Hydrodynamic flow of non-Newtonian power-law fluid past a moving wedge or a stretching sheet: a unified computational approach
A unified mathematical equation that combines two different boundary-layer flows of viscous and incompressible Ostwald-de Waele fluid is derived and studied. The motion of the mainstream and the wedge is approximated in the power-law manner, i.e, in terms of the power of the distance from the leadin...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2020-06, Vol.10 (1), p.9445-9445, Article 9445 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9445 |
---|---|
container_issue | 1 |
container_start_page | 9445 |
container_title | Scientific reports |
container_volume | 10 |
creator | Kudenatti, Ramesh B. Misbah, Noor-E- |
description | A unified mathematical equation that combines two different boundary-layer flows of viscous and incompressible Ostwald-de Waele fluid is derived and studied. The motion of the mainstream and the wedge is approximated in the power-law manner, i.e, in terms of the power of the distance from the leading boundary-layer edge. It is also considered that the wedge can move in the same and opposite direction to that of the mainstream. The governing partial differential equations are transformed into the nonlinear ordinary differential equation using a new set of similarity variables. This transformed equation subjected to the boundary conditions describing the flow is then solved using the Chebyshev collocation method. Further, these numerical results are then validated by determining the flow behaviour at far-field by performing asymptotics. The velocity ratio parameter effectively captures and distinguishes two boundary-layer flows. The boundary layer thickness for shear-thinning fluid is thinner compared to corresponding parameters for shear-thickening fluids and is markedly separated by the Newtonian fluid. Further, the boundary-layer flow of the non-Newtonian fluid predicts an infinite viscosity for shear-thinning fluid quite away from the surface. The hydrodynamics of the obtained results is explained thoroughly. |
doi_str_mv | 10.1038/s41598-020-66106-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7287094</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2412149804</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-5eee13cd4bea0c6d5b5e6ca3e70bdfeb0914856d44c8375c3f919412c09b0e43</originalsourceid><addsrcrecordid>eNp9UU1v1DAUjBCIVqV_gAOyxIVLwN9JOCChCihSBZfeLcd-2XWV2MF2utpLfzsOKaVwwBdbM-N5bzRV9ZLgtwSz9l3iRHRtjSmupSRY1vJJdUoxFzVllD599D6pzlO6weUI2nHSPa9OGBWUYSpPq7vLo43BHr2enEHDGA4oDMgHX3-DQw7eaY_mcIBYj_pQ-MVZNOuUkUZTuHV-hw5gd4BCLEjKEbLZr2jaA-T3BVu8GxxYZMI0L1lnF7wekZ7nGLTZv6ieDXpMcH5_n1XXnz9dX1zWV9-_fL34eFUb3vBcCwAgzFjeg8ZGWtELkEYzaHBvB-hxR3grpOXctKwRhg0dKVGpwV2PgbOz6sNmOy_9BNaAz1GPao5u0vGognbqb8a7vdqFW9XQtsHdavDm3iCGHwukrCaXDIyj9hCWpGgZRgmTQhbp63-kN2GJJfSmIrxr8WpIN5WJIaUIw8MyBKu1YLUVrErB6lfBarV-9TjGw5ffdRYB2wSpUH4H8c_s_9j-BIsFs50</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2412149804</pqid></control><display><type>article</type><title>Hydrodynamic flow of non-Newtonian power-law fluid past a moving wedge or a stretching sheet: a unified computational approach</title><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Kudenatti, Ramesh B. ; Misbah, Noor-E-</creator><creatorcontrib>Kudenatti, Ramesh B. ; Misbah, Noor-E-</creatorcontrib><description>A unified mathematical equation that combines two different boundary-layer flows of viscous and incompressible Ostwald-de Waele fluid is derived and studied. The motion of the mainstream and the wedge is approximated in the power-law manner, i.e, in terms of the power of the distance from the leading boundary-layer edge. It is also considered that the wedge can move in the same and opposite direction to that of the mainstream. The governing partial differential equations are transformed into the nonlinear ordinary differential equation using a new set of similarity variables. This transformed equation subjected to the boundary conditions describing the flow is then solved using the Chebyshev collocation method. Further, these numerical results are then validated by determining the flow behaviour at far-field by performing asymptotics. The velocity ratio parameter effectively captures and distinguishes two boundary-layer flows. The boundary layer thickness for shear-thinning fluid is thinner compared to corresponding parameters for shear-thickening fluids and is markedly separated by the Newtonian fluid. Further, the boundary-layer flow of the non-Newtonian fluid predicts an infinite viscosity for shear-thinning fluid quite away from the surface. The hydrodynamics of the obtained results is explained thoroughly.