Insights from Drosophila on mitochondrial complex I

NADH:ubiquinone oxidoreductase, more commonly referred to as mitochondrial complex I (CI), is the largest discrete enzyme of the oxidative phosphorylation system (OXPHOS). It is localized to the mitochondrial inner membrane. CI oxidizes NADH generated from the tricarboxylic acid cycle to NAD + , in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cellular and molecular life sciences : CMLS 2020-02, Vol.77 (4), p.607-618
Hauptverfasser: Rhooms, Shauna-Kay, Murari, Anjaneyulu, Goparaju, Naga Sri Vidya, Vilanueva, Maximino, Owusu-Ansah, Edward
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 618
container_issue 4
container_start_page 607
container_title Cellular and molecular life sciences : CMLS
container_volume 77
creator Rhooms, Shauna-Kay
Murari, Anjaneyulu
Goparaju, Naga Sri Vidya
Vilanueva, Maximino
Owusu-Ansah, Edward
description NADH:ubiquinone oxidoreductase, more commonly referred to as mitochondrial complex I (CI), is the largest discrete enzyme of the oxidative phosphorylation system (OXPHOS). It is localized to the mitochondrial inner membrane. CI oxidizes NADH generated from the tricarboxylic acid cycle to NAD + , in a series of redox reactions that culminates in the reduction of ubiquinone, and the transport of protons from the matrix across the inner membrane to the intermembrane space. The resulting proton-motive force is consumed by ATP synthase to generate ATP, or harnessed to transport ions, metabolites and proteins into the mitochondrion. CI is also a major source of reactive oxygen species. Accordingly, impaired CI function has been associated with a host of chronic metabolic and degenerative disorders such as diabetes, cardiomyopathy, Parkinson’s disease (PD) and Leigh syndrome. Studies on Drosophila have contributed to our understanding of the multiple roles of CI in bioenergetics and organismal physiology. Here, we explore and discuss some of the studies on Drosophila that have informed our understanding of this complex and conclude with some of the open questions about CI that can be resolved by studies on Drosophila .
doi_str_mv 10.1007/s00018-019-03293-0
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7289077</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2284297416</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-eec186d7a5971e76d8332facbac661dd0a0dfb407f8ae9a26a68760fd39763e03</originalsourceid><addsrcrecordid>eNp9kctOwzAQRS0EoqXwAyxQJDZsAmM7sZ0NEiqvSpXYgMTOch2nSZXEwU4R_D0uLeWxYDWW5vjO3LkIHWM4xwD8wgMAFjHgLAZKMhrDDhrihECcAce7mzcT5HmADrxfBDoVhO2jAcWJSDlmQ0Qnra_mZe-jwtkmunbW266sahXZNmqq3urStrmrVB1p23S1eYsmh2ivULU3R5s6Qk-3N4_j-3j6cDcZX01jnfCkj43RWLCcqzTj2HCWC0pJofRMacZwnoOCvJglwAuhTKYIU0xwBkVOM86oATpCl2vdbjlrTK5N2ztVy85VjXLv0qpK_u60VSnn9lVyIsIFeBA42wg4-7I0vpdN5bWpa9Uau_SSEJFiTBhLA3r6B13YpWuDvRWVkIwnmAWKrCkd7uSdKbbLYJCrTOQ6ExkykZ-ZyJWNk582tl--QggAXQM-tNq5cd-z_5H9AIwCl2U</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2284297416</pqid></control><display><type>article</type><title>Insights from Drosophila on mitochondrial complex I</title><source>MEDLINE</source><source>SpringerNature Journals</source><source>PubMed Central</source><creator>Rhooms, Shauna-Kay ; Murari, Anjaneyulu ; Goparaju, Naga Sri Vidya ; Vilanueva, Maximino ; Owusu-Ansah, Edward</creator><creatorcontrib>Rhooms, Shauna-Kay ; Murari, Anjaneyulu ; Goparaju, Naga Sri Vidya ; Vilanueva, Maximino ; Owusu-Ansah, Edward</creatorcontrib><description>NADH:ubiquinone oxidoreductase, more commonly referred to as mitochondrial complex I (CI), is the largest discrete enzyme of the oxidative phosphorylation system (OXPHOS). It is localized to the mitochondrial inner membrane. CI oxidizes NADH generated from the tricarboxylic acid cycle to NAD + , in a series of redox reactions that culminates in the reduction of ubiquinone, and the transport of protons from the matrix across the inner membrane to the intermembrane space. The resulting proton-motive force is consumed by ATP synthase to generate ATP, or harnessed to