The multi-faceted mechano-bactericidal mechanism of nanostructured surfaces
The mechano-bactericidal activity of nanostructured surfaces has become the focus of intensive research toward the development of a new generation of antibacterial surfaces, particularly in the current era of emerging antibiotic resistance. This work demonstrates the effects of an incremental increa...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2020-06, Vol.117 (23), p.12598-12605 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12605 |
---|---|
container_issue | 23 |
container_start_page | 12598 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 117 |
creator | Ivanova, Elena P. Linklater, Denver P. Werner, Marco Baulin, Vladimir A. Xu, XiuMei Vrancken, Nandi Rubanov, Sergey Hanssen, Eric Wandiyanto, Jason Truong, Vi Khanh Elbourne, Aaron Maclaughlin, Shane Juodkazis, Saulius Crawford, Russell J. |
description | The mechano-bactericidal activity of nanostructured surfaces has become the focus of intensive research toward the development of a new generation of antibacterial surfaces, particularly in the current era of emerging antibiotic resistance. This work demonstrates the effects of an incremental increase of nanopillar height on nanostructure-induced bacterial cell death. We propose that the mechanical lysis of bacterial cells can be influenced by the degree of elasticity and clustering of highly ordered silicon nanopillar arrays. Herein, silicon nanopillar arrays with diameter 35 nm, periodicity 90 nm and increasing heights of 220, 360, and 420 nm were fabricated using deep UV immersion lithography. Nanoarrays of 360-nm-height pillars exhibited the highest degree of bactericidal activity toward both Gram stain-negative Pseudomonas aeruginosa and Gram stain-positive Staphylococcus aureus bacteria, inducing 95 ± 5% and 83 ± 12% cell death, respectively. At heights of 360 nm, increased nanopillar elasticity contributes to the onset of pillar deformation in response to bacterial adhesion to the surface. Theoretical analyses of pillar elasticity confirm that deflection, deformation force, and mechanical energies are more significant for the substrata possessing more flexible pillars. Increased storage and release of mechanical energy may explain the enhanced bactericidal action of these nanopillar arrays toward bacterial cells contacting the surface; however, with further increase of nanopillar height (420 nm), the forces (and tensions) can be partially compensated by irreversible interpillar adhesion that reduces their bactericidal effect. These findings can be used to inform the design of next-generation mechano-responsive surfaces with tuneable bactericidal characteristics for antimicrobial surface technologies. |
doi_str_mv | 10.1073/pnas.1916680117 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7293705</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26968299</jstor_id><sourcerecordid>26968299</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-7929f3bc2e34b7a3e6cb476236f2acd640388f065f44d865de920dade9f5b1903</originalsourceid><addsrcrecordid>eNpdkc1rGzEQxUVpiB0n554aDL3ksvHoY6XVpRBM0pYaenHPQquV6jW7K0fSBvLfV44dN-lpQO_3HjN6CH3CcItB0MVu0PEWS8x5BRiLD2iKQeKCMwkf0RSAiKJihE3QRYxbAJBlBedoQgkrBS7ZFP1cb-y8H7vUFk4bm2wz763Z6MEXtTbJhta0je6Oj23s597NhyzHFEaTxpANcQx7b7xEZ0530V4d5wz9frhfL78Xq1_ffizvVoUpQaZCSCIdrQ2xlNVCU8tNzQQnlDuiTcMZ0KpywEvHWFPxsrGSQKPzcGWNJdAZ-nrI3Y11bxtjhxR0p3ah7XV4Vl636r0ytBv1xz8pQSQVUOaAm2NA8I-jjUn1bTS26_Rg_RgVYflvcQVUZvTLf-jWj2HI52UKE0oxf9locaBM8DEG607LYFD7otS-KPWvqOy4fnvDiX9tJgOfD8A2Jh9OOuGSV0RK-hen15nU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2412331690</pqid></control><display><type>article</type><title>The multi-faceted mechano-bactericidal mechanism of nanostructured surfaces</title><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Ivanova, Elena P. ; Linklater, Denver P. ; Werner, Marco ; Baulin, Vladimir A. ; Xu, XiuMei ; Vrancken, Nandi ; Rubanov, Sergey ; Hanssen, Eric ; Wandiyanto, Jason ; Truong, Vi Khanh ; Elbourne, Aaron ; Maclaughlin, Shane ; Juodkazis, Saulius ; Crawford, Russell J.</creator><creatorcontrib>Ivanova, Elena P. ; Linklater, Denver P. ; Werner, Marco ; Baulin, Vladimir A. ; Xu, XiuMei ; Vrancken, Nandi ; Rubanov, Sergey ; Hanssen, Eric ; Wandiyanto, Jason ; Truong, Vi Khanh ; Elbourne, Aaron ; Maclaughlin, Shane ; Juodkazis, Saulius ; Crawford, Russell J.