Comparative analysis and forecasting of COVID-19 cases in various European countries with ARIMA, NARNN and LSTM approaches

•Comparison of ARIMA, NARNN and LSTM models on COVID-19 prediction.•Detailed model performance criteria evaluation.•Prospective estimation of total cases with LSTM. In this study, confirmed COVID-19 cases of Denmark, Belgium, Germany, France, United Kingdom, Finland, Switzerland and Turkey were mode...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chaos, solitons and fractals solitons and fractals, 2020-09, Vol.138, p.110015-110015, Article 110015
Hauptverfasser: Kırbaş, İsmail, Sözen, Adnan, Tuncer, Azim Doğuş, Kazancıoğlu, Fikret Şinasi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 110015
container_issue
container_start_page 110015
container_title Chaos, solitons and fractals
container_volume 138
creator Kırbaş, İsmail
Sözen, Adnan
Tuncer, Azim Doğuş
Kazancıoğlu, Fikret Şinasi
description •Comparison of ARIMA, NARNN and LSTM models on COVID-19 prediction.•Detailed model performance criteria evaluation.•Prospective estimation of total cases with LSTM. In this study, confirmed COVID-19 cases of Denmark, Belgium, Germany, France, United Kingdom, Finland, Switzerland and Turkey were modeled with Auto-Regressive Integrated Moving Average (ARIMA), Nonlinear Autoregression Neural Network (NARNN) and Long-Short Term Memory (LSTM) approaches. Six model performance metric were used to select the most accurate model (MSE, PSNR, RMSE, NRMSE, MAPE and SMAPE). According to the results of the first step of the study, LSTM was found the most accurate model. In the second stage of the study, LSTM model was provided to make predictions in a 14-day perspective that is yet to be known. Results of the second step of the study shows that the total cumulative case increase rate is expected to decrease slightly in many countries. [Display omitted]
doi_str_mv 10.1016/j.chaos.2020.110015
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7293493</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960077920304136</els_id><sourcerecordid>2415834539</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-436ccdd6032d8f84b91b44a1cc9719ec9ab1f82f744065646c004c5947076fd53</originalsourceid><addsrcrecordid>eNp9kc1OGzEUhS3UCgLtE7DxsotO6r-xxwsqRSm0kUKQKO3Wcu54iKPJeLBnUsHTYwiq1E03tnXvOcf2_RA6p2RKCZVftlPY2JCmjLBcoYTQ8ghNaKV4wapKvUMToiUpiFL6BJ2mtCVZQiQ7RieclbKUrJygp3nY9Tbawe8dtp1tH5NP-VDjJkQHNg2-u8ehwfOb34tvBdU411zCvsN7G30YE74cY-id7TCEsRuiz90_ftjg2e3ievYZr2a3q9Vr4vLn3TW2fR-DhY1LH9D7xrbJfXzbz9Cvq8u7-Y9iefN9MZ8tCxBcDkVeAOpaEs7qqqnEWtO1EJYCaEW1A23XtKlYo4Qg-VNCAiECSi0UUbKpS36Gvh5y-3G9czW4_Ejbmj76nY2PJlhv_u10fmPuw94oprnQPAd8eguI4WF0aTA7n8C1re1cHoBhgpYVFyXXWcoPUoghpeiav9dQYl6oma15pWZeqJkDtey6OLhcHsPeu2gSeNeBq31mMJg6-P_6nwHjfp-d</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2415834539</pqid></control><display><type>article</type><title>Comparative analysis and forecasting of COVID-19 cases in various European countries with ARIMA, NARNN and LSTM approaches</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Kırbaş, İsmail ; Sözen, Adnan ; Tuncer, Azim Doğuş ; Kazancıoğlu, Fikret Şinasi</creator><creatorcontrib>Kırbaş, İsmail ; Sözen, Adnan ; Tuncer, Azim Doğuş ; Kazancıoğlu, Fikret Şinasi</creatorcontrib><description>•Comparison of ARIMA, NARNN and LSTM models on COVID-19 prediction.•Detailed model performance criteria evaluation.