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-66106-6</identifier><identifier>PMID: 32523026</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/705/1041 ; 639/705/1042 ; Boundary conditions ; Boundary layers ; Computer applications ; Differential equations ; Fluid flow ; Fluids ; Humanities and Social Sciences ; Hydrodynamics ; multidisciplinary ; Partial differential equations ; Science ; Science (multidisciplinary) ; Thinning ; Viscosity</subject><ispartof>Scientific reports, 2020-06, Vol.10 (1), p.9445-9445, Article 9445</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-5eee13cd4bea0c6d5b5e6ca3e70bdfeb0914856d44c8375c3f919412c09b0e43</citedby><cites>FETCH-LOGICAL-c474t-5eee13cd4bea0c6d5b5e6ca3e70bdfeb0914856d44c8375c3f919412c09b0e43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7287094/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7287094/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,41120,42189,51576,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32523026$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kudenatti, Ramesh B.</creatorcontrib><creatorcontrib>Misbah, Noor-E-</creatorcontrib><title>Hydrodynamic flow of non-Newtonian power-law fluid past a moving wedge or a stretching sheet: a unified computational approach</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>A unified mathematical equation that combines two different boundary-layer flows of viscous and incompressible Ostwald-de Waele fluid is derived and studied. The motion of the mainstream and the wedge is approximated in the power-law manner, i.e, in terms of the power of the distance from the leading boundary-layer edge. It is also considered that the wedge can move in the same and opposite direction to that of the mainstream. The governing partial differential equations are transformed into the nonlinear ordinary differential equation using a new set of similarity variables. This transformed equation subjected to the boundary conditions describing the flow is then solved using the Chebyshev collocation method. Further, these numerical results are then validated by determining the flow behaviour at far-field by performing asymptotics. The velocity ratio parameter effectively captures and distinguishes two boundary-layer flows. The boundary layer thickness for shear-thinning fluid is thinner compared to corresponding parameters for shear-thickening fluids and is markedly separated by the Newtonian fluid. Further, the boundary-layer flow of the non-Newtonian fluid predicts an infinite viscosity for shear-thinning fluid quite away from the surface. The hydrodynamics of the obtained results is explained thoroughly.</description><subject>639/705/1041</subject><subject>639/705/1042</subject><subject>Boundary conditions</subject><subject>Boundary layers</subject><subject>Computer applications</subject><subject>Differential equations</subject><subject>Fluid flow</subject><subject>Fluids</subject><subject>Humanities and Social Sciences</subject><subject>Hydrodynamics</subject><subject>multidisciplinary</subject><subject>Partial differential equations</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Thinning</subject><subject>Viscosity</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9UU1v1DAUjBCIVqV_gAOyxIVLwN9JOCChCihSBZfeLcd-2XWV2MF2utpLfzsOKaVwwBdbM-N5bzRV9ZLgtwSz9l3iRHRtjSmupSRY1vJJdUoxFzVllD599D6pzlO6weUI2nHSPa9OGBWUYSpPq7vLo43BHr2enEHDGA4oDMgHX3-DQw7eaY_mcIBYj_pQ-MVZNOuUkUZTuHV-hw5gd4BCLEjKEbLZr2jaA-T3BVu8GxxYZMI0L1lnF7wekZ7nGLTZv6ieDXpMcH5_n1XXnz9dX1zWV9-_fL34eFUb3vBcCwAgzFjeg8ZGWtELkEYzaHBvB-hxR3grpOXctKwRhg0dKVGpwV2PgbOz6sNmOy_9BNaAz1GPao5u0vGognbqb8a7vdqFW9XQtsHdavDm3iCGHwukrCaXDIyj9hCWpGgZRgmTQhbp63-kN2GJJfSmIrxr8WpIN5WJIaUIw8MyBKu1YLUVrErB6lfBarV-9TjGw5ffdRYB2wSpUH4H8c_s_9j-BIsFs50</recordid><startdate>20200610</startdate><enddate>20200610</enddate><creator>Kudenatti, Ramesh B.