Probing the Structural Dynamics of the Catalytic Domain of Human Soluble Guanylate Cyclase

In the nitric oxide (NO) signaling pathway, human soluble guanylate cyclase ( h sGC) synthesizes cyclic guanosine monophosphate (cGMP); responsible for the regulation of cGMP-specific protein kinases (PKGs) and phosphodiesterases (PDEs). The crystal structure of the inactive h sGC cyclase dimer is k...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2020-06, Vol.10 (1), p.9488-9488, Article 9488
Hauptverfasser: Khalid, Rana Rehan, Maryam, Arooma, Sezerman, Osman Ugur, Mylonas, Efstratios, Siddiqi, Abdul Rauf, Kokkinidis, Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9488
container_issue 1
container_start_page 9488
container_title Scientific reports
container_volume 10
creator Khalid, Rana Rehan
Maryam, Arooma
Sezerman, Osman Ugur
Mylonas, Efstratios
Siddiqi, Abdul Rauf
Kokkinidis, Michael
description In the nitric oxide (NO) signaling pathway, human soluble guanylate cyclase ( h sGC) synthesizes cyclic guanosine monophosphate (cGMP); responsible for the regulation of cGMP-specific protein kinases (PKGs) and phosphodiesterases (PDEs). The crystal structure of the inactive h sGC cyclase dimer is known, but there is still a lack of information regarding the substrate-specific internal motions that are essential for the catalytic mechanism of the hs GC. In the current study, the hs GC cyclase heterodimer complexed with guanosine triphosphate (GTP) and cGMP was subjected to molecular dynamics simulations, to investigate the conformational dynamics that have functional implications on the catalytic activity of hs GC. Results revealed that in the GTP-bound complex of the h sGC heterodimer, helix 1 of subunit α (α:h1) moves slightly inwards and comes close to helix 4 of subunit β (β:h4). This conformational change brings loop 2 of subunit β (β:L2) closer to helix 2 of subunit α (α:h2). Likewise, loop 2 of subunit α (α:L2) comes closer to helix 2 of subunit β (β:h2). These structural events stabilize and lock GTP within the closed pocket for cyclization. In the cGMP-bound complex, α:L2 detaches from β:h2 and establishes interactions with β:L2, which results in the loss of global structure compactness. Furthermore, with the release of pyrophosphate, the interaction between α:h1 and β:L2 weakens, abolishing the tight packing of the binding pocket. This study discusses the conformational changes induced by the binding of GTP and cGMP to the h sGC catalytic domain, valuable in designing new therapeutic strategies for the treatment of cardiovascular diseases.
doi_str_mv 10.1038/s41598-020-66310-4
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7289801</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2412994764</sourcerecordid><originalsourceid>FETCH-LOGICAL-c511t-55c739202ace0f095e0c543f99462c1b4c8b32dcc83e45ad88dfceaaaba178ad3</originalsourceid><addsrcrecordid>eNp9kU1rFTEYhYMottT-ARcy4MbNaD5nko0gt9oKBYXqxk14J5O5nZJJaj4K8-_NvbfW6sJsEnKenLyHg9BLgt8SzOS7xIlQssUUt13HCG75E3RMMRctZZQ-fXQ-Qqcp3eC6BFWcqOfoiFFBJabiGP34GsMw-22Tr21zlWMxuURwzdnqYZlNasK0lzaQwa15Ns1ZWGD2u_uLsoBvroIrg7PNeQG_OsiVXY2DZF-gZxO4ZE_v9xP0_dPHb5uL9vLL-efNh8vWCEJyK4TpmaKYgrF4wkpYbARnk1K8o4YM3MiB0dEYySwXMEo5TsYCwACklzCyE_T-4HtbhsWOxvpcE-jbOC8QVx1g1n8rfr7W23CneyqVxKQavLk3iOFnsSnrZU7GOgfehpI05YTWafqOV_T1P-hNKNHXeHuKKNJ3uFL0QJkYUop2ehiGYL1rTx_a07U9vW9P76xfPY7x8OR3VxVgByBVyW9t_PP3f2x_AQcIphw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2412191760</pqid></control><display><type>article</type><title>Probing the Structural Dynamics of the Catalytic Domain of Human Soluble Guanylate Cyclase</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Khalid, Rana Rehan ; Maryam, Arooma ; Sezerman, Osman Ugur ; Mylonas, Efstratios ; Siddiqi, Abdul Rauf ; Kokkinidis, Michael</creator><creatorcontrib>Khalid, Rana Rehan ; Maryam, Arooma ; Sezerman, Osman Ugur ; Mylonas, Efstratios ; Siddiqi, Abdul Rauf ; Kokkinidis, Michael</creatorcontrib><description>In the nitric oxide (NO) signaling pathway, human soluble guanylate cyclase ( h sGC) synthesizes cyclic guanosine monophosphate (cGMP); responsible for the regulation of cGMP-specific protein kinases (PKGs) and phosphodiesterases (PDEs). The crystal structure of the inactive h sGC cyclase