</creatorcontrib><description>The mechano-bactericidal activity of nanostructured surfaces has become the focus of intensive research toward the development of a new generation of antibacterial surfaces, particularly in the current era of emerging antibiotic resistance. This work demonstrates the effects of an incremental increase of nanopillar height on nanostructure-induced bacterial cell death. We propose that the mechanical lysis of bacterial cells can be influenced by the degree of elasticity and clustering of highly ordered silicon nanopillar arrays. Herein, silicon nanopillar arrays with diameter 35 nm, periodicity 90 nm and increasing heights of 220, 360, and 420 nm were fabricated using deep UV immersion lithography. Nanoarrays of 360-nm-height pillars exhibited the highest degree of bactericidal activity toward both Gram stain-negative Pseudomonas aeruginosa and Gram stain-positive Staphylococcus aureus bacteria, inducing 95 ± 5% and 83 ± 12% cell death, respectively. At heights of 360 nm, increased nanopillar elasticity contributes to the onset of pillar deformation in response to bacterial adhesion to the surface. Theoretical analyses of pillar elasticity confirm that deflection, deformation force, and mechanical energies are more significant for the substrata possessing more flexible pillars. Increased storage and release of mechanical energy may explain the enhanced bactericidal action of these nanopillar arrays toward bacterial cells contacting the surface; however, with further increase of nanopillar height (420 nm), the forces (and tensions) can be partially compensated by irreversible interpillar adhesion that reduces their bactericidal effect. These findings can be used to inform the design of next-generation mechano-responsive surfaces with tuneable bactericidal characteristics for antimicrobial surface technologies.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1916680117</identifier><identifier>PMID: 32457154</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Adhesion ; Antibacterial materials ; Antibiotic resistance ; Antibiotics ; Apoptosis ; Arrays ; Bacteria ; Bactericidal activity ; Biological Sciences ; Cell death ; Clustering ; Deformation ; Elasticity ; Energy storage ; Gram stain ; Lysis ; Nanostructure ; Periodicity ; Physical Sciences ; Pseudomonas aeruginosa ; Silicon ; Submerging ; Surface chemistry</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2020-06, Vol.117 (23), p.12598-12605</ispartof><rights>Copyright National Academy of Sciences Jun 9, 2020</rights><rights>2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-7929f3bc2e34b7a3e6cb476236f2acd640388f065f44d865de920dade9f5b1903</citedby><cites>FETCH-LOGICAL-c509t-7929f3bc2e34b7a3e6cb476236f2acd640388f065f44d865de920dade9f5b1903</cites><orcidid>0000-0002-3356-8693 ; 0000-0002-4472-4372 ; 0000-0003-2086-4271 ; 0000-0002-5509-8071 ; 0000-0001-5433-8443</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26968299$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26968299$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32457154$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ivanova, Elena P.</creatorcontrib><creatorcontrib>Linklater, Denver P.</creatorcontrib><creatorcontrib>Werner, Marco</creatorcontrib><creatorcontrib>Baulin, Vladimir A.</creatorcontrib><creatorcontrib>Xu, XiuMei</creatorcontrib><creatorcontrib>Vrancken, Nandi</creatorcontrib><creatorcontrib>Rubanov, Sergey</creatorcontrib><creatorcontrib>Hanssen, Eric</creatorcontrib><creatorcontrib>Wandiyanto, Jason</creatorcontrib><creatorcontrib>Truong, Vi Khanh</creatorcontrib><creatorcontrib>Elbourne, Aaron</creatorcontrib><creatorcontrib>Maclaughlin, Shane</creatorcontrib><creatorcontrib>Juodkazis, Saulius</creatorcontrib><creatorcontrib>Crawford, Russell J.</creatorcontrib><title>The multi-faceted mechano-bactericidal mechanism of nanostructured surfaces</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The mechano-bactericidal activity of nanostructured surfaces has become the focus of intensive research toward the development of a new generation of antibacterial surfaces, particularly in the current era of emerging antibiotic resistance. This work demonstrates the effects of an incremental increase of nanopillar height on nanostructure-induced bacterial cell death. We propose that the mechanical lysis of bacterial cells can be influenced by the degree of elasticity and clustering of highly ordered silicon nanopillar arrays. Herein, silicon nanopillar arrays with diameter 35 nm, periodicity 90 nm and increasing heights of 220, 360, and 420 nm were fabricated using deep UV immersion lithography. Nanoarrays of 360-nm-height pillars exhibited the highest degree of bactericidal activity toward both Gram stain-negative Pseudomonas aeruginosa and Gram stain-positive