Tunneling Nanotubes-Mediated Protection of Mesenchymal Stem Cells: An Update from Preclinical Studies

Tunneling nanotubes (TNTs) are thin membrane elongations among the cells that mediate the trafficking of subcellular organelles, biomolecules, and cues. Mesenchymal stem cells (MSCs) receive substantial attention in tissue engineering and regenerative medicine. Many MSCs-based clinical trials are on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of molecular sciences 2020-05, Vol.21 (10), p.3481
Hauptverfasser: Soundara Rajan, Thangavelu, Gugliandolo, Agnese, Bramanti, Placido, Mazzon, Emanuela
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page 3481
container_title International journal of molecular sciences
container_volume 21
creator Soundara Rajan, Thangavelu
Gugliandolo, Agnese
Bramanti, Placido
Mazzon, Emanuela
description Tunneling nanotubes (TNTs) are thin membrane elongations among the cells that mediate the trafficking of subcellular organelles, biomolecules, and cues. Mesenchymal stem cells (MSCs) receive substantial attention in tissue engineering and regenerative medicine. Many MSCs-based clinical trials are ongoing for dreadful diseases including cancer and neurodegenerative diseases. Mitochondrial trafficking through TNTs is one of the mechanisms used by MSCs to repair tissue damage and to promote tissue regeneration. Preclinical studies linked with ischemia, oxidative stress, mitochondrial damage, inflammation, and respiratory illness have demonstrated the therapeutic efficacy of MSCs via TNTs-mediated transfer of mitochondria and other molecules into the injured cells. On the other hand, MSCs-based cancer studies showed that TNTs may modulate chemoresistance in tumor cells as a result of mitochondrial trafficking. In the present review, we discuss the role of TNTs from preclinical studies associated with MSCs treatment. We discuss the impact of TNTs formation between MSCs and cancer cells and emphasize to study the importance of TNTs-mediated MSCs protection in disease models.
doi_str_mv 10.3390/ijms21103481
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7278958</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2404482902</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-ba1baa1bac03497966e573d4041a237da67a05c9d0eb9a06f0fd650cf44d05fa3</originalsourceid><addsrcrecordid>eNpVUUtLAzEQDqJYrd48S8Crq3nso_EgSPEFvkB7Dtlk1qbsJjXZFfz3Rq1SD8MMzDfffDMfQgeUnHAuyKlddJFRSng-oRtoh-aMZYSU1eZaPUK7MS4IYZwVYhuNOMsZpyXZQfAyOAetda_4QTnfDzXE7B6MVT0Y_BR8D7q33mHf4HuI4PT8o1Mtfu6hw1No23iGLxyeLU0awE3wXRoCnQit_oYNxkLcQ1uNaiPsr_IYza4uX6Y32d3j9e304i7TvBJ9Vitaq6_Q6RpRibKEouImJzlVjFdGlZUihRaGQC0UKRvSmLIguslzQ4pG8TE6_-FdDnUHRoPrg2rlMthOhQ_plZX_O87O5at_lxWrJqKYJIKjFUHwbwPEXi78EFzSLFmSkU-YSE8co-MflA4-xgDN3wZK5Jcpct2UBD9cV_UH_nWBfwKPC4oH</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2404482902</pqid></control><display><type>article</type><title>Tunneling Nanotubes-Mediated Protection of Mesenchymal Stem Cells: An Update from Preclinical Studies</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Soundara Rajan, Thangavelu ; Gugliandolo, Agnese ; Bramanti, Placido ; Mazzon, Emanuela</creator><creatorcontrib>Soundara Rajan, Thangavelu ; Gugliandolo, Agnese ; Bramanti, Placido ; Mazzon, Emanuela</creatorcontrib><description>Tunneling nanotubes (TNTs) are thin membrane elongations among the cells that mediate the trafficking of subcellular organelles, biomolecules, and cues. Mesenchymal stem cells (MSCs) receive substantial attention in tissue engineering and regenerative medicine. Many MSCs-based clinical trials are ongoing for dreadful diseases including cancer and neurodegenerative diseases. Mitochondrial trafficking through TNTs is one of the mechanisms used by MSCs to repair tissue damage and to promote tissue