Probing the Structural Dynamics of the Catalytic Domain of Human Soluble Guanylate Cyclase
In the nitric oxide (NO) signaling pathway, human soluble guanylate cyclase ( h sGC) synthesizes cyclic guanosine monophosphate (cGMP); responsible for the regulation of cGMP-specific protein kinases (PKGs) and phosphodiesterases (PDEs). The crystal structure of the inactive h sGC cyclase dimer is k...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2020-06, Vol.10 (1), p.9488-9488, Article 9488 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9488 |
---|---|
container_issue | 1 |
container_start_page | 9488 |
container_title | Scientific reports |
container_volume | 10 |
creator | Khalid, Rana Rehan Maryam, Arooma Sezerman, Osman Ugur Mylonas, Efstratios Siddiqi, Abdul Rauf Kokkinidis, Michael |
description | In the nitric oxide (NO) signaling pathway, human soluble guanylate cyclase (
h
sGC) synthesizes cyclic guanosine monophosphate (cGMP); responsible for the regulation of cGMP-specific protein kinases (PKGs) and phosphodiesterases (PDEs). The crystal structure of the inactive
h
sGC cyclase dimer is known, but there is still a lack of information regarding the substrate-specific internal motions that are essential for the catalytic mechanism of the
hs
GC. In the current study, the
hs
GC cyclase heterodimer complexed with guanosine triphosphate (GTP) and cGMP was subjected to molecular dynamics simulations, to investigate the conformational dynamics that have functional implications on the catalytic activity of
hs
GC. Results revealed that in the GTP-bound complex of the
h
sGC heterodimer, helix 1 of subunit α (α:h1) moves slightly inwards and comes close to helix 4 of subunit β (β:h4). This conformational change brings loop 2 of subunit β (β:L2) closer to helix 2 of subunit α (α:h2). Likewise, loop 2 of subunit α (α:L2) comes closer to helix 2 of subunit β (β:h2). These structural events stabilize and lock GTP within the closed pocket for cyclization. In the cGMP-bound complex, α:L2 detaches from β:h2 and establishes interactions with β:L2, which results in the loss of global structure compactness. Furthermore, with the release of pyrophosphate, the interaction between α:h1 and β:L2 weakens, abolishing the tight packing of the binding pocket. This study discusses the conformational changes induced by the binding of GTP and cGMP to the
h
sGC catalytic domain, valuable in designing new therapeutic strategies for the treatment of cardiovascular diseases. |
doi_str_mv | 10.1038/s41598-020-66310-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7289801</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2412994764</sourcerecordid><originalsourceid>FETCH-LOGICAL-c511t-55c739202ace0f095e0c543f99462c1b4c8b32dcc83e45ad88dfceaaaba178ad3</originalsourceid><addsrcrecordid>eNp9kU1rFTEYhYMottT-ARcy4MbNaD5nko0gt9oKBYXqxk14J5O5nZJJaj4K8-_NvbfW6sJsEnKenLyHg9BLgt8SzOS7xIlQssUUt13HCG75E3RMMRctZZQ-fXQ-Qqcp3eC6BFWcqOfoiFFBJabiGP34GsMw-22Tr21zlWMxuURwzdnqYZlNasK0lzaQwa15Ns1ZWGD2u_uLsoBvroIrg7PNeQG_OsiVXY2DZF-gZxO4ZE_v9xP0_dPHb5uL9vLL-efNh8vWCEJyK4TpmaKYgrF4wkpYbARnk1K8o4YM3MiB0dEYySwXMEo5TsYCwACklzCyE_T-4HtbhsWOxvpcE-jbOC8QVx1g1n8rfr7W23CneyqVxKQavLk3iOFnsSnrZU7GOgfehpI05YTWafqOV_T1P-hNKNHXeHuKKNJ3uFL0QJkYUop2ehiGYL1rTx_a07U9vW9P76xfPY7x8OR3VxVgByBVyW9t_PP3f2x_AQcIphw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2412191760</pqid></control><display><type>article</type><title>Probing the Structural Dynamics of the Catalytic Domain of Human Soluble Guanylate Cyclase</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Khalid, Rana Rehan ; Maryam, Arooma ; Sezerman, Osman Ugur ; Mylonas, Efstratios ; Siddiqi, Abdul Rauf ; Kokkinidis, Michael</creator><creatorcontrib>Khalid, Rana Rehan ; Maryam, Arooma ; Sezerman, Osman Ugur ; Mylonas, Efstratios ; Siddiqi, Abdul Rauf ; Kokkinidis, Michael</creatorcontrib><description>In the nitric oxide (NO) signaling pathway, human soluble guanylate cyclase (
h
sGC) synthesizes cyclic guanosine monophosphate (cGMP); responsible for the regulation of cGMP-specific protein kinases (PKGs) and phosphodiesterases (PDEs). The crystal structure of the inactive
h
