Enhanced engraftment of human myelofibrosis stem and progenitor cells in MISTRG mice

The engraftment potential of myeloproliferative neoplasms in immunodeficient mice is low. We hypothesized that the physiological expression of human cytokines (macrophage colony-stimulating factor, interleukin-3, granulocyte-macrophage colony-stimulating factor, and thrombopoietin) combined with hum...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Blood advances 2020-06, Vol.4 (11), p.2477-2488
Hauptverfasser: Lysenko, Veronika, Wildner-Verhey van Wijk, Nicole, Zimmermann, Kathrin, Weller, Marie-Christine, Bühler, Marco, Wildschut, Mattheus H.E., Schürch, Patrick, Fritz, Christine, Wagner, Ulrich, Calabresi, Laura, Psaila, Bethan, Flavell, Richard A., Vannucchi, Alessandro M., Mead, Adam J., Wild, Peter J., Dirnhofer, Stefan, Manz, Markus G., Theocharides, Alexandre P.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2488
container_issue 11
container_start_page 2477
container_title Blood advances
container_volume 4
creator Lysenko, Veronika
Wildner-Verhey van Wijk, Nicole
Zimmermann, Kathrin
Weller, Marie-Christine
Bühler, Marco
Wildschut, Mattheus H.E.
Schürch, Patrick
Fritz, Christine
Wagner, Ulrich
Calabresi, Laura
Psaila, Bethan
Flavell, Richard A.
Vannucchi, Alessandro M.
Mead, Adam J.
Wild, Peter J.
Dirnhofer, Stefan
Manz, Markus G.
Theocharides, Alexandre P.A.
description The engraftment potential of myeloproliferative neoplasms in immunodeficient mice is low. We hypothesized that the physiological expression of human cytokines (macrophage colony-stimulating factor, interleukin-3, granulocyte-macrophage colony-stimulating factor, and thrombopoietin) combined with human signal regulatory protein α expression in Rag2−/−Il2rγ−/− (MISTRG) mice might provide a supportive microenvironment for the development and maintenance of hematopoietic stem and progenitor cells (HSPC) from patients with primary, post–polycythemia or post–essential thrombocythemia myelofibrosis (MF). We show that MISTRG mice, in contrast to standard immunodeficient NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ and Rag2−/−Il2rγ−/− mice, supported engraftment of all patient samples investigated independent of MF disease stage or risk category. Moreover, MISTRG mice exhibited significantly higher human MF engraftment levels in the bone marrow, peripheral blood, and spleen and supported secondary repopulation. Bone marrow fibrosis development was limited to 3 of 14 patient samples investigated in MISTRG mice. Disease-driving mutations were identified in all xenografts, and targeted sequencing revealed maintenance of the primary patient sample clonal composition in 7 of 8 cases. Treatment of engrafted mice with the current standard-of-care Janus kinase inhibitor ruxolitinib led to a reduction in human chimerism. In conclusion, the established MF patient-derived xenograft model supports robust engraftment of MF HSPCs and maintains the genetic complexity observed in patients. The model is suited for further testing of novel therapeutic agents to expedite their transition into clinical trials. •Human myelofibrosis stem and progenitor cells efficiently engraft in humanized MISTRG mice independent of risk category and disease stage.•The clonal architecture of myelofibrosis is maintained in MISTRG patient-derived xenografts. [Display omitted]
doi_str_mv 10.1182/bloodadvances.2019001364
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7284099</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2473952920312751</els_id><sourcerecordid>2410361546</sourcerecordid><originalsourceid>FETCH-LOGICAL-c479t-76cd4766f42eb17bf38082f22e59b079f45e1dde30a0d339e15f06e27808b2e03</originalsourceid><addsrcrecordid>eNqFkU1vGyEQhlHVqonS_IWIYy9O-VpYLpXaKEkjparUOmfEwmBT7YILa0v598Vy6iSnnkDimXeGeRDClFxS2rNPw5izt35nk4N6yQjVhFAuxRt0yoTiC91x9fZ4Z_oEndf6mzRISd5p9h6dcNYRxmR_ipbXab0P8hjSqtgwT5BmnANebyeb8PQIYw5xKLnGiusME7bJ403JK0hxzgU7GMeKY8Lf734tf97iKTr4gN4FO1Y4fzrP0MPN9fLq2-L-x-3d1Zf7hRNKzwslnRdKyiAYDFQNgfekZ4Ex6PRAlA6iA-o9cGKJ51wD7QKRwFTDBgaEn6HPh9zNdpjAuzZ6saPZlDjZ8miyjeb1S4prs8o7o1gviNYt4ONTQMl_tlBnM8W6_5FNkLfVMEEJl7QTsqH9AXVtF7VAOLahxOy9mFdezLOXVnrxcsxj4T8LDfh6AKAtaxehmOoi7K3EAm42Psf_d_kLybSlMg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2410361546</pqid></control><display><type>article</type><title>Enhanced