•Prospective estimation of total cases with LSTM. In this study, confirmed COVID-19 cases of Denmark, Belgium, Germany, France, United Kingdom, Finland, Switzerland and Turkey were modeled with Auto-Regressive Integrated Moving Average (ARIMA), Nonlinear Autoregression Neural Network (NARNN) and Long-Short Term Memory (LSTM) approaches. Six model performance metric were used to select the most accurate model (MSE, PSNR, RMSE, NRMSE, MAPE and SMAPE). According to the results of the first step of the study, LSTM was found the most accurate model. In the second stage of the study, LSTM model was provided to make predictions in a 14-day perspective that is yet to be known. Results of the second step of the study shows that the total cumulative case increase rate is expected to decrease slightly in many countries. [Display omitted]</description><identifier>ISSN: 0960-0779</identifier><identifier>EISSN: 1873-2887</identifier><identifier>EISSN: 0960-0779</identifier><identifier>DOI: 10.1016/j.chaos.2020.110015</identifier><identifier>PMID: 32565625</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>ARIMA ; COVID-19 ; Forecasting ; LSTM ; Modeling ; NARNN</subject><ispartof>Chaos, solitons and fractals, 2020-09, Vol.138, p.110015-110015, Article 110015</ispartof><rights>2020 Elsevier Ltd</rights><rights>2020 Elsevier Ltd. All rights reserved. 2020 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-436ccdd6032d8f84b91b44a1cc9719ec9ab1f82f744065646c004c5947076fd53</citedby><cites>FETCH-LOGICAL-c436t-436ccdd6032d8f84b91b44a1cc9719ec9ab1f82f744065646c004c5947076fd53</cites><orcidid>0000-0002-8098-6417</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.chaos.2020.110015$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Kırbaş, İsmail</creatorcontrib><creatorcontrib>Sözen, Adnan</creatorcontrib><creatorcontrib>Tuncer, Azim Doğuş</creatorcontrib><creatorcontrib>Kazancıoğlu, Fikret Şinasi</creatorcontrib><title>Comparative analysis and forecasting of COVID-19 cases in various European countries with ARIMA, NARNN and LSTM approaches</title><title>Chaos, solitons and fractals</title><description>•Comparison of ARIMA, NARNN and LSTM models on COVID-19 prediction.•Detailed model performance criteria evaluation.•Prospective estimation of total cases with LSTM. In this study, confirmed COVID-19 cases of Denmark, Belgium, Germany, France, United Kingdom, Finland, Switzerland and Turkey were modeled with Auto-Regressive Integrated Moving Average (ARIMA), Nonlinear Autoregression Neural Network (NARNN) and Long-Short Term Memory (LSTM) approaches. Six model performance metric were used to select the most accurate model (MSE, PSNR, RMSE, NRMSE, MAPE and SMAPE). According to the results of the first step of the study, LSTM was found the most accurate model. In the second stage of the study, LSTM model was provided to make predictions in a 14-day perspective that is yet to be known. Results of the second step of the study shows that the total cumulative case increase rate is expected to decrease slightly in many countries. [Display omitted]</description><subject>ARIMA</subject><subject>COVID-19</subject><subject>Forecasting</subject><subject>LSTM</subject><subject>Modeling</subject><subject>NARNN</subject><issn>0960-0779</issn><issn>1873-2887</issn><issn>0960-0779</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kc1OGzEUhS3UCgLtE7DxsotO6r-xxwsqRSm0kUKQKO3Wcu54iKPJeLBnUsHTYwiq1E03tnXvOcf2_RA6p2RKCZVftlPY2JCmjLBcoYTQ8ghNaKV4wapKvUMToiUpiFL6BJ2mtCVZQiQ7RieclbKUrJygp3nY9Tbawe8dtp1tH5NP-VDjJkQHNg2-u8ehwfOb34tvBdU411zCvsN7G30YE74cY-id7TCEsRuiz90_ftjg2e3ievYZr2a3q9Vr4vLn3TW2fR-DhY1LH9D7xrbJfXzbz9Cvq8u7-Y9iefN9MZ8tCxBcDkVeAOpaEs7qqqnEWtO1EJYCaEW1A23XtKlYo4Qg-VNCAiECSi0UUbKpS36Gvh5y-3G9czW4_Ejbmj76nY2PJlhv_u10fmPuw94oprnQPAd8eguI4WF0aTA7n8C1re1cHoBhgpYVFyXXWcoPUoghpeiav9dQYl6oma15pWZeqJkDtey6OLhcHsPeu2gSeNeBq31mMJg6-P_6nwHjfp-d</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Kırbaş, İsmail</creator><creator>Sözen, Adnan</creator><creator>Tuncer, Azim Doğuş</creator><creator>Kazancıoğlu, Fikret Şinasi</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8098-6417</orcidid></search><sort><creationdate>20200901</creationdate><title>Comparative