Tunneling Nanotubes-Mediated Protection of Mesenchymal Stem Cells: An Update from Preclinical Studies
Tunneling nanotubes (TNTs) are thin membrane elongations among the cells that mediate the trafficking of subcellular organelles, biomolecules, and cues. Mesenchymal stem cells (MSCs) receive substantial attention in tissue engineering and regenerative medicine. Many MSCs-based clinical trials are on...
Gespeichert in:
Veröffentlicht in: | International journal of molecular sciences 2020-05, Vol.21 (10), p.3481 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 10 |
container_start_page | 3481 |
container_title | International journal of molecular sciences |
container_volume | 21 |
creator | Soundara Rajan, Thangavelu Gugliandolo, Agnese Bramanti, Placido Mazzon, Emanuela |
description | Tunneling nanotubes (TNTs) are thin membrane elongations among the cells that mediate the trafficking of subcellular organelles, biomolecules, and cues. Mesenchymal stem cells (MSCs) receive substantial attention in tissue engineering and regenerative medicine. Many MSCs-based clinical trials are ongoing for dreadful diseases including cancer and neurodegenerative diseases. Mitochondrial trafficking through TNTs is one of the mechanisms used by MSCs to repair tissue damage and to promote tissue regeneration. Preclinical studies linked with ischemia, oxidative stress, mitochondrial damage, inflammation, and respiratory illness have demonstrated the therapeutic efficacy of MSCs via TNTs-mediated transfer of mitochondria and other molecules into the injured cells. On the other hand, MSCs-based cancer studies showed that TNTs may modulate chemoresistance in tumor cells as a result of mitochondrial trafficking. In the present review, we discuss the role of TNTs from preclinical studies associated with MSCs treatment. We discuss the impact of TNTs formation between MSCs and cancer cells and emphasize to study the importance of TNTs-mediated MSCs protection in disease models. |
doi_str_mv | 10.3390/ijms21103481 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7278958</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2404482902</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-ba1baa1bac03497966e573d4041a237da67a05c9d0eb9a06f0fd650cf44d05fa3</originalsourceid><addsrcrecordid>eNpVUUtLAzEQDqJYrd48S8Crq3nso_EgSPEFvkB7Dtlk1qbsJjXZFfz3Rq1SD8MMzDfffDMfQgeUnHAuyKlddJFRSng-oRtoh-aMZYSU1eZaPUK7MS4IYZwVYhuNOMsZpyXZQfAyOAetda_4QTnfDzXE7B6MVT0Y_BR8D7q33mHf4HuI4PT8o1Mtfu6hw1No23iGLxyeLU0awE3wXRoCnQit_oYNxkLcQ1uNaiPsr_IYza4uX6Y32d3j9e304i7TvBJ9Vitaq6_Q6RpRibKEouImJzlVjFdGlZUihRaGQC0UKRvSmLIguslzQ4pG8TE6_-FdDnUHRoPrg2rlMthOhQ_plZX_O87O5at_lxWrJqKYJIKjFUHwbwPEXi78EFzSLFmSkU-YSE8co-MflA4-xgDN3wZK5Jcpct2UBD9cV_UH_nWBfwKPC4oH</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2404482902</pqid></control><display><type>article</type><title>Tunneling Nanotubes-Mediated Protection of Mesenchymal Stem Cells: An Update from Preclinical Studies</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Soundara Rajan, Thangavelu ; Gugliandolo, Agnese ; Bramanti, Placido ; Mazzon, Emanuela</creator><creatorcontrib>Soundara Rajan, Thangavelu ; Gugliandolo, Agnese ; Bramanti, Placido ; Mazzon, Emanuela</creatorcontrib><description>Tunneling nanotubes (TNTs) are thin membrane elongations among the cells that mediate the trafficking of subcellular organelles, biomolecules, and cues. Mesenchymal stem cells (MSCs) receive substantial attention in tissue engineering and regenerative medicine. Many MSCs-based clinical trials are ongoing for dreadful diseases including cancer and neurodegenerative diseases. Mitochondrial trafficking through TNTs is one of the mechanisms used by MSCs to repair tissue damage and to promote tissue regeneration. Preclinical studies linked with ischemia, oxidative stress, mitochondrial damage, inflammation, and respiratory illness have demonstrated the therapeutic efficacy of MSCs via TNTs-mediated transfer of mitochondria and other molecules into the injured cells. On the other hand, MSCs-based cancer studies showed that TNTs may modulate chemoresistance in tumor cells as a result of mitochondrial trafficking. In the present review, we discuss the role of TNTs from preclinical studies associated with MSCs treatment. We discuss the impact of TNTs formation between MSCs and cancer cells and emphasize to study the importance of TNTs-mediated MSCs protection in disease models.