dysfunction. Meanwhile, GRHL2 induced activation of MAPK signalling pathway in NAFLD mice. Collectively, GRHL2 played a contributory role in NAFLD by exacerbating liver fibrosis and intestinal mucosal barrier dysfunction with the involvement of miR‐200‐dependent SIRT1 and the MAPK signalling pathway.</abstract><cop>England</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>32324317</pmid><doi>10.1111/jcmm.15212</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-6535-2926</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1582-1838
ispartof Journal of cellular and molecular medicine, 2020-06, Vol.24 (11), p.6107-6119
issn 1582-1838
1582-4934
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7294114
source MEDLINE; DOAJ Directory of Open Access Journals; Wiley-Blackwell Open Access Titles; EZB-FREE-00999 freely available EZB journals; Wiley Online Library All Journals; PubMed Central
subjects Adult
Alanine
Alanine transaminase
Alcoholism
Animals
Aspartate aminotransferase
Cardiovascular disease
Cholesterol
Deoxyribonucleic acid
Diabetes
DNA
DNA-Binding Proteins - metabolism
Ectopic expression
Ethanol
Fatty liver
Female
Fibrosis
Gene Expression Regulation
Gene Silencing
Glucose
Grainyhead‐like 2
Hepatitis
Hospitals
Humans
Hypertension
Insulin
Intestinal Mucosa - pathology
Intestinal Mucosa - physiopathology
intestinal mucosal barrier dysfunction
Kinases
Laboratory animals
Liver Cirrhosis - blood
Liver Cirrhosis - genetics
Liver diseases
liver fibrosis
Male
MAP kinase
MAP Kinase Signaling System - genetics
MAPK signalling pathway
Mice, Inbred C57BL
MicroRNAs - blood
MicroRNAs - genetics
MicroRNAs - metabolism
microRNA‐200
Middle Aged
miRNA
Models, Biological
Mucosa
Non-alcoholic Fatty Liver Disease - blood
Non-alcoholic Fatty Liver Disease - genetics
non‐alcoholic fatty liver disease
Original
Plasma
Plasmids
Proteins
Signal transduction
SIRT1 protein
Sirtuin 1 - metabolism
sirtuin‐1
Small intestine
Studies
transcription factor
Transcription factors
Transcription Factors - metabolism
Young Adult
title GRHL2 induces liver fibrosis and intestinal mucosal barrier dysfunction in non‐alcoholic fatty liver disease via microRNA‐200 and the MAPK pathway
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T15%3A25%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GRHL2%20induces%20liver%20fibrosis%20and%20intestinal%20mucosal%20barrier%20dysfunction%20in%20non%E2%80%90alcoholic%20fatty%20liver%20disease%20via%20microRNA%E2%80%90200%20and%20the%20MAPK%20pathway&rft.jtitle=Journal%20of%20cellular%20and%20molecular%20medicine&rft.au=Wang,%20Ying&rft.date=2020-06&rft.volume=24&rft.issue=11&rft.spage=6107&rft.epage=6119&rft.pages=6107-6119&rft.issn=1582-1838&rft.eissn=1582-4934&rft_id=info:doi/10.1111/jcmm.15212&rft_dat=%3Cproquest_pubme%3E2412768104%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2412768104&rft_id=info:pmid/32324317&rfr_iscdi=true