sGC cyclase dimer is known, but there is still a lack of information regarding the substrate-specific internal motions that are essential for the catalytic mechanism of the
hs
GC. In the current study, the
hs
GC cyclase heterodimer complexed with guanosine triphosphate (GTP) and cGMP was subjected to molecular dynamics simulations, to investigate the conformational dynamics that have functional implications on the catalytic activity of
hs
GC. Results revealed that in the GTP-bound complex of the
h
sGC heterodimer, helix 1 of subunit α (α:h1) moves slightly inwards and comes close to helix 4 of subunit β (β:h4). This conformational change brings loop 2 of subunit β (β:L2) closer to helix 2 of subunit α (α:h2). Likewise, loop 2 of subunit α (α:L2) comes closer to helix 2 of subunit β (β:h2). These structural events stabilize and lock GTP within the closed pocket for cyclization. In the cGMP-bound complex, α:L2 detaches from β:h2 and establishes interactions with β:L2, which results in the loss of global structure compactness. Furthermore, with the release of pyrophosphate, the interaction between α:h1 and β:L2 weakens, abolishing the tight packing of the binding pocket. This study discusses the conformational changes induced by the binding of GTP and cGMP to the
h
sGC catalytic domain, valuable in designing new therapeutic strategies for the treatment of cardiovascular diseases.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-66310-4</identifier><identifier>PMID: 32528025</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/114/2397 ; 631/1647/48 ; 631/45/535/1267 ; 631/45/612/1232 ; 631/57/2272/2273 ; Binding Sites - physiology ; Cardiovascular diseases ; Catalytic Domain - physiology ; Crystal structure ; Cyclic GMP ; Cyclic GMP - metabolism ; Dimerization ; Guanosine ; Guanosine triphosphate ; Guanosine Triphosphate - metabolism ; Guanylate cyclase ; Humanities and Social Sciences ; Humans ; Kinases ; multidisciplinary ; Nitric oxide ; Nitric Oxide - metabolism ; Protein Binding - physiology ; Protein kinase ; Protein Subunits - metabolism ; Receptors, Cytoplasmic and Nuclear - metabolism ; Science ; Science (multidisciplinary) ; Signal transduction ; Signal Transduction - physiology ; Soluble Guanylyl Cyclase - metabolism</subject><ispartof>Scientific reports, 2020-06, Vol.10 (1), p.9488-9488, Article 9488</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c511t-55c739202ace0f095e0c543f99462c1b4c8b32dcc83e45ad88dfceaaaba178ad3</citedby><cites>FETCH-LOGICAL-c511t-55c739202ace0f095e0c543f99462c1b4c8b32dcc83e45ad88dfceaaaba178ad3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7289801/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7289801/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,41120,42189,51576,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32528025$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Khalid, Rana Rehan</creatorcontrib><creatorcontrib>Maryam, Arooma</creatorcontrib><creatorcontrib>Sezerman, Osman Ugur</creatorcontrib><creatorcontrib>Mylonas, Efstratios</creatorcontrib><creatorcontrib>Siddiqi, Abdul Rauf</creatorcontrib><creatorcontrib>Kokkinidis, Michael</creatorcontrib><title>Probing the Structural Dynamics of the Catalytic Domain of Human Soluble Guanylate Cyclase</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>In the nitric oxide (NO) signaling pathway, human soluble guanylate cyclase (
h
sGC) synthesizes cyclic guanosine monophosphate (cGMP); responsible for the regulation of cGMP-specific protein kinases (PKGs) and phosphodiesterases (PDEs). The crystal structure of the inactive
h
sGC cyclase dimer is known, but there is still a lack of information regarding the substrate-specific internal motions that are essential for the catalytic mechanism of the
hs
GC. In the current study, the
hs
GC cyclase heterodimer complexed with guanosine triphosphate (GTP) and cGMP was subjected to molecular dynamics simulations, to investigate the conformational dynamics that have functional implications on the catalytic activity of
hs
GC. Results revealed that in the GTP-bound complex of the
h