dimer is known, but there is still a lack of information regarding the substrate-specific internal motions that are essential for the catalytic mechanism of the hs GC. In the current study, the hs GC cyclase heterodimer complexed with guanosine triphosphate (GTP) and cGMP was subjected to molecular dynamics simulations, to investigate the conformational dynamics that have functional implications on the catalytic activity of hs GC. Results revealed that in the GTP-bound complex of the h sGC heterodimer, helix 1 of subunit α (α:h1) moves slightly inwards and comes close to helix 4 of subunit β (β:h4). This conformational change brings loop 2 of subunit β (β:L2) closer to helix 2 of subunit α (α:h2). Likewise, loop 2 of subunit α (α:L2) comes closer to helix 2 of subunit β (β:h2). These structural events stabilize and lock GTP within the closed pocket for cyclization. In the cGMP-bound complex, α:L2 detaches from β:h2 and establishes interactions with β:L2, which results in the loss of global structure compactness. Furthermore, with the release of pyrophosphate, the interaction between α:h1 and β:L2 weakens, abolishing the tight packing of the binding pocket. This study discusses the conformational changes induced by the binding of GTP and cGMP to the h sGC catalytic domain, valuable in designing new therapeutic strategies for the treatment of cardiovascular diseases.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-66310-4</identifier><identifier>PMID: 32528025</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/114/2397 ; 631/1647/48 ; 631/45/535/1267 ; 631/45/612/1232 ; 631/57/2272/2273 ; Binding Sites - physiology ; Cardiovascular diseases ; Catalytic Domain - physiology ; Crystal structure ; Cyclic GMP ; Cyclic GMP - metabolism ; Dimerization ; Guanosine ; Guanosine triphosphate ; Guanosine Triphosphate - metabolism ; Guanylate cyclase ; Humanities and Social Sciences ; Humans ; Kinases ; multidisciplinary ; Nitric oxide ; Nitric Oxide - metabolism ; Protein Binding - physiology ; Protein kinase ; Protein Subunits - metabolism ; Receptors, Cytoplasmic and Nuclear - metabolism ; Science ; Science (multidisciplinary) ; Signal transduction ; Signal Transduction - physiology ; Soluble Guanylyl Cyclase - metabolism</subject><ispartof>Scientific reports, 2020-06, Vol.10 (1), p.9488-9488, Article 9488</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c511t-55c739202ace0f095e0c543f99462c1b4c8b32dcc83e45ad88dfceaaaba178ad3</citedby><cites>FETCH-LOGICAL-c511t-55c739202ace0f095e0c543f99462c1b4c8b32dcc83e45ad88dfceaaaba178ad3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7289801/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7289801/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,41120,42189,51576,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32528025$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Khalid, Rana Rehan</creatorcontrib><creatorcontrib>Maryam, Arooma</creatorcontrib><creatorcontrib>Sezerman, Osman Ugur</creatorcontrib><creatorcontrib>Mylonas, Efstratios</creatorcontrib><creatorcontrib>Siddiqi, Abdul Rauf</creatorcontrib><creatorcontrib>Kokkinidis, Michael</creatorcontrib><title>Probing the Structural Dynamics of the Catalytic Domain of Human Soluble Guanylate Cyclase</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>In the nitric oxide (NO) signaling pathway, human soluble guanylate cyclase ( h sGC) synthesizes cyclic guanosine monophosphate (cGMP); responsible for the regulation of cGMP-specific protein kinases (PKGs) and phosphodiesterases (PDEs). The crystal structure of the inactive h sGC cyclase dimer is known, but there is still a lack of information regarding the substrate-specific internal motions that are essential for the catalytic mechanism of the hs GC. In the current study, the hs GC cyclase heterodimer complexed with guanosine triphosphate (GTP) and cGMP was subjected to molecular dynamics simulations, to investigate the conformational dynamics that have functional implications on the catalytic activity of hs GC. Results revealed that in the GTP-bound complex of the h sGC heterodimer, helix 1 of subunit α (α:h1) moves slightly inwards and comes close to helix 4 of subunit β (β:h4). This conformational change brings