Comparative analysis and forecasting of COVID-19 cases in various European countries with ARIMA, NARNN and LSTM approaches
•Comparison of ARIMA, NARNN and LSTM models on COVID-19 prediction.•Detailed model performance criteria evaluation.•Prospective estimation of total cases with LSTM. In this study, confirmed COVID-19 cases of Denmark, Belgium, Germany, France, United Kingdom, Finland, Switzerland and Turkey were mode...
Gespeichert in:
Veröffentlicht in: | Chaos, solitons and fractals solitons and fractals, 2020-09, Vol.138, p.110015-110015, Article 110015 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 110015 |
---|---|
container_issue | |
container_start_page | 110015 |
container_title | Chaos, solitons and fractals |
container_volume | 138 |
creator | Kırbaş, İsmail Sözen, Adnan Tuncer, Azim Doğuş Kazancıoğlu, Fikret Şinasi |
description | •Comparison of ARIMA, NARNN and LSTM models on COVID-19 prediction.•Detailed model performance criteria evaluation.•Prospective estimation of total cases with LSTM.
In this study, confirmed COVID-19 cases of Denmark, Belgium, Germany, France, United Kingdom, Finland, Switzerland and Turkey were modeled with Auto-Regressive Integrated Moving Average (ARIMA), Nonlinear Autoregression Neural Network (NARNN) and Long-Short Term Memory (LSTM) approaches. Six model performance metric were used to select the most accurate model (MSE, PSNR, RMSE, NRMSE, MAPE and SMAPE). According to the results of the first step of the study, LSTM was found the most accurate model. In the second stage of the study, LSTM model was provided to make predictions in a 14-day perspective that is yet to be known. Results of the second step of the study shows that the total cumulative case increase rate is expected to decrease slightly in many countries.
[Display omitted] |
doi_str_mv | 10.1016/j.chaos.2020.110015 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7293493</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960077920304136</els_id><sourcerecordid>2415834539</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-436ccdd6032d8f84b91b44a1cc9719ec9ab1f82f744065646c004c5947076fd53</originalsourceid><addsrcrecordid>eNp9kc1OGzEUhS3UCgLtE7DxsotO6r-xxwsqRSm0kUKQKO3Wcu54iKPJeLBnUsHTYwiq1E03tnXvOcf2_RA6p2RKCZVftlPY2JCmjLBcoYTQ8ghNaKV4wapKvUMToiUpiFL6BJ2mtCVZQiQ7RieclbKUrJygp3nY9Tbawe8dtp1tH5NP-VDjJkQHNg2-u8ehwfOb34tvBdU411zCvsN7G30YE74cY-id7TCEsRuiz90_ftjg2e3ievYZr2a3q9Vr4vLn3TW2fR-DhY1LH9D7xrbJfXzbz9Cvq8u7-Y9iefN9MZ8tCxBcDkVeAOpaEs7qqqnEWtO1EJYCaEW1A23XtKlYo4Qg-VNCAiECSi0UUbKpS36Gvh5y-3G9czW4_Ejbmj76nY2PJlhv_u10fmPuw94oprnQPAd8eguI4WF0aTA7n8C1re1cHoBhgpYVFyXXWcoPUoghpeiav9dQYl6oma15pWZeqJkDtey6OLhcHsPeu2gSeNeBq31mMJg6-P_6nwHjfp-d</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2415834539</pqid></control><display><type>article</type><title>Comparative analysis and forecasting of COVID-19 cases in various European countries with ARIMA, NARNN and LSTM approaches</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Kırbaş, İsmail ; Sözen, Adnan ; Tuncer, Azim Doğuş ; Kazancıoğlu, Fikret Şinasi</creator><creatorcontrib>Kırbaş, İsmail ; Sözen, Adnan ; Tuncer, Azim Doğuş ; Kazancıoğlu, Fikret Şinasi</creatorcontrib><description>•Comparison of ARIMA, NARNN and LSTM models on COVID-19 prediction.•Detailed model performance criteria evaluation.•Prospective estimation of total cases with LSTM.