transport ions, metabolites and proteins into the mitochondrion. CI is also a major source of reactive oxygen species. Accordingly, impaired CI function has been associated with a host of chronic metabolic and degenerative disorders such as diabetes, cardiomyopathy, Parkinson’s disease (PD) and Leigh syndrome. Studies on Drosophila have contributed to our understanding of the multiple roles of CI in bioenergetics and organismal physiology. Here, we explore and discuss some of the studies on Drosophila that have informed our understanding of this complex and conclude with some of the open questions about CI that can be resolved by studies on Drosophila .</description><identifier>ISSN: 1420-682X</identifier><identifier>EISSN: 1420-9071</identifier><identifier>DOI: 10.1007/s00018-019-03293-0</identifier><identifier>PMID: 31485716</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Animals ; ATP ; ATP synthase ; Biochemistry ; Bioenergetics ; Biomedical and Life Sciences ; Biomedicine ; Cardiomyopathy ; Cell Biology ; Diabetes mellitus ; Drosophila ; Drosophila - metabolism ; Drosophila Proteins - metabolism ; Electron transport chain ; Electron Transport Complex I - metabolism ; Insects ; Life Sciences ; Metabolites ; Mitochondria ; Mitochondria - metabolism ; Movement disorders ; NAD ; NADH ; NADH-ubiquinone oxidoreductase ; Neurodegenerative diseases ; Nicotinamide adenine dinucleotide ; Oxidative Phosphorylation ; Parkinson's disease ; Phosphorylation ; Protein Subunits - metabolism ; Protonmotive force ; Protons ; Reactive oxygen species ; Redox reactions ; Review ; Transport ; Tricarboxylic acid cycle ; Ubiquinone ; Ubiquinone oxidoreductase</subject><ispartof>Cellular and molecular life sciences : CMLS, 2020-02, Vol.77 (4), p.607-618</ispartof><rights>Springer Nature Switzerland AG 2019</rights><rights>Cellular and Molecular Life Sciences is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-eec186d7a5971e76d8332facbac661dd0a0dfb407f8ae9a26a68760fd39763e03</citedby><cites>FETCH-LOGICAL-c474t-eec186d7a5971e76d8332facbac661dd0a0dfb407f8ae9a26a68760fd39763e03</cites><orcidid>0000-0002-3451-1752</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7289077/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7289077/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,41488,42557,51319,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31485716$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rhooms, Shauna-Kay</creatorcontrib><creatorcontrib>Murari, Anjaneyulu</creatorcontrib><creatorcontrib>Goparaju, Naga Sri Vidya</creatorcontrib><creatorcontrib>Vilanueva, Maximino</creatorcontrib><creatorcontrib>Owusu-Ansah, Edward</creatorcontrib><title>Insights from Drosophila on mitochondrial complex I</title><title>Cellular and molecular life sciences : CMLS</title><addtitle>Cell. Mol. Life Sci</addtitle><addtitle>Cell Mol Life Sci</addtitle><description>NADH:ubiquinone oxidoreductase, more commonly referred to as mitochondrial complex I (CI), is the largest discrete enzyme of the oxidative phosphorylation system (OXPHOS). It is localized to the mitochondrial inner membrane. CI oxidizes NADH generated from the tricarboxylic acid cycle to NAD + , in a series of redox reactions that culminates in the reduction of ubiquinone, and the transport of protons from the matrix across the inner membrane to the intermembrane space. The resulting proton-motive force is consumed by ATP synthase to generate ATP, or harnessed to transport ions, metabolites and proteins into the mitochondrion. CI is also a major source of reactive oxygen species. Accordingly, impaired CI function has been associated with a host of chronic metabolic and degenerative disorders such as diabetes, cardiomyopathy, Parkinson’s disease (PD) and Leigh syndrome. Studies on Drosophila have contributed to our understanding of the multiple roles of CI in bioenergetics and organismal physiology. Here, we explore and discuss some of the studies on Drosophila that have informed our understanding of this complex and conclude with some of the open questions about CI that can be resolved by studies on Drosophila .