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms21103481</identifier><identifier>PMID: 32423160</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Angiogenesis ; Apoptosis ; Bioenergetics ; Biomolecules ; Bone marrow ; Bone Marrow Cells - drug effects ; Bone Marrow Cells - metabolism ; Cancer ; Cardiomyocytes ; Cell Communication - drug effects ; Cell Line ; Chemoresistance ; Chemotherapy ; Clinical trials ; Coculture Techniques ; Cornea ; Fibroblasts ; Growth factors ; Humans ; Inflammation ; Ischemia ; Mesenchymal stem cells ; Mesenchymal Stem Cells - drug effects ; Mesenchymal Stem Cells - metabolism ; Mitochondria ; Mitochondria - drug effects ; Mitochondria - pathology ; Nanotubes - chemistry ; Organelles ; Oxidative stress ; Proteins ; Regeneration (physiology) ; Regenerative medicine ; Review ; Stem cells ; Studies ; Tissue engineering ; Tumor cells ; Umbilical cord</subject><ispartof>International journal of molecular sciences, 2020-05, Vol.21 (10), p.3481</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-ba1baa1bac03497966e573d4041a237da67a05c9d0eb9a06f0fd650cf44d05fa3</citedby><cites>FETCH-LOGICAL-c379t-ba1baa1bac03497966e573d4041a237da67a05c9d0eb9a06f0fd650cf44d05fa3</cites><orcidid>0000-0001-8728-6176</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7278958/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7278958/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32423160$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Soundara Rajan, Thangavelu</creatorcontrib><creatorcontrib>Gugliandolo, Agnese</creatorcontrib><creatorcontrib>Bramanti, Placido</creatorcontrib><creatorcontrib>Mazzon, Emanuela</creatorcontrib><title>Tunneling Nanotubes-Mediated Protection of Mesenchymal Stem Cells: An Update from Preclinical Studies</title><title>International journal of molecular sciences</title><addtitle>Int J Mol Sci</addtitle><description>Tunneling nanotubes (TNTs) are thin membrane elongations among the cells that mediate the trafficking of subcellular organelles, biomolecules, and cues. Mesenchymal stem cells (MSCs) receive substantial attention in tissue engineering and regenerative medicine. Many MSCs-based clinical trials are ongoing for dreadful diseases including cancer and neurodegenerative diseases. Mitochondrial trafficking through TNTs is one of the mechanisms used by MSCs to repair tissue damage and to promote tissue regeneration. Preclinical studies linked with ischemia, oxidative stress, mitochondrial damage, inflammation, and respiratory illness have demonstrated the therapeutic efficacy of MSCs via TNTs-mediated transfer of mitochondria and other molecules into the injured cells. On the other hand, MSCs-based cancer studies showed that TNTs may modulate chemoresistance in tumor cells as a result of mitochondrial trafficking. In the present review, we discuss the role of TNTs from preclinical studies associated with MSCs treatment. We discuss the impact of TNTs formation between MSCs and cancer cells and emphasize to study the importance of TNTs-mediated MSCs protection in disease models.</description><subject>Angiogenesis</subject><subject>Apoptosis</subject><subject>Bioenergetics</subject><subject>Biomolecules</subject><subject>Bone marrow</subject><subject>Bone Marrow Cells - drug effects</subject><subject>Bone Marrow Cells - metabolism</subject><subject>Cancer</subject><subject>Cardiomyocytes</subject><subject>Cell Communication - drug effects</subject><subject>Cell Line</subject><subject>Chemoresistance</subject><subject>Chemotherapy</subject><subject>Clinical trials</subject><subject>Coculture Techniques</subject><subject>Cornea</subject><subject>Fibroblasts</subject><subject>Growth factors</subject><subject>Humans</subject><subject>Inflammation</subject><subject>Ischemia</subject><subject>Mesenchymal stem cells</subject><subject>Mesenchymal Stem Cells - drug effects</subject><subject>Mesenchymal Stem Cells - metabolism</subject><subject>Mitochondria</subject><subject>Mitochondria - drug effects</subject><subject>Mitochondria - pathology</subject><subject>Nanotubes - chemistry</subject><subject>Organelles</subject><subject>Oxidative stress</subject><subject>Proteins</subject><subject>Regeneration (physiology)</subject><subject>Regenerative