Staphylococcus aureus bacteria, inducing 95 ± 5% and 83 ± 12% cell death, respectively. At heights of 360 nm, increased nanopillar elasticity contributes to the onset of pillar deformation in response to bacterial adhesion to the surface. Theoretical analyses of pillar elasticity confirm that deflection, deformation force, and mechanical energies are more significant for the substrata possessing more flexible pillars. Increased storage and release of mechanical energy may explain the enhanced bactericidal action of these nanopillar arrays toward bacterial cells contacting the surface; however, with further increase of nanopillar height (420 nm), the forces (and tensions) can be partially compensated by irreversible interpillar adhesion that reduces their bactericidal effect. These findings can be used to inform the design of next-generation mechano-responsive surfaces with tuneable bactericidal characteristics for antimicrobial surface technologies.</description><subject>Adhesion</subject><subject>Antibacterial materials</subject><subject>Antibiotic resistance</subject><subject>Antibiotics</subject><subject>Apoptosis</subject><subject>Arrays</subject><subject>Bacteria</subject><subject>Bactericidal activity</subject><subject>Biological Sciences</subject><subject>Cell death</subject><subject>Clustering</subject><subject>Deformation</subject><subject>Elasticity</subject><subject>Energy storage</subject><subject>Gram stain</subject><subject>Lysis</subject><subject>Nanostructure</subject><subject>Periodicity</subject><subject>Physical Sciences</subject><subject>Pseudomonas aeruginosa</subject><subject>Silicon</subject><subject>Submerging</subject><subject>Surface chemistry</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkc1rGzEQxUVpiB0n554aDL3ksvHoY6XVpRBM0pYaenHPQquV6jW7K0fSBvLfV44dN-lpQO_3HjN6CH3CcItB0MVu0PEWS8x5BRiLD2iKQeKCMwkf0RSAiKJihE3QRYxbAJBlBedoQgkrBS7ZFP1cb-y8H7vUFk4bm2wz763Z6MEXtTbJhta0je6Oj23s597NhyzHFEaTxpANcQx7b7xEZ0530V4d5wz9frhfL78Xq1_ffizvVoUpQaZCSCIdrQ2xlNVCU8tNzQQnlDuiTcMZ0KpywEvHWFPxsrGSQKPzcGWNJdAZ-nrI3Y11bxtjhxR0p3ah7XV4Vl636r0ytBv1xz8pQSQVUOaAm2NA8I-jjUn1bTS26_Rg_RgVYflvcQVUZvTLf-jWj2HI52UKE0oxf9locaBM8DEG607LYFD7otS-KPWvqOy4fnvDiX9tJgOfD8A2Jh9OOuGSV0RK-hen15nU</recordid><startdate>20200609</startdate><enddate>20200609</enddate><creator>Ivanova, Elena P.</creator><creator>Linklater, Denver P.</creator><creator>Werner, Marco</creator><creator>Baulin, Vladimir A.</creator><creator>Xu, XiuMei</creator><creator>Vrancken, Nandi</creator><creator>Rubanov, Sergey</creator><creator>Hanssen, Eric</creator><creator>Wandiyanto, Jason</creator><creator>Truong, Vi Khanh</creator><creator>Elbourne, Aaron</creator><creator>Maclaughlin, Shane</creator><creator>Juodkazis, Saulius</creator><creator>Crawford, Russell J.</creator><general>National Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3356-8693</orcidid><orcidid>https://orcid.org/0000-0002-4472-4372</orcidid><orcidid>https://orcid.org/0000-0003-2086-4271</orcidid><orcidid>https://orcid.org/0000-0002-5509-8071</orcidid><orcidid>https://orcid.org/0000-0001-5433-8443</orcidid></search><sort><creationdate>20200609</creationdate><title>The multi-faceted mechano-bactericidal mechanism of nanostructured surfaces</title><author>Ivanova, Elena P. ; Linklater, Denver P. ; Werner, Marco ; Baulin, Vladimir A. ; Xu, XiuMei ; Vrancken, Nandi ; Rubanov, Sergey ; Hanssen, Eric ; Wandiyanto, Jason ; Truong, Vi Khanh ; Elbourne, Aaron ; Maclaughlin, Shane ; Juodkazis, Saulius ; Crawford, Russell J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-7929f3bc2e34b7a3e6cb476236f2acd640388f065f44d865de920dade9f5b1903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adhesion</topic><topic>Antibacterial materials</topic><topic>Antibiotic resistance</topic><topic>Antibiotics</topic><topic>Apoptosis</topic><topic>Arrays</topic><topic>Bacteria</topic><topic>Bactericidal activity</topic><topic>Biological Sciences</topic><topic>Cell death</topic><topic>Clustering</topic><topic>Deformation</topic><topic>Elasticity</topic><topic>Energy storage</topic><topic>Gram stain</topic><topic>Lysis</topic><topic>Nanostructure</topic><topic>Periodicity</topic><topic>Physical Sciences</topic><topic>Pseudomonas aeruginosa</topic><topic>Silicon</topic><topic>Submerging</topic><topic>Surface chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ivanova, Elena P.</creatorcontrib><creatorcontrib>Linklater, Denver P.</creatorcontrib><creatorcontrib>Werner, Marco</creatorcontrib><creatorcontrib>Baulin, Vladimir A.