loop 2 of subunit β (β:L2) closer to helix 2 of subunit α (α:h2). Likewise, loop 2 of subunit α (α:L2) comes closer to helix 2 of subunit β (β:h2). These structural events stabilize and lock GTP within the closed pocket for cyclization. In the cGMP-bound complex, α:L2 detaches from β:h2 and establishes interactions with β:L2, which results in the loss of global structure compactness. Furthermore, with the release of pyrophosphate, the interaction between α:h1 and β:L2 weakens, abolishing the tight packing of the binding pocket. This study discusses the conformational changes induced by the binding of GTP and cGMP to the h sGC catalytic domain, valuable in designing new therapeutic strategies for the treatment of cardiovascular diseases.</description><subject>631/114/2397</subject><subject>631/1647/48</subject><subject>631/45/535/1267</subject><subject>631/45/612/1232</subject><subject>631/57/2272/2273</subject><subject>Binding Sites - physiology</subject><subject>Cardiovascular diseases</subject><subject>Catalytic Domain - physiology</subject><subject>Crystal structure</subject><subject>Cyclic GMP</subject><subject>Cyclic GMP - metabolism</subject><subject>Dimerization</subject><subject>Guanosine</subject><subject>Guanosine triphosphate</subject><subject>Guanosine Triphosphate - metabolism</subject><subject>Guanylate cyclase</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Kinases</subject><subject>multidisciplinary</subject><subject>Nitric oxide</subject><subject>Nitric Oxide - metabolism</subject><subject>Protein Binding - physiology</subject><subject>Protein kinase</subject><subject>Protein Subunits - metabolism</subject><subject>Receptors, Cytoplasmic and Nuclear - metabolism</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Signal transduction</subject><subject>Signal Transduction - physiology</subject><subject>Soluble Guanylyl Cyclase - metabolism</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU1rFTEYhYMottT-ARcy4MbNaD5nko0gt9oKBYXqxk14J5O5nZJJaj4K8-_NvbfW6sJsEnKenLyHg9BLgt8SzOS7xIlQssUUt13HCG75E3RMMRctZZQ-fXQ-Qqcp3eC6BFWcqOfoiFFBJabiGP34GsMw-22Tr21zlWMxuURwzdnqYZlNasK0lzaQwa15Ns1ZWGD2u_uLsoBvroIrg7PNeQG_OsiVXY2DZF-gZxO4ZE_v9xP0_dPHb5uL9vLL-efNh8vWCEJyK4TpmaKYgrF4wkpYbARnk1K8o4YM3MiB0dEYySwXMEo5TsYCwACklzCyE_T-4HtbhsWOxvpcE-jbOC8QVx1g1n8rfr7W23CneyqVxKQavLk3iOFnsSnrZU7GOgfehpI05YTWafqOV_T1P-hNKNHXeHuKKNJ3uFL0QJkYUop2ehiGYL1rTx_a07U9vW9P76xfPY7x8OR3VxVgByBVyW9t_PP3f2x_AQcIphw</recordid><startdate>20200611</startdate><enddate>20200611</enddate><creator>Khalid, Rana Rehan</creator><creator>Maryam, Arooma</creator><creator>Sezerman, Osman Ugur</creator><creator>Mylonas, Efstratios</creator><creator>Siddiqi, Abdul Rauf</creator><creator>Kokkinidis, Michael</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20200611</creationdate><title>Probing the Structural Dynamics of the Catalytic Domain of Human Soluble Guanylate Cyclase</title><author>Khalid, Rana Rehan ; Maryam, Arooma ; Sezerman, Osman Ugur ; Mylonas, Efstratios ; Siddiqi, Abdul Rauf ; Kokkinidis, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c511t-55c739202ace0f095e0c543f99462c1b4c8b32dcc83e45ad88dfceaaaba178ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>631/114/2397</topic><topic>631/1647/48</topic><topic>631/45/535/1267</topic><topic>631/45/612/1232</topic><topic>631/57/2272/2273</topic><topic>Binding Sites - physiology</topic><topic>Cardiovascular diseases</topic><topic>Catalytic Domain - physiology</topic><topic>Crystal structure</topic><topic>Cyclic GMP</topic><topic>Cyclic GMP - metabolism</topic><topic>Dimerization</topic><topic>Guanosine</topic><topic>Guanosine triphosphate</topic><topic>Guanosine Triphosphate - metabolism</topic><topic>Guanylate cyclase</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Kinases</topic><topic>multidisciplinary</topic><topic>Nitric oxide</topic><topic>Nitric Oxide - metabolism</topic><topic>Protein Binding - physiology</topic><topic>Protein kinase</topic><topic>Protein Subunits - metabolism</topic><topic>Receptors, Cytoplasmic and Nuclear - metabolism</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Signal transduction</topic><topic>Signal Transduction - physiology</topic><topic>Soluble Guanylyl Cyclase - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khalid, Rana