engraftment of human myelofibrosis stem and progenitor cells in MISTRG mice</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Lysenko, Veronika ; Wildner-Verhey van Wijk, Nicole ; Zimmermann, Kathrin ; Weller, Marie-Christine ; Bühler, Marco ; Wildschut, Mattheus H.E. ; Schürch, Patrick ; Fritz, Christine ; Wagner, Ulrich ; Calabresi, Laura ; Psaila, Bethan ; Flavell, Richard A. ; Vannucchi, Alessandro M. ; Mead, Adam J. ; Wild, Peter J. ; Dirnhofer, Stefan ; Manz, Markus G. ; Theocharides, Alexandre P.A.</creator><creatorcontrib>Lysenko, Veronika ; Wildner-Verhey van Wijk, Nicole ; Zimmermann, Kathrin ; Weller, Marie-Christine ; Bühler, Marco ; Wildschut, Mattheus H.E. ; Schürch, Patrick ; Fritz, Christine ; Wagner, Ulrich ; Calabresi, Laura ; Psaila, Bethan ; Flavell, Richard A. ; Vannucchi, Alessandro M. ; Mead, Adam J. ; Wild, Peter J. ; Dirnhofer, Stefan ; Manz, Markus G. ; Theocharides, Alexandre P.A.</creatorcontrib><description>The engraftment potential of myeloproliferative neoplasms in immunodeficient mice is low. We hypothesized that the physiological expression of human cytokines (macrophage colony-stimulating factor, interleukin-3, granulocyte-macrophage colony-stimulating factor, and thrombopoietin) combined with human signal regulatory protein α expression in Rag2−/−Il2rγ−/− (MISTRG) mice might provide a supportive microenvironment for the development and maintenance of hematopoietic stem and progenitor cells (HSPC) from patients with primary, post–polycythemia or post–essential thrombocythemia myelofibrosis (MF). We show that MISTRG mice, in contrast to standard immunodeficient NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ and Rag2−/−Il2rγ−/− mice, supported engraftment of all patient samples investigated independent of MF disease stage or risk category. Moreover, MISTRG mice exhibited significantly higher human MF engraftment levels in the bone marrow, peripheral blood, and spleen and supported secondary repopulation. Bone marrow fibrosis development was limited to 3 of 14 patient samples investigated in MISTRG mice. Disease-driving mutations were identified in all xenografts, and targeted sequencing revealed maintenance of the primary patient sample clonal composition in 7 of 8 cases. Treatment of engrafted mice with the current standard-of-care Janus kinase inhibitor ruxolitinib led to a reduction in human chimerism. In conclusion, the established MF patient-derived xenograft model supports robust engraftment of MF HSPCs and maintains the genetic complexity observed in patients. The model is suited for further testing of novel therapeutic agents to expedite their transition into clinical trials. •Human myelofibrosis stem and progenitor cells efficiently engraft in humanized MISTRG mice independent of risk category and disease stage.•The clonal architecture of myelofibrosis is maintained in MISTRG patient-derived xenografts. [Display omitted]</description><identifier>ISSN: 2473-9529</identifier><identifier>EISSN: 2473-9537</identifier><identifier>DOI: 10.1182/bloodadvances.2019001364</identifier><identifier>PMID: 32502268</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Hematopoietic Stem Cells ; Heterografts ; Humans ; Mice ; Mice, Inbred BALB C ; Mice, Inbred NOD ; Myeloid Neoplasia ; Primary Myelofibrosis - genetics</subject><ispartof>Blood advances, 2020-06, Vol.4 (11), p.2477-2488</ispartof><rights>2020 American Society of Hematology</rights><rights>2020 by The American Society of Hematology.