</creatorcontrib><creatorcontrib>Xu, XiuMei</creatorcontrib><creatorcontrib>Vrancken, Nandi</creatorcontrib><creatorcontrib>Rubanov, Sergey</creatorcontrib><creatorcontrib>Hanssen, Eric</creatorcontrib><creatorcontrib>Wandiyanto, Jason</creatorcontrib><creatorcontrib>Truong, Vi Khanh</creatorcontrib><creatorcontrib>Elbourne, Aaron</creatorcontrib><creatorcontrib>Maclaughlin, Shane</creatorcontrib><creatorcontrib>Juodkazis, Saulius</creatorcontrib><creatorcontrib>Crawford, Russell J.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ivanova, Elena P.</au><au>Linklater, Denver P.</au><au>Werner, Marco</au><au>Baulin, Vladimir A.</au><au>Xu, XiuMei</au><au>Vrancken, Nandi</au><au>Rubanov, Sergey</au><au>Hanssen, Eric</au><au>Wandiyanto, Jason</au><au>Truong, Vi Khanh</au><au>Elbourne, Aaron</au><au>Maclaughlin, Shane</au><au>Juodkazis, Saulius</au><au>Crawford, Russell J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The multi-faceted mechano-bactericidal mechanism of nanostructured surfaces</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2020-06-09</date><risdate>2020</risdate><volume>117</volume><issue>23</issue><spage>12598</spage><epage>12605</epage><pages>12598-12605</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The mechano-bactericidal activity of nanostructured surfaces has become the focus of intensive research toward the development of a new generation of antibacterial surfaces, particularly in the current era of emerging antibiotic resistance. This work demonstrates the effects of an incremental increase of nanopillar height on nanostructure-induced bacterial cell death. We propose that the mechanical lysis of bacterial cells can be influenced by the degree of elasticity and clustering of highly ordered silicon nanopillar arrays. Herein, silicon nanopillar arrays with diameter 35 nm, periodicity 90 nm and increasing heights of 220, 360, and 420 nm were fabricated using deep UV immersion lithography. Nanoarrays of 360-nm-height pillars exhibited the highest degree of bactericidal activity toward both Gram stain-negative Pseudomonas aeruginosa and Gram stain-positive Staphylococcus aureus bacteria, inducing 95 ± 5% and 83 ± 12% cell death, respectively. At heights of 360 nm, increased nanopillar elasticity contributes to the onset of pillar deformation in response to bacterial adhesion to the surface. Theoretical analyses of pillar elasticity confirm that deflection, deformation force, and mechanical energies are more significant for the substrata possessing more flexible pillars. Increased storage and release of mechanical energy may explain the enhanced bactericidal action of these nanopillar arrays toward bacterial cells contacting the surface; however, with further increase of nanopillar height (420 nm), the forces (and tensions) can be partially compensated by irreversible interpillar adhesion that reduces their bactericidal effect. These findings can be used to inform the design of next-generation mechano-responsive surfaces with tuneable bactericidal characteristics for antimicrobial surface technologies.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>32457154</pmid><doi>10.1073/pnas.1916680117</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-3356-8693</orcidid><orcidid>https://orcid.org/0000-0002-4472-4372</orcidid><orcidid>https://orcid.org/0000-0003-2086-4271</orcidid><orcidid>https://orcid.org/0000-0002-5509-8071</orcidid><orcidid>https://orcid.org/0000-0001-5433-8443</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2020-06, Vol.117 (23), p.12598-12605 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7293705 |
source | JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Adhesion Antibacterial materials Antibiotic resistance Antibiotics Apoptosis Arrays Bacteria Bactericidal activity Biological Sciences Cell death Clustering Deformation Elasticity Energy storage Gram stain Lysis Nanostructure Periodicity Physical Sciences Pseudomonas aeruginosa Silicon Submerging Surface chemistry |
title | The multi-faceted mechano-bactericidal mechanism of nanostructured surfaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T17%3A11%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20multi-faceted%20mechano-bactericidal%20mechanism%20of%20nanostructured%20surfaces&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Ivanova,%20Elena%20P.&rft.date=2020-06-09&rft.volume=117&rft.issue=23&rft.spage=12598&rft.epage=12605&rft.pages=12598-12605&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1916680117&rft_dat=%3Cjstor_pubme%3E26968299%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2412331690&rft_id=info:pmid/32457154&rft_jstor_id=26968299&rfr_iscdi=true |