Rehan</creatorcontrib><creatorcontrib>Maryam, Arooma</creatorcontrib><creatorcontrib>Sezerman, Osman Ugur</creatorcontrib><creatorcontrib>Mylonas, Efstratios</creatorcontrib><creatorcontrib>Siddiqi, Abdul Rauf</creatorcontrib><creatorcontrib>Kokkinidis, Michael</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khalid, Rana Rehan</au><au>Maryam, Arooma</au><au>Sezerman, Osman Ugur</au><au>Mylonas, Efstratios</au><au>Siddiqi, Abdul Rauf</au><au>Kokkinidis, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probing the Structural Dynamics of the Catalytic Domain of Human Soluble Guanylate Cyclase</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2020-06-11</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>9488</spage><epage>9488</epage><pages>9488-9488</pages><artnum>9488</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>In the nitric oxide (NO) signaling pathway, human soluble guanylate cyclase ( h sGC) synthesizes cyclic guanosine monophosphate (cGMP); responsible for the regulation of cGMP-specific protein kinases (PKGs) and phosphodiesterases (PDEs). The crystal structure of the inactive h sGC cyclase dimer is known, but there is still a lack of information regarding the substrate-specific internal motions that are essential for the catalytic mechanism of the hs GC. In the current study, the hs GC cyclase heterodimer complexed with guanosine triphosphate (GTP) and cGMP was subjected to molecular dynamics simulations, to investigate the conformational dynamics that have functional implications on the catalytic activity of hs GC. Results revealed that in the GTP-bound complex of the h sGC heterodimer, helix 1 of subunit α (α:h1) moves slightly inwards and comes close to helix 4 of subunit β (β:h4). This conformational change brings loop 2 of subunit β (β:L2) closer to helix 2 of subunit α (α:h2). Likewise, loop 2 of subunit α (α:L2) comes closer to helix 2 of subunit β (β:h2). These structural events stabilize and lock GTP within the closed pocket for cyclization. In the cGMP-bound complex, α:L2 detaches from β:h2 and establishes interactions with β:L2, which results in the loss of global structure compactness. Furthermore, with the release of pyrophosphate, the interaction between α:h1 and β:L2 weakens, abolishing the tight packing of the binding pocket. This study discusses the conformational changes induced by the binding of GTP and cGMP to the h sGC catalytic domain, valuable in designing new therapeutic strategies for the treatment of cardiovascular diseases.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32528025</pmid><doi>10.1038/s41598-020-66310-4</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2020-06, Vol.10 (1), p.9488-9488, Article 9488
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7289801
source MEDLINE; DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects 631/114/2397
631/1647/48
631/45/535/1267
631/45/612/1232
631/57/2272/2273
Binding Sites - physiology
Cardiovascular diseases
Catalytic Domain - physiology
Crystal structure
Cyclic GMP
Cyclic GMP - metabolism
Dimerization
Guanosine
Guanosine triphosphate
Guanosine Triphosphate - metabolism
Guanylate cyclase
Humanities and Social Sciences
Humans
Kinases
multidisciplinary
Nitric oxide
Nitric Oxide - metabolism
Protein Binding - physiology
Protein kinase
Protein Subunits - metabolism
Receptors, Cytoplasmic and Nuclear - metabolism
Science
Science (multidisciplinary)
Signal transduction
Signal Transduction - physiology
Soluble Guanylyl Cyclase - metabolism
title Probing the Structural Dynamics of the Catalytic Domain of Human Soluble Guanylate Cyclase
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T19%3A03%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probing%20the%20Structural%20Dynamics%20of%20the%20Catalytic%20Domain%20of%20Human%20Soluble%20Guanylate%20Cyclase&rft.jtitle=Scientific%20reports&rft.au=Khalid,%20Rana%20Rehan&rft.date=2020-06-11&rft.volume=10&rft.issue=1&rft.spage=9488&rft.epage=9488&rft.pages=9488-9488&rft.artnum=9488&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-66310-4&rft_dat=%3Cproquest_pubme%3E2412994764%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2412191760&rft_id=info:pmid/32528025&rfr_iscdi=true