regeneration. Preclinical studies linked with ischemia, oxidative stress, mitochondrial damage, inflammation, and respiratory illness have demonstrated the therapeutic efficacy of MSCs via TNTs-mediated transfer of mitochondria and other molecules into the injured cells. On the other hand, MSCs-based cancer studies showed that TNTs may modulate chemoresistance in tumor cells as a result of mitochondrial trafficking. In the present review, we discuss the role of TNTs from preclinical studies associated with MSCs treatment. We discuss the impact of TNTs formation between MSCs and cancer cells and emphasize to study the importance of TNTs-mediated MSCs protection in disease models.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms21103481</identifier><identifier>PMID: 32423160</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Angiogenesis ; Apoptosis ; Bioenergetics ; Biomolecules ; Bone marrow ; Bone Marrow Cells - drug effects ; Bone Marrow Cells - metabolism ; Cancer ; Cardiomyocytes ; Cell Communication - drug effects ; Cell Line ; Chemoresistance ; Chemotherapy ; Clinical trials ; Coculture Techniques ; Cornea ; Fibroblasts ; Growth factors ; Humans ; Inflammation ; Ischemia ; Mesenchymal stem cells ; Mesenchymal Stem Cells - drug effects ; Mesenchymal Stem Cells - metabolism ; Mitochondria ; Mitochondria - drug effects ; Mitochondria - pathology ; Nanotubes - chemistry ; Organelles ; Oxidative stress ; Proteins ; Regeneration (physiology) ; Regenerative medicine ; Review ; Stem cells ; Studies ; Tissue engineering ; Tumor cells ; Umbilical cord</subject><ispartof>International journal of molecular sciences, 2020-05, Vol.21 (10), p.3481</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-ba1baa1bac03497966e573d4041a237da67a05c9d0eb9a06f0fd650cf44d05fa3</citedby><cites>FETCH-LOGICAL-c379t-ba1baa1bac03497966e573d4041a237da67a05c9d0eb9a06f0fd650cf44d05fa3</cites><orcidid>0000-0001-8728-6176</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7278958/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7278958/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32423160$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Soundara Rajan, Thangavelu</creatorcontrib><creatorcontrib>Gugliandolo, Agnese</creatorcontrib><creatorcontrib>Bramanti, Placido</creatorcontrib><creatorcontrib>Mazzon, Emanuela</creatorcontrib><title>Tunneling Nanotubes-Mediated Protection of Mesenchymal Stem Cells: An Update from Preclinical Studies</title><title>International journal of molecular sciences</title><addtitle>Int J Mol Sci</addtitle><description>Tunneling nanotubes (TNTs) are thin membrane elongations among the cells that mediate the trafficking of subcellular organelles, biomolecules, and cues. Mesenchymal stem cells (MSCs) receive substantial attention in tissue engineering and regenerative medicine. Many MSCs-based clinical trials are ongoing for dreadful diseases including cancer and neurodegenerative diseases. Mitochondrial trafficking through TNTs is one of the mechanisms used by MSCs to repair tissue damage and to promote tissue regeneration. Preclinical studies linked with ischemia, oxidative stress, mitochondrial damage, inflammation, and respiratory illness have demonstrated the therapeutic efficacy of MSCs via TNTs-mediated transfer of mitochondria and other molecules into the injured cells. On the other hand, MSCs-based cancer studies showed that TNTs may modulate chemoresistance in tumor cells as a result of mitochondrial trafficking. In the present review, we discuss the role of TNTs from preclinical studies associated with MSCs treatment. We discuss the impact of TNTs formation between MSCs and cancer cells and emphasize to study the importance of TNTs-mediated MSCs protection in disease models.