</creator><creator>Misbah, Noor-E-</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20200610</creationdate><title>Hydrodynamic flow of non-Newtonian power-law fluid past a moving wedge or a stretching sheet: a unified computational approach</title><author>Kudenatti, Ramesh B. ; Misbah, Noor-E-</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-5eee13cd4bea0c6d5b5e6ca3e70bdfeb0914856d44c8375c3f919412c09b0e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/705/1041</topic><topic>639/705/1042</topic><topic>Boundary conditions</topic><topic>Boundary layers</topic><topic>Computer applications</topic><topic>Differential equations</topic><topic>Fluid flow</topic><topic>Fluids</topic><topic>Humanities and Social Sciences</topic><topic>Hydrodynamics</topic><topic>multidisciplinary</topic><topic>Partial differential equations</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Thinning</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kudenatti, Ramesh B.</creatorcontrib><creatorcontrib>Misbah, Noor-E-</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kudenatti, Ramesh B.</au><au>Misbah, Noor-E-</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrodynamic flow of non-Newtonian power-law fluid past a moving wedge or a stretching sheet: a unified computational approach</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2020-06-10</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>9445</spage><epage>9445</epage><pages>9445-9445</pages><artnum>9445</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>A unified mathematical equation that combines two different boundary-layer flows of viscous and incompressible Ostwald-de Waele fluid is derived and studied. The motion of the mainstream and the wedge is approximated in the power-law manner, i.e, in terms of the power of the distance from the leading boundary-layer edge. It is also considered that the wedge can move in the same and opposite direction to that of the mainstream. The governing partial differential equations are transformed into the nonlinear ordinary differential equation using a new set of similarity variables. This transformed equation subjected to the boundary conditions describing the flow is then solved using the Chebyshev collocation method. Further, these numerical results are then validated by determining the flow behaviour at far-field by performing asymptotics. The velocity ratio parameter effectively captures and distinguishes two boundary-layer flows. The boundary layer thickness for shear-thinning fluid is thinner compared to corresponding parameters for shear-thickening fluids and is markedly separated by the Newtonian fluid. Further, the boundary-layer flow of the non-Newtonian fluid predicts an infinite viscosity for shear-thinning fluid quite away from the surface. The hydrodynamics of the obtained results is explained thoroughly.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32523026</pmid><doi>10.1038/s41598-020-66106-6</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2020-06, Vol.10 (1), p.9445-9445, Article 9445 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7287094 |
source | DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | 639/705/1041 639/705/1042 Boundary conditions Boundary layers Computer applications Differential equations Fluid flow Fluids Humanities and Social Sciences Hydrodynamics multidisciplinary Partial differential equations Science Science (multidisciplinary) Thinning Viscosity |
title | Hydrodynamic flow of non-Newtonian power-law fluid past a moving wedge or a stretching sheet: a unified computational approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T15%3A28%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrodynamic%20flow%20of%20non-Newtonian%20power-law%20fluid%20past%20a%20moving%20wedge%20or%20a%20stretching%20sheet:%20a%20unified%20computational%20approach&rft.jtitle=Scientific%20reports&rft.au=Kudenatti,%20Ramesh%20B.&rft.date=2020-06-10&rft.volume=10&rft.issue=1&rft.spage=9445&rft.epage=9445&rft.pages=9445-9445&rft.artnum=9445&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-66106-6&rft_dat=%3Cproquest_pubme%3E2412149804%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2412149804&rft_id=info:pmid/32523026&rfr_iscdi=true |