analysis and forecasting of COVID-19 cases in various European countries with ARIMA, NARNN and LSTM approaches</title><author>Kırbaş, İsmail ; Sözen, Adnan ; Tuncer, Azim Doğuş ; Kazancıoğlu, Fikret Şinasi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-436ccdd6032d8f84b91b44a1cc9719ec9ab1f82f744065646c004c5947076fd53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>ARIMA</topic><topic>COVID-19</topic><topic>Forecasting</topic><topic>LSTM</topic><topic>Modeling</topic><topic>NARNN</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kırbaş, İsmail</creatorcontrib><creatorcontrib>Sözen, Adnan</creatorcontrib><creatorcontrib>Tuncer, Azim Doğuş</creatorcontrib><creatorcontrib>Kazancıoğlu, Fikret Şinasi</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chaos, solitons and fractals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kırbaş, İsmail</au><au>Sözen, Adnan</au><au>Tuncer, Azim Doğuş</au><au>Kazancıoğlu, Fikret Şinasi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparative analysis and forecasting of COVID-19 cases in various European countries with ARIMA, NARNN and LSTM approaches</atitle><jtitle>Chaos, solitons and fractals</jtitle><date>2020-09-01</date><risdate>2020</risdate><volume>138</volume><spage>110015</spage><epage>110015</epage><pages>110015-110015</pages><artnum>110015</artnum><issn>0960-0779</issn><eissn>1873-2887</eissn><eissn>0960-0779</eissn><abstract>•Comparison of ARIMA, NARNN and LSTM models on COVID-19 prediction.•Detailed model performance criteria evaluation.•Prospective estimation of total cases with LSTM. In this study, confirmed COVID-19 cases of Denmark, Belgium, Germany, France, United Kingdom, Finland, Switzerland and Turkey were modeled with Auto-Regressive Integrated Moving Average (ARIMA), Nonlinear Autoregression Neural Network (NARNN) and Long-Short Term Memory (LSTM) approaches. Six model performance metric were used to select the most accurate model (MSE, PSNR, RMSE, NRMSE, MAPE and SMAPE). According to the results of the first step of the study, LSTM was found the most accurate model. In the second stage of the study, LSTM model was provided to make predictions in a 14-day perspective that is yet to be known. Results of the second step of the study shows that the total cumulative case increase rate is expected to decrease slightly in many countries. [Display omitted]</abstract><pub>Elsevier Ltd</pub><pmid>32565625</pmid><doi>10.1016/j.chaos.2020.110015</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-8098-6417</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0960-0779
ispartof Chaos, solitons and fractals, 2020-09, Vol.138, p.110015-110015, Article 110015
issn 0960-0779
1873-2887
0960-0779
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7293493
source Elsevier ScienceDirect Journals Complete
subjects ARIMA
COVID-19
Forecasting
LSTM
Modeling
NARNN
title Comparative analysis and forecasting of COVID-19 cases in various European countries with ARIMA, NARNN and LSTM approaches
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T06%3A06%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparative%20analysis%20and%20forecasting%20of%20COVID-19%20cases%20in%20various%20European%20countries%20with%20ARIMA,%20NARNN%20and%20LSTM%20approaches&rft.jtitle=Chaos,%20solitons%20and%20fractals&rft.au=K%C4%B1rba%C5%9F,%20%C4%B0smail&rft.date=2020-09-01&rft.volume=138&rft.spage=110015&rft.epage=110015&rft.pages=110015-110015&rft.artnum=110015&rft.issn=0960-0779&rft.eissn=1873-2887&rft_id=info:doi/10.1016/j.chaos.2020.110015&rft_dat=%3Cproquest_pubme%3E2415834539%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2415834539&rft_id=info:pmid/32565625&rft_els_id=S0960077920304136&rfr_iscdi=true