</description><subject>Angiogenesis</subject><subject>Apoptosis</subject><subject>Bioenergetics</subject><subject>Biomolecules</subject><subject>Bone marrow</subject><subject>Bone Marrow Cells - drug effects</subject><subject>Bone Marrow Cells - metabolism</subject><subject>Cancer</subject><subject>Cardiomyocytes</subject><subject>Cell Communication - drug effects</subject><subject>Cell Line</subject><subject>Chemoresistance</subject><subject>Chemotherapy</subject><subject>Clinical trials</subject><subject>Coculture Techniques</subject><subject>Cornea</subject><subject>Fibroblasts</subject><subject>Growth factors</subject><subject>Humans</subject><subject>Inflammation</subject><subject>Ischemia</subject><subject>Mesenchymal stem cells</subject><subject>Mesenchymal Stem Cells - drug effects</subject><subject>Mesenchymal Stem Cells - metabolism</subject><subject>Mitochondria</subject><subject>Mitochondria - drug effects</subject><subject>Mitochondria - pathology</subject><subject>Nanotubes - chemistry</subject><subject>Organelles</subject><subject>Oxidative stress</subject><subject>Proteins</subject><subject>Regeneration (physiology)</subject><subject>Regenerative medicine</subject><subject>Review</subject><subject>Stem cells</subject><subject>Studies</subject><subject>Tissue engineering</subject><subject>Tumor cells</subject><subject>Umbilical cord</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpVUUtLAzEQDqJYrd48S8Crq3nso_EgSPEFvkB7Dtlk1qbsJjXZFfz3Rq1SD8MMzDfffDMfQgeUnHAuyKlddJFRSng-oRtoh-aMZYSU1eZaPUK7MS4IYZwVYhuNOMsZpyXZQfAyOAetda_4QTnfDzXE7B6MVT0Y_BR8D7q33mHf4HuI4PT8o1Mtfu6hw1No23iGLxyeLU0awE3wXRoCnQit_oYNxkLcQ1uNaiPsr_IYza4uX6Y32d3j9e304i7TvBJ9Vitaq6_Q6RpRibKEouImJzlVjFdGlZUihRaGQC0UKRvSmLIguslzQ4pG8TE6_-FdDnUHRoPrg2rlMthOhQ_plZX_O87O5at_lxWrJqKYJIKjFUHwbwPEXi78EFzSLFmSkU-YSE8co-MflA4-xgDN3wZK5Jcpct2UBD9cV_UH_nWBfwKPC4oH</recordid><startdate>20200514</startdate><enddate>20200514</enddate><creator>Soundara Rajan, Thangavelu</creator><creator>Gugliandolo, Agnese</creator><creator>Bramanti, Placido</creator><creator>Mazzon, Emanuela</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8728-6176</orcidid></search><sort><creationdate>20200514</creationdate><title>Tunneling Nanotubes-Mediated Protection of Mesenchymal Stem Cells: An Update from Preclinical Studies</title><author>Soundara Rajan, Thangavelu ; Gugliandolo, Agnese ; Bramanti, Placido ; Mazzon, Emanuela</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-ba1baa1bac03497966e573d4041a237da67a05c9d0eb9a06f0fd650cf44d05fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Angiogenesis</topic><topic>Apoptosis</topic><topic>Bioenergetics</topic><topic>Biomolecules</topic><topic>Bone marrow</topic><topic>Bone Marrow Cells - drug effects</topic><topic>Bone Marrow Cells - metabolism</topic><topic>Cancer</topic><topic>Cardiomyocytes</topic><topic>Cell Communication - drug effects</topic><topic>Cell Line</topic><topic>Chemoresistance</topic><topic>Chemotherapy</topic><topic>Clinical trials</topic><topic>Coculture Techniques</topic><topic>Cornea</topic><topic>Fibroblasts</topic><topic>Growth factors</topic><topic>Humans</topic><topic>Inflammation</topic><topic>Ischemia</topic><topic>Mesenchymal stem cells</topic><topic>Mesenchymal Stem Cells - drug effects</topic><topic>Mesenchymal Stem Cells - metabolism</topic><topic>Mitochondria</topic><topic>Mitochondria - drug effects</topic><topic>Mitochondria - pathology</topic><topic>Nanotubes - chemistry</topic><topic>Organelles</topic><topic>Oxidative stress</topic><topic>Proteins</topic><topic>Regeneration (physiology)</topic><topic>Regenerative medicine</topic><topic>Review</topic><topic>Stem cells</topic><topic>Studies</topic><topic>Tissue engineering</topic><topic>Tumor cells</topic><topic>Umbilical cord</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Soundara