</rights><rights>2020 by The American Society of Hematology 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c479t-76cd4766f42eb17bf38082f22e59b079f45e1dde30a0d339e15f06e27808b2e03</citedby><cites>FETCH-LOGICAL-c479t-76cd4766f42eb17bf38082f22e59b079f45e1dde30a0d339e15f06e27808b2e03</cites><orcidid>0000-0003-3895-2149 ; 0000-0002-1017-3744 ; 0000-0001-5755-0730 ; 0000-0003-4461-0778 ; 0000-0002-1535-8692 ; 0000-0002-6460-3084 ; 0000-0001-8198-9663</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7284099/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7284099/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32502268$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lysenko, Veronika</creatorcontrib><creatorcontrib>Wildner-Verhey van Wijk, Nicole</creatorcontrib><creatorcontrib>Zimmermann, Kathrin</creatorcontrib><creatorcontrib>Weller, Marie-Christine</creatorcontrib><creatorcontrib>Bühler, Marco</creatorcontrib><creatorcontrib>Wildschut, Mattheus H.E.</creatorcontrib><creatorcontrib>Schürch, Patrick</creatorcontrib><creatorcontrib>Fritz, Christine</creatorcontrib><creatorcontrib>Wagner, Ulrich</creatorcontrib><creatorcontrib>Calabresi, Laura</creatorcontrib><creatorcontrib>Psaila, Bethan</creatorcontrib><creatorcontrib>Flavell, Richard A.</creatorcontrib><creatorcontrib>Vannucchi, Alessandro M.</creatorcontrib><creatorcontrib>Mead, Adam J.</creatorcontrib><creatorcontrib>Wild, Peter J.</creatorcontrib><creatorcontrib>Dirnhofer, Stefan</creatorcontrib><creatorcontrib>Manz, Markus G.</creatorcontrib><creatorcontrib>Theocharides, Alexandre P.A.</creatorcontrib><title>Enhanced engraftment of human myelofibrosis stem and progenitor cells in MISTRG mice</title><title>Blood advances</title><addtitle>Blood Adv</addtitle><description>The engraftment potential of myeloproliferative neoplasms in immunodeficient mice is low. We hypothesized that the physiological expression of human cytokines (macrophage colony-stimulating factor, interleukin-3, granulocyte-macrophage colony-stimulating factor, and thrombopoietin) combined with human signal regulatory protein α expression in Rag2−/−Il2rγ−/− (MISTRG) mice might provide a supportive microenvironment for the development and maintenance of hematopoietic stem and progenitor cells (HSPC) from patients with primary, post–polycythemia or post–essential thrombocythemia myelofibrosis (MF). We show that MISTRG mice, in contrast to standard immunodeficient NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ and Rag2−/−Il2rγ−/− mice, supported engraftment of all patient samples investigated independent of MF disease stage or risk category. Moreover, MISTRG mice exhibited significantly higher human MF engraftment levels in the bone marrow, peripheral blood, and spleen and supported secondary repopulation. Bone marrow fibrosis development was limited to 3 of 14 patient samples investigated in MISTRG mice. Disease-driving mutations were identified in all xenografts, and targeted sequencing revealed maintenance of the primary patient sample clonal composition in 7 of 8 cases. Treatment of engrafted mice with the current standard-of-care Janus kinase inhibitor ruxolitinib led to a reduction in human chimerism. In conclusion, the established MF patient-derived xenograft model supports robust engraftment of MF HSPCs and maintains the genetic complexity observed in patients. The model is suited for further testing of novel therapeutic agents to expedite their transition into clinical trials. •Human myelofibrosis stem and progenitor cells efficiently engraft in humanized MISTRG mice independent of risk category and disease stage.•The clonal architecture of myelofibrosis is maintained in MISTRG patient-derived xenografts. [Display omitted]</description><subject>Animals</subject><subject>Hematopoietic Stem Cells</subject><subject>Heterografts</subject><subject>Humans</subject><subject>Mice</subject><subject>Mice, Inbred BALB C</subject><subject>Mice, Inbred NOD</subject><subject>Myeloid Neoplasia</subject><subject>Primary Myelofibrosis - genetics</subject><issn>2473-9529</issn><issn>2473-9537</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1vGyEQhlHVqonS_IWIYy9O-VpYLpXaKEkjparUOmfEwmBT7YILa0v598Vy6iSnnkDimXeGeRDClFxS2rNPw5izt35nk4N6yQjVhFAuxRt0yoTiC91x9fZ4Z_oEndf6mzRISd5p9h6dcNYRxmR_ipbXab0P8hjSqtgwT5BmnANebyeb8PQIYw5xKLnGiusME7bJ403JK0hxzgU7GMeKY8Lf734tf97iKTr4gN4FO1Y4fzrP0MPN9fLq2-L-x-3d1Zf7hRNKzwslnRdKyiAYDFQNgfekZ4Ex6PRAlA6iA-o9cGKJ51wD7QKRwFTDBgaEn6HPh9zNdpjAuzZ6saPZlDjZ8miyjeb1S4prs8o7o1gviNYt4ONTQMl_tlBnM8W6_5FNkLfVMEEJl7QTsqH9AXVtF7VAOLahxOy9mFdezLOXVnrxcsxj4T8LDfh6AKAtaxehmOoi7K3EAm42Psf_d_kLybSlMg</recordid><startdate>20200609</startdate><enddate>20200609</enddate><creator>Lysenko, Veronika</creator><creator>Wildner-Verhey van Wijk, Nicole</creator><creator>Zimmermann, Kathrin</creator><creator>Weller, Marie-Christine</creator><creator>Bühler, Marco</creator><creator>Wildschut, Mattheus H.E.</creator><creator>Schürch, Patrick</creator><creator>Fritz, Christine</creator><creator>Wagner, Ulrich</creator><creator>Calabresi, Laura</creator><creator>Psaila, Bethan</creator><creator>Flavell, Richard A.</creator><creator>Vannucchi, Alessandro M.</creator><creator>Mead, Adam J.</creator><creator>Wild, Peter J.</creator><creator>Dirnhofer, Stefan</creator><creator>Manz, Markus G.</creator><creator>Theocharides, Alexandre P.A.</creator><general>Elsevier Inc</general><general>American Society of Hematology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3895-2149</orcidid><orcidid>https://orcid.org/0000-0002-1017-3744</orcidid><orcidid>https://orcid.org/0000-0001-5755-0730</orcidid><orcidid>https://orcid.org/0000-0003-4461-0778</orcidid><orcidid>https://orcid.org/0000-0002-1535-8692</orcidid><orcidid>https://orcid.org/0000-0002-6460-3084</orcidid><orcidid>https://orcid.org/0000-0001-8198-9663</orcidid></search><sort><creationdate>20200609</creationdate><title>Enhanced engraftment of human myelofibrosis stem and progenitor cells in MISTRG mice</title><author>Lysenko, Veronika ; Wildner-Verhey van Wijk, Nicole ; Zimmermann, Kathrin ; Weller, Marie-Christine ; Bühler, Marco ; Wildschut, Mattheus H.E. ; Schürch, Patrick ; Fritz, Christine ; Wagner, Ulrich ; Calabresi, Laura ; Psaila, Bethan ; Flavell, Richard A. ; Vannucchi, Alessandro M. ; Mead, Adam J. ; Wild, Peter J. ; Dirnhofer, Stefan ; Manz, Markus G. ; Theocharides, Alexandre P.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c479t-76cd4766f42eb17bf38082f22e59b079f45e1dde30a0d339e15f06e27808b2e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Hematopoietic Stem Cells</topic><topic>Heterografts</topic><topic>Humans</topic><topic>Mice</topic><topic>Mice, Inbred BALB C</topic><topic>Mice, Inbred NOD</topic><topic>Myeloid Neoplasia</topic><topic>Primary Myelofibrosis - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lysenko, Veronika</creatorcontrib><creatorcontrib>Wildner-Verhey van Wijk, Nicole</creatorcontrib><creatorcontrib>Zimmermann, Kathrin</creatorcontrib><creatorcontrib>Weller, Marie-Christine</creatorcontrib><creatorcontrib>Bühler, Marco</creatorcontrib><creatorcontrib>Wildschut, Mattheus H.E.</creatorcontrib><creatorcontrib>Schürch, Patrick</creatorcontrib><creatorcontrib>Fritz, Christine</creatorcontrib><creatorcontrib>Wagner, Ulrich</creatorcontrib><creatorcontrib>Calabresi, Laura</creatorcontrib><creatorcontrib>Psaila, Bethan</creatorcontrib><creatorcontrib>Flavell, Richard A.</creatorcontrib><creatorcontrib>Vannucchi, Alessandro M.</creatorcontrib><creatorcontrib>Mead, Adam J.</creatorcontrib><creatorcontrib>Wild, Peter J.</creatorcontrib><creatorcontrib>Dirnhofer, Stefan</creatorcontrib><creatorcontrib>Manz, Markus G.</creatorcontrib><creatorcontrib>Theocharides, Alexandre P.A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Blood advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lysenko, Veronika</au><au>Wildner-Verhey van Wijk, Nicole</au><au>Zimmermann, Kathrin</au><au>Weller, Marie-Christine</au><au>Bühler, Marco</au><au>Wildschut, Mattheus H.E.</au><au>Schürch, Patrick</au><au>Fritz, Christine</au><au>Wagner, Ulrich</au><au>Calabresi, Laura</au><au>Psaila, Bethan</au><au>Flavell, Richard A.</au><au>Vannucchi, Alessandro M.</au><au>Mead, Adam J.</au><au>Wild, Peter J.</au><au>Dirnhofer, Stefan</au><au>Manz, Markus G.