Load-induced dynamical transitions at graphene interfaces

The structural superlubricity (SSL), a state of near-zero friction between two contacted solid surfaces, has been attracting rapidly increasing research interest since itwas realized in microscale graphite in 2012. An obvious question concerns the implications of SSL for micro- and nanoscale devices...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2020-06, Vol.117 (23), p.12618-12623
Hauptverfasser: Peng, Deli, Wu, Zhanghui, Shi, Diwei, Qu, Cangyu, Jiang, Haiyang, Song, Yiming, Ma, Ming, Aeppli, Gabriel, Urbakh, Michael, Zheng, Quanshui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12623
container_issue 23
container_start_page 12618
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 117
creator Peng, Deli
Wu, Zhanghui
Shi, Diwei
Qu, Cangyu
Jiang, Haiyang
Song, Yiming
Ma, Ming
Aeppli, Gabriel
Urbakh, Michael
Zheng, Quanshui
description The structural superlubricity (SSL), a state of near-zero friction between two contacted solid surfaces, has been attracting rapidly increasing research interest since itwas realized in microscale graphite in 2012. An obvious question concerns the implications of SSL for micro- and nanoscale devices such as actuators. The simplest actuators are based on the application of a normal load; here we show that this leads to remarkable dynamical phenomena in microscale graphite mesas. Under an increasing normal load, we observe mechanical instabilities leading to dynamical states, the first where the loaded mesa suddenly ejects a thin flake and the second characterized by peculiar oscillations, during which a flake repeatedly pops out of the mesa and retracts back. Themeasured ejection speeds are extraordinarily high (maximum of 294 m/s), and correspond to ultrahigh accelerations (maximum of 1.1×1010 m/s²). These observations are rationalized using a simple model, which takes into account SSL of graphite contacts and sample microstructure and considers a competition between the elastic and interfacial energies that defines the dynamical phase diagram of the system. Analyzing the observed flake ejection and oscillations, we conclude that our system exhibits a high speed in SSL, a low friction coefficient of 3.6×10−6, and a high quality factor of 1.3×10⁷ compared with what has been reported in literature. Our experimental discoveries and theoretical findings suggest a route for development of SSL-based devices such as high-frequency oscillators with ultrahigh quality factors and optomechanical switches, where retractable or oscillating mirrors are required.
doi_str_mv 10.1073/pnas.1922681117
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7293647</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26968302</jstor_id><sourcerecordid>26968302</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-98df1a7348f4c6aca9463d8e5c93f231d89546df45bfa1eebd80dbc6afcf5c123</originalsourceid><addsrcrecordid>eNpdkTlPAzEQhS0EIuGoqUAr0dBs4mt37QYJIS4pEg3UltcHONrYwd5Fyr_HUUI4qinmmzdv5gFwhuAEwYZMl16mCeIY1wwh1OyBMYIclTXlcB-MIcRNySimI3CU0hxCyCsGD8GIYFo1qOJjwGdB6tJ5PSijC73ycuGU7Io-Sp9c74JPheyLtyiX78abwvneRCuVSSfgwMoumdNtPQav93cvt4_l7Pnh6fZmVipKSV9ypi2SDaHMUlVLJTmtiWamUpxYTJBmvKK1trRqrUTGtJpB3WbSKlsphMkxuN7oLod2YbQyPnvrxDK6hYwrEaQTfzvevYu38CkazElNmyxwtRWI4WMwqRcLl5TpOulNGJLANH8SMUrXuy7_ofMwRJ_Py1T2QmDFeKamG0rFkFI0dmcGQbGORaxjET-x5ImL3zfs-O8cMnC-AeapD3HXxzWvGYGYfAEudJPw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2412330589</pqid></control><display><type>article</type><title>Load-induced dynamical transitions at graphene interfaces</title><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Peng, Deli ; Wu, Zhanghui ; Shi, Diwei ; Qu, Cangyu ; Jiang, Haiyang ; Song, Yiming ; Ma, Ming ; Aeppli, Gabriel ; Urbakh, Michael ; Zheng, Quanshui</creator><creatorcontrib>Peng, Deli ; Wu, Zhanghui ; Shi, Diwei ; Qu, Cangyu ; Jiang, Haiyang ; Song, Yiming ; Ma, Ming ; Aeppli, Gabriel ; Urbakh, Michael ; Zheng, Quanshui</creatorcontrib><description>The structural superlubricity (SSL), a state of near-zero friction between two contacted solid surfaces, has been attracting rapidly increasing research interest