Rajan, Thangavelu</creatorcontrib><creatorcontrib>Gugliandolo, Agnese</creatorcontrib><creatorcontrib>Bramanti, Placido</creatorcontrib><creatorcontrib>Mazzon, Emanuela</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Soundara Rajan, Thangavelu</au><au>Gugliandolo, Agnese</au><au>Bramanti, Placido</au><au>Mazzon, Emanuela</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tunneling Nanotubes-Mediated Protection of Mesenchymal Stem Cells: An Update from Preclinical Studies</atitle><jtitle>International journal of molecular sciences</jtitle><addtitle>Int J Mol Sci</addtitle><date>2020-05-14</date><risdate>2020</risdate><volume>21</volume><issue>10</issue><spage>3481</spage><pages>3481-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>Tunneling nanotubes (TNTs) are thin membrane elongations among the cells that mediate the trafficking of subcellular organelles, biomolecules, and cues. Mesenchymal stem cells (MSCs) receive substantial attention in tissue engineering and regenerative medicine. Many MSCs-based clinical trials are ongoing for dreadful diseases including cancer and neurodegenerative diseases. Mitochondrial trafficking through TNTs is one of the mechanisms used by MSCs to repair tissue damage and to promote tissue regeneration. Preclinical studies linked with ischemia, oxidative stress, mitochondrial damage, inflammation, and respiratory illness have demonstrated the therapeutic efficacy of MSCs via TNTs-mediated transfer of mitochondria and other molecules into the injured cells. On the other hand, MSCs-based cancer studies showed that TNTs may modulate chemoresistance in tumor cells as a result of mitochondrial trafficking. In the present review, we discuss the role of TNTs from preclinical studies associated with MSCs treatment. We discuss the impact of TNTs formation between MSCs and cancer cells and emphasize to study the importance of TNTs-mediated MSCs protection in disease models.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>32423160</pmid><doi>10.3390/ijms21103481</doi><orcidid>https://orcid.org/0000-0001-8728-6176</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1422-0067
ispartof International journal of molecular sciences, 2020-05, Vol.21 (10), p.3481
issn 1422-0067
1661-6596
1422-0067
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7278958
source MDPI - Multidisciplinary Digital Publishing Institute; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Angiogenesis
Apoptosis
Bioenergetics
Biomolecules
Bone marrow
Bone Marrow Cells - drug effects
Bone Marrow Cells - metabolism
Cancer
Cardiomyocytes
Cell Communication - drug effects
Cell Line
Chemoresistance
Chemotherapy
Clinical trials
Coculture Techniques
Cornea
Fibroblasts
Growth factors
Humans
Inflammation
Ischemia
Mesenchymal stem cells
Mesenchymal Stem Cells - drug effects
Mesenchymal Stem Cells - metabolism
Mitochondria
Mitochondria - drug effects
Mitochondria - pathology
Nanotubes - chemistry
Organelles
Oxidative stress
Proteins
Regeneration (physiology)
Regenerative medicine
Review
Stem cells
Studies
Tissue engineering
Tumor cells
Umbilical cord
title Tunneling Nanotubes-Mediated Protection of Mesenchymal Stem Cells: An Update from Preclinical Studies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T06%3A23%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tunneling%20Nanotubes-Mediated%20Protection%20of%20Mesenchymal%20Stem%20Cells:%20An%20Update%20from%20Preclinical%20Studies&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Soundara%20Rajan,%20Thangavelu&rft.date=2020-05-14&rft.volume=21&rft.issue=10&rft.spage=3481&rft.pages=3481-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms21103481&rft_dat=%3Cproquest_pubme%3E2404482902%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2404482902&rft_id=info:pmid/32423160&rfr_iscdi=true