In this study, confirmed COVID-19 cases of Denmark, Belgium, Germany, France, United Kingdom, Finland, Switzerland and Turkey were modeled with Auto-Regressive Integrated Moving Average (ARIMA), Nonlinear Autoregression Neural Network (NARNN) and Long-Short Term Memory (LSTM) approaches. Six model performance metric were used to select the most accurate model (MSE, PSNR, RMSE, NRMSE, MAPE and SMAPE). According to the results of the first step of the study, LSTM was found the most accurate model. In the second stage of the study, LSTM model was provided to make predictions in a 14-day perspective that is yet to be known. Results of the second step of the study shows that the total cumulative case increase rate is expected to decrease slightly in many countries.
[Display omitted]</description><identifier>ISSN: 0960-0779</identifier><identifier>EISSN: 1873-2887</identifier><identifier>EISSN: 0960-0779</identifier><identifier>DOI: 10.1016/j.chaos.2020.110015</identifier><identifier>PMID: 32565625</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>ARIMA ; COVID-19 ; Forecasting ; LSTM ; Modeling ; NARNN</subject><ispartof>Chaos, solitons and fractals, 2020-09, Vol.138, p.110015-110015, Article 110015</ispartof><rights>2020 Elsevier Ltd</rights><rights>2020 Elsevier Ltd. All rights reserved. 2020 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-436ccdd6032d8f84b91b44a1cc9719ec9ab1f82f744065646c004c5947076fd53</citedby><cites>FETCH-LOGICAL-c436t-436ccdd6032d8f84b91b44a1cc9719ec9ab1f82f744065646c004c5947076fd53</cites><orcidid>0000-0002-8098-6417</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.chaos.2020.110015$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Kırbaş, İsmail</creatorcontrib><creatorcontrib>Sözen, Adnan</creatorcontrib><creatorcontrib>Tuncer, Azim Doğuş</creatorcontrib><creatorcontrib>Kazancıoğlu, Fikret Şinasi</creatorcontrib><title>Comparative analysis and forecasting of COVID-19 cases in various European countries with ARIMA, NARNN and LSTM approaches</title><title>Chaos, solitons and fractals</title><description>•Comparison of ARIMA, NARNN and LSTM models on COVID-19 prediction.•Detailed model performance criteria evaluation.•Prospective estimation of total cases with LSTM.
In this study, confirmed COVID-19 cases of Denmark, Belgium, Germany, France, United Kingdom, Finland, Switzerland and Turkey were modeled with Auto-Regressive Integrated Moving Average (ARIMA), Nonlinear Autoregression Neural Network (NARNN) and Long-Short Term Memory (LSTM) approaches. Six model performance metric were used to select the most accurate model (MSE, PSNR, RMSE, NRMSE, MAPE and SMAPE). According to the results of the first step of the study, LSTM was found the most accurate model. In the second stage of the study, LSTM model was provided to make predictions in a 14-day perspective that is yet to be known. Results of the second step of the study shows that the total cumulative case increase rate is expected to decrease slightly in many countries.
[Display omitted]</description><subject>ARIMA</subject><subject>COVID-19</subject><subject>Forecasting</subject><subject>LSTM</subject><subject>Modeling</subject><subject>NARNN</subject><issn>0960-0779</issn><issn>1873-2887</issn><issn>0960-0779</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kc1OGzEUhS3UCgLtE7DxsotO6r-xxwsqRSm0kUKQKO3Wcu54iKPJeLBnUsHTYwiq1E03tnXvOcf2_RA6p2RKCZVftlPY2JCmjLBcoYTQ8ghNaKV4wapKvUMToiUpiFL6BJ2mtCVZQiQ7RieclbKUrJygp3nY9Tbawe8dtp1tH5NP-VDjJkQHNg2-u8ehwfOb34tvBdU411zCvsN7G30YE74cY-id7TCEsRuiz90_ftjg2e3ievYZr2a3q9Vr4vLn3TW2fR-DhY1LH9D7xrbJfXzbz9Cvq8u7-Y9iefN9MZ8tCxBcDkVeAOpaEs7qqqnEWtO1EJYCaEW1A23XtKlYo4Qg-VNCAiECSi0UUbKpS36Gvh5y-3G9czW4_Ejbmj76nY2PJlhv_u10fmPuw94oprnQPAd8eguI4WF0aTA7n8C1re1cHoBhgpYVFyXXWcoPUoghpeiav9dQYl6oma15pWZeqJkDtey6OLhcHsPeu2gSeNeBq31mMJg6-P_6nwHjfp-d</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Kırbaş, İsmail</creator><creator>Sözen, Adnan</creator><creator>Tuncer, Azim