sGC heterodimer, helix 1 of subunit α (α:h1) moves slightly inwards and comes close to helix 4 of subunit β (β:h4). This conformational change brings loop 2 of subunit β (β:L2) closer to helix 2 of subunit α (α:h2). Likewise, loop 2 of subunit α (α:L2) comes closer to helix 2 of subunit β (β:h2). These structural events stabilize and lock GTP within the closed pocket for cyclization. In the cGMP-bound complex, α:L2 detaches from β:h2 and establishes interactions with β:L2, which results in the loss of global structure compactness. Furthermore, with the release of pyrophosphate, the interaction between α:h1 and β:L2 weakens, abolishing the tight packing of the binding pocket. This study discusses the conformational changes induced by the binding of GTP and cGMP to the
h
sGC catalytic domain, valuable in designing new therapeutic strategies for the treatment of cardiovascular diseases.</description><subject>631/114/2397</subject><subject>631/1647/48</subject><subject>631/45/535/1267</subject><subject>631/45/612/1232</subject><subject>631/57/2272/2273</subject><subject>Binding Sites - physiology</subject><subject>Cardiovascular diseases</subject><subject>Catalytic Domain - physiology</subject><subject>Crystal structure</subject><subject>Cyclic GMP</subject><subject>Cyclic GMP - metabolism</subject><subject>Dimerization</subject><subject>Guanosine</subject><subject>Guanosine triphosphate</subject><subject>Guanosine Triphosphate - metabolism</subject><subject>Guanylate cyclase</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Kinases</subject><subject>multidisciplinary</subject><subject>Nitric oxide</subject><subject>Nitric Oxide - metabolism</subject><subject>Protein Binding - physiology</subject><subject>Protein kinase</subject><subject>Protein Subunits - metabolism</subject><subject>Receptors, Cytoplasmic and Nuclear - metabolism</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Signal transduction</subject><subject>Signal Transduction - physiology</subject><subject>Soluble Guanylyl Cyclase - metabolism</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU1rFTEYhYMottT-ARcy4MbNaD5nko0gt9oKBYXqxk14J5O5nZJJaj4K8-_NvbfW6sJsEnKenLyHg9BLgt8SzOS7xIlQssUUt13HCG75E3RMMRctZZQ-fXQ-Qqcp3eC6BFWcqOfoiFFBJabiGP34GsMw-22Tr21zlWMxuURwzdnqYZlNasK0lzaQwa15Ns1ZWGD2u_uLsoBvroIrg7PNeQG_OsiVXY2DZF-gZxO4ZE_v9xP0_dPHb5uL9vLL-efNh8vWCEJyK4TpmaKYgrF4wkpYbARnk1K8o4YM3MiB0dEYySwXMEo5TsYCwACklzCyE_T-4HtbhsWOxvpcE-jbOC8QVx1g1n8rfr7W23CneyqVxKQavLk3iOFnsSnrZU7GOgfehpI05YTWafqOV_T1P-hNKNHXeHuKKNJ3uFL0QJkYUop2ehiGYL1rTx_a07U9vW9P76xfPY7x8OR3VxVgByBVyW9t_PP3f2x_AQcIphw</recordid><startdate>20200611</startdate><enddate>20200611</enddate><creator>Khalid, Rana Rehan</creator><creator>Maryam, Arooma</creator><creator>Sezerman, Osman Ugur</creator><creator>Mylonas, Efstratios</creator><creator>Siddiqi, Abdul Rauf</creator><creator>Kokkinidis, Michael</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20200611</creationdate><title>Probing the Structural Dynamics of the Catalytic Domain of Human Soluble Guanylate Cyclase</title><author>Khalid, Rana Rehan ; Maryam, Arooma ; Sezerman, Osman Ugur ; Mylonas, Efstratios ; Siddiqi, Abdul Rauf ; Kokkinidis, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c511t-55c739202ace0f095e0c543f99462c1b4c8b32dcc83e45ad88dfceaaaba178ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>631/114/2397</topic><topic>631/1647/48</topic><topic>631/45/535/1267</topic><topic>631/45/612/1232</topic><topic>631/57/2272/2273</topic><topic>Binding Sites - physiology</topic><topic>Cardiovascular diseases</topic><topic>Catalytic Domain - physiology</topic><topic>Crystal structure</topic><topic>Cyclic GMP</topic><topic>Cyclic GMP - metabolism</topic><topic>Dimerization</topic><topic>Guanosine</topic><topic>Guanosine triphosphate</topic><topic>Guanosine Triphosphate - metabolism</topic><topic>Guanylate cyclase</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Kinases</topic><topic>multidisciplinary</topic><topic>Nitric oxide</topic><topic>Nitric Oxide - metabolism</topic><topic>Protein Binding - physiology</topic><topic>Protein kinase</topic><topic>Protein Subunits - metabolism</topic><topic>Receptors, Cytoplasmic and Nuclear - metabolism</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Signal transduction</topic><topic>Signal Transduction - physiology</topic><topic>Soluble Guanylyl Cyclase - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khalid, Rana