since itwas realized in microscale graphite in 2012. An obvious question concerns the implications of SSL for micro- and nanoscale devices such as actuators. The simplest actuators are based on the application of a normal load; here we show that this leads to remarkable dynamical phenomena in microscale graphite mesas. Under an increasing normal load, we observe mechanical instabilities leading to dynamical states, the first where the loaded mesa suddenly ejects a thin flake and the second characterized by peculiar oscillations, during which a flake repeatedly pops out of the mesa and retracts back. Themeasured ejection speeds are extraordinarily high (maximum of 294 m/s), and correspond to ultrahigh accelerations (maximum of 1.1×1010 m/s²). These observations are rationalized using a simple model, which takes into account SSL of graphite contacts and sample microstructure and considers a competition between the elastic and interfacial energies that defines the dynamical phase diagram of the system. Analyzing the observed flake ejection and oscillations, we conclude that our system exhibits a high speed in SSL, a low friction coefficient of 3.6×10−6, and a high quality factor of 1.3×10⁷ compared with what has been reported in literature. Our experimental discoveries and theoretical findings suggest a route for development of SSL-based devices such as high-frequency oscillators with ultrahigh quality factors and optomechanical switches, where retractable or oscillating mirrors are required.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1922681117</identifier><identifier>PMID: 32457159</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Actuators ; Coefficient of friction ; Ejection ; Flakes ; Friction ; Graphene ; Graphical user interface ; Graphite ; Interfaces ; Mechanical properties ; Mesas ; Nanotechnology devices ; Oscillations ; Oscillators ; Phase diagrams ; Physical Sciences ; Q factors ; Solid surfaces ; Switches</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2020-06, Vol.117 (23), p.12618-12623</ispartof><rights>Copyright © 2020 the Author(s). Published by PNAS.</rights><rights>Copyright National Academy of Sciences Jun 9, 2020</rights><rights>Copyright © 2020 the Author(s). Published by PNAS. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-98df1a7348f4c6aca9463d8e5c93f231d89546df45bfa1eebd80dbc6afcf5c123</citedby><cites>FETCH-LOGICAL-c443t-98df1a7348f4c6aca9463d8e5c93f231d89546df45bfa1eebd80dbc6afcf5c123</cites><orcidid>0000-0002-2505-0050 ; 0000-0002-6832-2052 ; 0000-0001-6016-286X ; 0000-0001-8261-4943 ; 0000-0002-8399-5650 ; 0000-0002-3959-5414 ; 0000-0001-9428-5841</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26968302$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26968302$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,724,777,781,800,882,27905,27906,53772,53774,57998,58231</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32457159$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Peng, Deli</creatorcontrib><creatorcontrib>Wu, Zhanghui</creatorcontrib><creatorcontrib>Shi, Diwei</creatorcontrib><creatorcontrib>Qu, Cangyu</creatorcontrib><creatorcontrib>Jiang, Haiyang</creatorcontrib><creatorcontrib>Song, Yiming</creatorcontrib><creatorcontrib>Ma, Ming</creatorcontrib><creatorcontrib>Aeppli, Gabriel</creatorcontrib><creatorcontrib>Urbakh, Michael</creatorcontrib><creatorcontrib>Zheng, Quanshui</creatorcontrib><title>Load-induced dynamical transitions at graphene interfaces</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The structural superlubricity (SSL), a state of near-zero friction between two contacted solid surfaces, has been attracting rapidly increasing research interest since itwas realized in microscale graphite in 2012. An obvious question concerns the implications of SSL for micro- and nanoscale devices such as actuators. The simplest actuators are based on the application of a normal load; here we show that this leads to remarkable dynamical phenomena in microscale graphite mesas. Under an increasing normal load, we observe mechanical instabilities leading to dynamical states, the first where the