</au><au>Theocharides, Alexandre P.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced engraftment of human myelofibrosis stem and progenitor cells in MISTRG mice</atitle><jtitle>Blood advances</jtitle><addtitle>Blood Adv</addtitle><date>2020-06-09</date><risdate>2020</risdate><volume>4</volume><issue>11</issue><spage>2477</spage><epage>2488</epage><pages>2477-2488</pages><issn>2473-9529</issn><eissn>2473-9537</eissn><abstract>The engraftment potential of myeloproliferative neoplasms in immunodeficient mice is low. We hypothesized that the physiological expression of human cytokines (macrophage colony-stimulating factor, interleukin-3, granulocyte-macrophage colony-stimulating factor, and thrombopoietin) combined with human signal regulatory protein α expression in Rag2−/−Il2rγ−/− (MISTRG) mice might provide a supportive microenvironment for the development and maintenance of hematopoietic stem and progenitor cells (HSPC) from patients with primary, post–polycythemia or post–essential thrombocythemia myelofibrosis (MF). We show that MISTRG mice, in contrast to standard immunodeficient NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ and Rag2−/−Il2rγ−/− mice, supported engraftment of all patient samples investigated independent of MF disease stage or risk category. Moreover, MISTRG mice exhibited significantly higher human MF engraftment levels in the bone marrow, peripheral blood, and spleen and supported secondary repopulation. Bone marrow fibrosis development was limited to 3 of 14 patient samples investigated in MISTRG mice. Disease-driving mutations were identified in all xenografts, and targeted sequencing revealed maintenance of the primary patient sample clonal composition in 7 of 8 cases. Treatment of engrafted mice with the current standard-of-care Janus kinase inhibitor ruxolitinib led to a reduction in human chimerism. In conclusion, the established MF patient-derived xenograft model supports robust engraftment of MF HSPCs and maintains the genetic complexity observed in patients. The model is suited for further testing of novel therapeutic agents to expedite their transition into clinical trials. •Human myelofibrosis stem and progenitor cells efficiently engraft in humanized MISTRG mice independent of risk category and disease stage.•The clonal architecture of myelofibrosis is maintained in MISTRG patient-derived xenografts. [Display omitted]</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>32502268</pmid><doi>10.1182/bloodadvances.2019001364</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-3895-2149</orcidid><orcidid>https://orcid.org/0000-0002-1017-3744</orcidid><orcidid>https://orcid.org/0000-0001-5755-0730</orcidid><orcidid>https://orcid.org/0000-0003-4461-0778</orcidid><orcidid>https://orcid.org/0000-0002-1535-8692</orcidid><orcidid>https://orcid.org/0000-0002-6460-3084</orcidid><orcidid>https://orcid.org/0000-0001-8198-9663</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2473-9529
ispartof Blood advances, 2020-06, Vol.4 (11), p.2477-2488
issn 2473-9529
2473-9537
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7284099
source MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects Animals
Hematopoietic Stem Cells
Heterografts
Humans
Mice
Mice, Inbred BALB C
Mice, Inbred NOD
Myeloid Neoplasia
Primary Myelofibrosis - genetics
title Enhanced engraftment of human myelofibrosis stem and progenitor cells in MISTRG mice
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T23%3A40%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20engraftment%20of%20human%20myelofibrosis%20stem%20and%20progenitor%20cells%20in%20MISTRG%20mice&rft.jtitle=Blood%20advances&rft.au=Lysenko,%20Veronika&rft.date=2020-06-09&rft.volume=4&rft.issue=11&rft.spage=2477&rft.epage=2488&rft.pages=2477-2488&rft.issn=2473-9529&rft.eissn=2473-9537&rft_id=info:doi/10.1182/bloodadvances.2019001364&rft_dat=%3Cproquest_pubme%3E2410361546%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2410361546&rft_id=info:pmid/32502268&rft_els_id=S2473952920312751&rfr_iscdi=true