Rehan</creatorcontrib><creatorcontrib>Maryam, Arooma</creatorcontrib><creatorcontrib>Sezerman, Osman Ugur</creatorcontrib><creatorcontrib>Mylonas, Efstratios</creatorcontrib><creatorcontrib>Siddiqi, Abdul Rauf</creatorcontrib><creatorcontrib>Kokkinidis, Michael</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khalid, Rana Rehan</au><au>Maryam, Arooma</au><au>Sezerman, Osman Ugur</au><au>Mylonas, Efstratios</au><au>Siddiqi, Abdul Rauf</au><au>Kokkinidis, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probing the Structural Dynamics of the Catalytic Domain of Human Soluble Guanylate Cyclase</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2020-06-11</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>9488</spage><epage>9488</epage><pages>9488-9488</pages><artnum>9488</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>In the nitric oxide (NO) signaling pathway, human soluble guanylate cyclase (
h
sGC) synthesizes cyclic guanosine monophosphate (cGMP); responsible for the regulation of cGMP-specific protein kinases (PKGs) and phosphodiesterases (PDEs). The crystal structure of the inactive
h
sGC cyclase dimer is known, but there is still a lack of information regarding the substrate-specific internal motions that are essential for the catalytic mechanism of the
hs
GC. In the current study, the
hs
GC cyclase heterodimer complexed with guanosine triphosphate (GTP) and cGMP was subjected to molecular dynamics simulations, to investigate the conformational dynamics that have functional implications on the catalytic activity of
hs
GC. Results revealed that in the GTP-bound complex of the
h
sGC heterodimer, helix 1 of subunit α (α:h1) moves slightly inwards and comes close to helix 4 of subunit β (β:h4). This conformational change brings loop 2 of subunit β (β:L2) closer to helix 2 of subunit α (α:h2). Likewise, loop 2 of subunit α (α:L2) comes closer to helix 2 of subunit β (β:h2). These structural events stabilize and lock GTP within the closed pocket for cyclization. In the cGMP-bound complex, α:L2 detaches from β:h2 and establishes interactions with β:L2, which results in the loss of global structure compactness. Furthermore, with the release of pyrophosphate, the interaction between α:h1 and β:L2 weakens, abolishing the tight packing of the binding pocket. This study discusses the conformational changes induced by the binding of GTP and cGMP to the
h
sGC catalytic domain, valuable in designing new therapeutic strategies for the treatment of cardiovascular diseases.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32528025</pmid><doi>10.1038/s41598-020-66310-4</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2020-06, Vol.10 (1), p.9488-9488, Article 9488 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7289801 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | 631/114/2397 631/1647/48 631/45/535/1267 631/45/612/1232 631/57/2272/2273 Binding Sites - physiology Cardiovascular diseases Catalytic Domain - physiology Crystal structure Cyclic GMP Cyclic GMP - metabolism Dimerization Guanosine Guanosine triphosphate Guanosine Triphosphate - metabolism Guanylate cyclase Humanities and Social Sciences Humans Kinases multidisciplinary Nitric oxide Nitric Oxide - metabolism Protein Binding - physiology Protein kinase Protein Subunits - metabolism Receptors, Cytoplasmic and Nuclear - metabolism Science Science (multidisciplinary) Signal transduction Signal Transduction - physiology Soluble Guanylyl Cyclase - metabolism |
title | Probing the Structural Dynamics of the Catalytic Domain of Human Soluble Guanylate Cyclase |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T19%3A03%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probing%20the%20Structural%20Dynamics%20of%20the%20Catalytic%20Domain%20of%20Human%20Soluble%20Guanylate%20Cyclase&rft.jtitle=Scientific%20reports&rft.au=Khalid,%20Rana%20Rehan&rft.date=2020-06-11&rft.volume=10&rft.issue=1&rft.spage=9488&rft.epage=9488&rft.pages=9488-9488&rft.artnum=9488&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-66310-4&rft_dat=%3Cproquest_pubme%3E2412994764%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2412191760&rft_id=info:pmid/32528025&rfr_iscdi=true |