loaded mesa suddenly ejects a thin flake and the second characterized by peculiar oscillations, during which a flake repeatedly pops out of the mesa and retracts back. Themeasured ejection speeds are extraordinarily high (maximum of 294 m/s), and correspond to ultrahigh accelerations (maximum of 1.1×1010 m/s²). These observations are rationalized using a simple model, which takes into account SSL of graphite contacts and sample microstructure and considers a competition between the elastic and interfacial energies that defines the dynamical phase diagram of the system. Analyzing the observed flake ejection and oscillations, we conclude that our system exhibits a high speed in SSL, a low friction coefficient of 3.6×10−6, and a high quality factor of 1.3×10⁷ compared with what has been reported in literature. Our experimental discoveries and theoretical findings suggest a route for development of SSL-based devices such as high-frequency oscillators with ultrahigh quality factors and optomechanical switches, where retractable or oscillating mirrors are required.</description><subject>Actuators</subject><subject>Coefficient of friction</subject><subject>Ejection</subject><subject>Flakes</subject><subject>Friction</subject><subject>Graphene</subject><subject>Graphical user interface</subject><subject>Graphite</subject><subject>Interfaces</subject><subject>Mechanical properties</subject><subject>Mesas</subject><subject>Nanotechnology devices</subject><subject>Oscillations</subject><subject>Oscillators</subject><subject>Phase diagrams</subject><subject>Physical Sciences</subject><subject>Q factors</subject><subject>Solid surfaces</subject><subject>Switches</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkTlPAzEQhS0EIuGoqUAr0dBs4mt37QYJIS4pEg3UltcHONrYwd5Fyr_HUUI4qinmmzdv5gFwhuAEwYZMl16mCeIY1wwh1OyBMYIclTXlcB-MIcRNySimI3CU0hxCyCsGD8GIYFo1qOJjwGdB6tJ5PSijC73ycuGU7Io-Sp9c74JPheyLtyiX78abwvneRCuVSSfgwMoumdNtPQav93cvt4_l7Pnh6fZmVipKSV9ypi2SDaHMUlVLJTmtiWamUpxYTJBmvKK1trRqrUTGtJpB3WbSKlsphMkxuN7oLod2YbQyPnvrxDK6hYwrEaQTfzvevYu38CkazElNmyxwtRWI4WMwqRcLl5TpOulNGJLANH8SMUrXuy7_ofMwRJ_Py1T2QmDFeKamG0rFkFI0dmcGQbGORaxjET-x5ImL3zfs-O8cMnC-AeapD3HXxzWvGYGYfAEudJPw</recordid><startdate>20200609</startdate><enddate>20200609</enddate><creator>Peng, Deli</creator><creator>Wu, Zhanghui</creator><creator>Shi, Diwei</creator><creator>Qu, Cangyu</creator><creator>Jiang, Haiyang</creator><creator>Song, Yiming</creator><creator>Ma, Ming</creator><creator>Aeppli, Gabriel</creator><creator>Urbakh, Michael</creator><creator>Zheng, Quanshui</creator><general>National Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2505-0050</orcidid><orcidid>https://orcid.org/0000-0002-6832-2052</orcidid><orcidid>https://orcid.org/0000-0001-6016-286X</orcidid><orcidid>https://orcid.org/0000-0001-8261-4943</orcidid><orcidid>https://orcid.org/0000-0002-8399-5650</orcidid><orcidid>https://orcid.org/0000-0002-3959-5414</orcidid><orcidid>https://orcid.org/0000-0001-9428-5841</orcidid></search><sort><creationdate>20200609</creationdate><title>Load-induced dynamical transitions at graphene interfaces</title><author>Peng, Deli ; Wu, Zhanghui ; Shi, Diwei ; Qu, Cangyu ; Jiang, Haiyang ; Song, Yiming ; Ma, Ming ; Aeppli, Gabriel ; Urbakh, Michael ; Zheng, Quanshui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-98df1a7348f4c6aca9463d8e5c93f231d89546df45bfa1eebd80dbc6afcf5c123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Actuators</topic><topic>Coefficient of friction</topic><topic>Ejection</topic><topic>Flakes</topic><topic>Friction</topic><topic>Graphene</topic><topic>Graphical user interface</topic><topic>Graphite</topic><topic>Interfaces</topic><topic>Mechanical properties</topic><topic>Mesas</topic><topic>Nanotechnology devices</topic><topic>Oscillations</topic><topic>Oscillators</topic><topic>Phase diagrams</topic><topic>Physical Sciences</topic><topic>Q factors</topic><topic>Solid