</description><subject>Animals</subject><subject>ATP</subject><subject>ATP synthase</subject><subject>Biochemistry</subject><subject>Bioenergetics</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cardiomyopathy</subject><subject>Cell Biology</subject><subject>Diabetes mellitus</subject><subject>Drosophila</subject><subject>Drosophila - metabolism</subject><subject>Drosophila Proteins - metabolism</subject><subject>Electron transport chain</subject><subject>Electron Transport Complex I - metabolism</subject><subject>Insects</subject><subject>Life Sciences</subject><subject>Metabolites</subject><subject>Mitochondria</subject><subject>Mitochondria - metabolism</subject><subject>Movement disorders</subject><subject>NAD</subject><subject>NADH</subject><subject>NADH-ubiquinone oxidoreductase</subject><subject>Neurodegenerative diseases</subject><subject>Nicotinamide adenine dinucleotide</subject><subject>Oxidative Phosphorylation</subject><subject>Parkinson's disease</subject><subject>Phosphorylation</subject><subject>Protein Subunits - metabolism</subject><subject>Protonmotive force</subject><subject>Protons</subject><subject>Reactive oxygen species</subject><subject>Redox reactions</subject><subject>Review</subject><subject>Transport</subject><subject>Tricarboxylic acid cycle</subject><subject>Ubiquinone</subject><subject>Ubiquinone oxidoreductase</subject><issn>1420-682X</issn><issn>1420-9071</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kctOwzAQRS0EoqXwAyxQJDZsAmM7sZ0NEiqvSpXYgMTOch2nSZXEwU4R_D0uLeWxYDWW5vjO3LkIHWM4xwD8wgMAFjHgLAZKMhrDDhrihECcAce7mzcT5HmADrxfBDoVhO2jAcWJSDlmQ0Qnra_mZe-jwtkmunbW266sahXZNmqq3urStrmrVB1p23S1eYsmh2ivULU3R5s6Qk-3N4_j-3j6cDcZX01jnfCkj43RWLCcqzTj2HCWC0pJofRMacZwnoOCvJglwAuhTKYIU0xwBkVOM86oATpCl2vdbjlrTK5N2ztVy85VjXLv0qpK_u60VSnn9lVyIsIFeBA42wg4-7I0vpdN5bWpa9Uau_SSEJFiTBhLA3r6B13YpWuDvRWVkIwnmAWKrCkd7uSdKbbLYJCrTOQ6ExkykZ-ZyJWNk582tl--QggAXQM-tNq5cd-z_5H9AIwCl2U</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Rhooms, Shauna-Kay</creator><creator>Murari, Anjaneyulu</creator><creator>Goparaju, Naga Sri Vidya</creator><creator>Vilanueva, Maximino</creator><creator>Owusu-Ansah, Edward</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7T5</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U7</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3451-1752</orcidid></search><sort><creationdate>20200201</creationdate><title>Insights from Drosophila on mitochondrial complex I</title><author>Rhooms, Shauna-Kay ; Murari, Anjaneyulu ; Goparaju, Naga Sri Vidya ; Vilanueva, Maximino ; Owusu-Ansah, Edward</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-eec186d7a5971e76d8332facbac661dd0a0dfb407f8ae9a26a68760fd39763e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>ATP</topic><topic>ATP synthase</topic><topic>Biochemistry</topic><topic>Bioenergetics</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cardiomyopathy</topic><topic>Cell Biology</topic><topic>Diabetes mellitus</topic><topic>Drosophila</topic><topic>Drosophila - metabolism</topic><topic>Drosophila Proteins - metabolism</topic><topic>Electron transport chain</topic><topic>Electron Transport Complex I - metabolism</topic><topic>Insects</topic><topic>Life Sciences</topic><topic>Metabolites</topic><topic>Mitochondria</topic><topic>Mitochondria - metabolism</topic><topic>Movement disorders</topic><topic>NAD</topic><topic>NADH</topic><topic>NADH-ubiquinone oxidoreductase</topic><topic>Neurodegenerative diseases</topic><topic>Nicotinamide adenine dinucleotide</topic><topic>Oxidative Phosphorylation</topic><topic>Parkinson's disease</topic><topic>Phosphorylation</topic><topic>Protein Subunits - metabolism</topic><topic>Protonmotive force</topic><topic>Protons</topic><topic>Reactive oxygen species</topic><topic>Redox reactions</topic><topic>Review</topic><topic>Transport</topic><topic>Tricarboxylic acid cycle</topic><topic>Ubiquinone</topic><topic>Ubiquinone