Doğuş</creator><creator>Kazancıoğlu, Fikret Şinasi</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8098-6417</orcidid></search><sort><creationdate>20200901</creationdate><title>Comparative analysis and forecasting of COVID-19 cases in various European countries with ARIMA, NARNN and LSTM approaches</title><author>Kırbaş, İsmail ; Sözen, Adnan ; Tuncer, Azim Doğuş ; Kazancıoğlu, Fikret Şinasi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-436ccdd6032d8f84b91b44a1cc9719ec9ab1f82f744065646c004c5947076fd53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>ARIMA</topic><topic>COVID-19</topic><topic>Forecasting</topic><topic>LSTM</topic><topic>Modeling</topic><topic>NARNN</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kırbaş, İsmail</creatorcontrib><creatorcontrib>Sözen, Adnan</creatorcontrib><creatorcontrib>Tuncer, Azim Doğuş</creatorcontrib><creatorcontrib>Kazancıoğlu, Fikret Şinasi</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chaos, solitons and fractals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kırbaş, İsmail</au><au>Sözen, Adnan</au><au>Tuncer, Azim Doğuş</au><au>Kazancıoğlu, Fikret Şinasi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparative analysis and forecasting of COVID-19 cases in various European countries with ARIMA, NARNN and LSTM approaches</atitle><jtitle>Chaos, solitons and fractals</jtitle><date>2020-09-01</date><risdate>2020</risdate><volume>138</volume><spage>110015</spage><epage>110015</epage><pages>110015-110015</pages><artnum>110015</artnum><issn>0960-0779</issn><eissn>1873-2887</eissn><eissn>0960-0779</eissn><abstract>•Comparison of ARIMA, NARNN and LSTM models on COVID-19 prediction.•Detailed model performance criteria evaluation.•Prospective estimation of total cases with LSTM.
In this study, confirmed COVID-19 cases of Denmark, Belgium, Germany, France, United Kingdom, Finland, Switzerland and Turkey were modeled with Auto-Regressive Integrated Moving Average (ARIMA), Nonlinear Autoregression Neural Network (NARNN) and Long-Short Term Memory (LSTM) approaches. Six model performance metric were used to select the most accurate model (MSE, PSNR, RMSE, NRMSE, MAPE and SMAPE). According to the results of the first step of the study, LSTM was found the most accurate model. In the second stage of the study, LSTM model was provided to make predictions in a 14-day perspective that is yet to be known. Results of the second step of the study shows that the total cumulative case increase rate is expected to decrease slightly in many countries.
[Display omitted]</abstract><pub>Elsevier Ltd</pub><pmid>32565625</pmid><doi>10.1016/j.chaos.2020.110015</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-8098-6417</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-0779 |
ispartof | Chaos, solitons and fractals, 2020-09, Vol.138, p.110015-110015, Article 110015 |
issn | 0960-0779 1873-2887 0960-0779 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7293493 |
source | Elsevier ScienceDirect Journals Complete |
subjects | ARIMA COVID-19 Forecasting LSTM Modeling NARNN |
title | Comparative analysis and forecasting of COVID-19 cases in various European countries with ARIMA, NARNN and LSTM approaches |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T06%3A06%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparative%20analysis%20and%20forecasting%20of%20COVID-19%20cases%20in%20various%20European%20countries%20with%20ARIMA,%20NARNN%20and%20LSTM%20approaches&rft.jtitle=Chaos,%20solitons%20and%20fractals&rft.au=K%C4%B1rba%C5%9F,%20%C4%B0smail&rft.date=2020-09-01&rft.volume=138&rft.spage=110015&rft.epage=110015&rft.pages=110015-110015&rft.artnum=110015&rft.issn=0960-0779&rft.eissn=1873-2887&rft_id=info:doi/10.1016/j.chaos.2020.110015&rft_dat=%3Cproquest_pubme%3E2415834539%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2415834539&rft_id=info:pmid/32565625&rft_els_id=S0960077920304136&rfr_iscdi=true |