surfaces</topic><topic>Switches</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peng, Deli</creatorcontrib><creatorcontrib>Wu, Zhanghui</creatorcontrib><creatorcontrib>Shi, Diwei</creatorcontrib><creatorcontrib>Qu, Cangyu</creatorcontrib><creatorcontrib>Jiang, Haiyang</creatorcontrib><creatorcontrib>Song, Yiming</creatorcontrib><creatorcontrib>Ma, Ming</creatorcontrib><creatorcontrib>Aeppli, Gabriel</creatorcontrib><creatorcontrib>Urbakh, Michael</creatorcontrib><creatorcontrib>Zheng, Quanshui</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peng, Deli</au><au>Wu, Zhanghui</au><au>Shi, Diwei</au><au>Qu, Cangyu</au><au>Jiang, Haiyang</au><au>Song, Yiming</au><au>Ma, Ming</au><au>Aeppli, Gabriel</au><au>Urbakh, Michael</au><au>Zheng, Quanshui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Load-induced dynamical transitions at graphene interfaces</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2020-06-09</date><risdate>2020</risdate><volume>117</volume><issue>23</issue><spage>12618</spage><epage>12623</epage><pages>12618-12623</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The structural superlubricity (SSL), a state of near-zero friction between two contacted solid surfaces, has been attracting rapidly increasing research interest since itwas realized in microscale graphite in 2012. An obvious question concerns the implications of SSL for micro- and nanoscale devices such as actuators. The simplest actuators are based on the application of a normal load; here we show that this leads to remarkable dynamical phenomena in microscale graphite mesas. Under an increasing normal load, we observe mechanical instabilities leading to dynamical states, the first where the loaded mesa suddenly ejects a thin flake and the second characterized by peculiar oscillations, during which a flake repeatedly pops out of the mesa and retracts back. Themeasured ejection speeds are extraordinarily high (maximum of 294 m/s), and correspond to ultrahigh accelerations (maximum of 1.1×1010 m/s²). These observations are rationalized using a simple model, which takes into account SSL of graphite contacts and sample microstructure and considers a competition between the elastic and interfacial energies that defines the dynamical phase diagram of the system. Analyzing the observed flake ejection and oscillations, we conclude that our system exhibits a high speed in SSL, a low friction coefficient of 3.6×10−6, and a high quality factor of 1.3×10⁷ compared with what has been reported in literature. Our experimental discoveries and theoretical findings suggest a route for development of SSL-based devices such as high-frequency oscillators with ultrahigh quality factors and optomechanical switches, where retractable or oscillating mirrors are required.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>32457159</pmid><doi>10.1073/pnas.1922681117</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-2505-0050</orcidid><orcidid>https://orcid.org/0000-0002-6832-2052</orcidid><orcidid>https://orcid.org/0000-0001-6016-286X</orcidid><orcidid>https://orcid.org/0000-0001-8261-4943</orcidid><orcidid>https://orcid.org/0000-0002-8399-5650</orcidid><orcidid>https://orcid.org/0000-0002-3959-5414</orcidid><orcidid>https://orcid.org/0000-0001-9428-5841</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2020-06, Vol.117 (23), p.12618-12623
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7293647
source Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Actuators
Coefficient of friction
Ejection
Flakes
Friction
Graphene
Graphical user interface
Graphite
Interfaces
Mechanical properties
Mesas
Nanotechnology devices
Oscillations
Oscillators
Phase diagrams
Physical Sciences
Q factors
Solid surfaces
Switches
title Load-induced dynamical transitions at graphene interfaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T10%3A36%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Load-induced%20dynamical%20transitions%20at%20graphene%20interfaces&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Peng,%20Deli&rft.date=2020-06-09&rft.volume=117&rft.issue=23&rft.spage=12618&rft.epage=12623&rft.pages=12618-12623&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1922681117&rft_dat=%3Cjstor_pubme%3E26968302%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2412330589&rft_id=info:pmid/32457159&rft_jstor_id=26968302&rfr_iscdi=true