oxidoreductase</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rhooms, Shauna-Kay</creatorcontrib><creatorcontrib>Murari, Anjaneyulu</creatorcontrib><creatorcontrib>Goparaju, Naga Sri Vidya</creatorcontrib><creatorcontrib>Vilanueva, Maximino</creatorcontrib><creatorcontrib>Owusu-Ansah, Edward</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cellular and molecular life sciences : CMLS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rhooms, Shauna-Kay</au><au>Murari, Anjaneyulu</au><au>Goparaju, Naga Sri Vidya</au><au>Vilanueva, Maximino</au><au>Owusu-Ansah, Edward</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Insights from Drosophila on mitochondrial complex I</atitle><jtitle>Cellular and molecular life sciences : CMLS</jtitle><stitle>Cell. Mol. Life Sci</stitle><addtitle>Cell Mol Life Sci</addtitle><date>2020-02-01</date><risdate>2020</risdate><volume>77</volume><issue>4</issue><spage>607</spage><epage>618</epage><pages>607-618</pages><issn>1420-682X</issn><eissn>1420-9071</eissn><abstract>NADH:ubiquinone oxidoreductase, more commonly referred to as mitochondrial complex I (CI), is the largest discrete enzyme of the oxidative phosphorylation system (OXPHOS). It is localized to the mitochondrial inner membrane. CI oxidizes NADH generated from the tricarboxylic acid cycle to NAD + , in a series of redox reactions that culminates in the reduction of ubiquinone, and the transport of protons from the matrix across the inner membrane to the intermembrane space. The resulting proton-motive force is consumed by ATP synthase to generate ATP, or harnessed to transport ions, metabolites and proteins into the mitochondrion. CI is also a major source of reactive oxygen species. Accordingly, impaired CI function has been associated with a host of chronic metabolic and degenerative disorders such as diabetes, cardiomyopathy, Parkinson’s disease (PD) and Leigh syndrome. Studies on Drosophila have contributed to our understanding of the multiple roles of CI in bioenergetics and organismal physiology. Here, we explore and discuss some of the studies on Drosophila that have informed our understanding of this complex and conclude with some of the open questions about CI that can be resolved by studies on Drosophila .</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>31485716</pmid><doi>10.1007/s00018-019-03293-0</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-3451-1752</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1420-682X
ispartof Cellular and molecular life sciences : CMLS, 2020-02, Vol.77 (4), p.607-618
issn 1420-682X
1420-9071
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7289077
source MEDLINE; SpringerNature Journals; PubMed Central
subjects Animals
ATP
ATP synthase
Biochemistry
Bioenergetics
Biomedical and Life Sciences
Biomedicine
Cardiomyopathy
Cell Biology
Diabetes mellitus
Drosophila
Drosophila - metabolism
Drosophila Proteins - metabolism
Electron transport chain
Electron Transport Complex I - metabolism
Insects
Life Sciences
Metabolites
Mitochondria
Mitochondria - metabolism
Movement disorders
NAD
NADH
NADH-ubiquinone oxidoreductase
Neurodegenerative diseases
Nicotinamide adenine dinucleotide
Oxidative Phosphorylation
Parkinson's disease
Phosphorylation
Protein Subunits - metabolism
Protonmotive force
Protons
Reactive oxygen species
Redox reactions
Review
Transport
Tricarboxylic acid cycle
Ubiquinone
Ubiquinone oxidoreductase
title Insights from Drosophila on mitochondrial complex I
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T08%3A01%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Insights%20from%20Drosophila%20on%20mitochondrial%20complex%20I&rft.jtitle=Cellular%20and%20molecular%20life%20sciences%20:%20CMLS&rft.au=Rhooms,%20Shauna-Kay&rft.date=2020-02-01&rft.volume=77&rft.issue=4&rft.spage=607&rft.epage=618&rft.pages=607-618&rft.issn=1420-682X&rft.eissn=1420-9071&rft_id=info:doi/10.1007/s00018-019-03293-0&rft_dat=%3Cproquest_pubme%3E2284297416%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2284297416&rft_id=info:pmid/31485716&rfr_iscdi=true