medicine</subject><subject>Review</subject><subject>Stem cells</subject><subject>Studies</subject><subject>Tissue engineering</subject><subject>Tumor cells</subject><subject>Umbilical cord</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpVUUtLAzEQDqJYrd48S8Crq3nso_EgSPEFvkB7Dtlk1qbsJjXZFfz3Rq1SD8MMzDfffDMfQgeUnHAuyKlddJFRSng-oRtoh-aMZYSU1eZaPUK7MS4IYZwVYhuNOMsZpyXZQfAyOAetda_4QTnfDzXE7B6MVT0Y_BR8D7q33mHf4HuI4PT8o1Mtfu6hw1No23iGLxyeLU0awE3wXRoCnQit_oYNxkLcQ1uNaiPsr_IYza4uX6Y32d3j9e304i7TvBJ9Vitaq6_Q6RpRibKEouImJzlVjFdGlZUihRaGQC0UKRvSmLIguslzQ4pG8TE6_-FdDnUHRoPrg2rlMthOhQ_plZX_O87O5at_lxWrJqKYJIKjFUHwbwPEXi78EFzSLFmSkU-YSE8co-MflA4-xgDN3wZK5Jcpct2UBD9cV_UH_nWBfwKPC4oH</recordid><startdate>20200514</startdate><enddate>20200514</enddate><creator>Soundara Rajan, Thangavelu</creator><creator>Gugliandolo, Agnese</creator><creator>Bramanti, Placido</creator><creator>Mazzon, Emanuela</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8728-6176</orcidid></search><sort><creationdate>20200514</creationdate><title>Tunneling Nanotubes-Mediated Protection of Mesenchymal Stem Cells: An Update from Preclinical Studies</title><author>Soundara Rajan, Thangavelu ; Gugliandolo, Agnese ; Bramanti, Placido ; Mazzon, Emanuela</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-ba1baa1bac03497966e573d4041a237da67a05c9d0eb9a06f0fd650cf44d05fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Angiogenesis</topic><topic>Apoptosis</topic><topic>Bioenergetics</topic><topic>Biomolecules</topic><topic>Bone marrow</topic><topic>Bone Marrow Cells - drug effects</topic><topic>Bone Marrow Cells - metabolism</topic><topic>Cancer</topic><topic>Cardiomyocytes</topic><topic>Cell Communication - drug effects</topic><topic>Cell Line</topic><topic>Chemoresistance</topic><topic>Chemotherapy</topic><topic>Clinical trials</topic><topic>Coculture Techniques</topic><topic>Cornea</topic><topic>Fibroblasts</topic><topic>Growth factors</topic><topic>Humans</topic><topic>Inflammation</topic><topic>Ischemia</topic><topic>Mesenchymal stem cells</topic><topic>Mesenchymal Stem Cells - drug effects</topic><topic>Mesenchymal Stem Cells - metabolism</topic><topic>Mitochondria</topic><topic>Mitochondria - drug effects</topic><topic>Mitochondria - pathology</topic><topic>Nanotubes - chemistry</topic><topic>Organelles</topic><topic>Oxidative stress</topic><topic>Proteins</topic><topic>Regeneration (physiology)</topic><topic>Regenerative medicine</topic><topic>Review</topic><topic>Stem cells</topic><topic>Studies</topic><topic>Tissue engineering</topic><topic>Tumor cells</topic><topic>Umbilical cord</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Soundara Rajan, Thangavelu</creatorcontrib><creatorcontrib>Gugliandolo, Agnese</creatorcontrib><creatorcontrib>Bramanti, Placido</creatorcontrib><creatorcontrib>Mazzon, Emanuela</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Soundara Rajan, Thangavelu</au><au>Gugliandolo, Agnese</au><au>Bramanti, Placido</au><au>Mazzon, Emanuela</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tunneling Nanotubes-Mediated Protection of Mesenchymal Stem Cells: An Update from Preclinical Studies</atitle><jtitle>International journal of molecular sciences</jtitle><addtitle>Int J Mol Sci</addtitle><date>2020-05-14</date><risdate>2020</risdate><volume>21</volume><issue>10</issue><spage>3481</spage><pages>3481-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>Tunneling nanotubes (TNTs) are thin membrane elongations among the cells that mediate the trafficking of subcellular organelles, biomolecules, and cues. Mesenchymal stem cells (MSCs) receive substantial attention in tissue engineering and regenerative medicine. Many MSCs-based clinical trials are ongoing for dreadful diseases including cancer and neurodegenerative diseases. Mitochondrial trafficking through TNTs is one of the mechanisms used by MSCs to repair tissue damage and to promote tissue regeneration. Preclinical studies linked with ischemia, oxidative stress, mitochondrial damage, inflammation, and respiratory illness have demonstrated the therapeutic efficacy of MSCs via TNTs-mediated transfer of mitochondria and other molecules into the injured cells. On the other hand, MSCs-based cancer studies showed that TNTs may modulate chemoresistance in tumor cells as a result of mitochondrial trafficking. In the present review, we discuss the role of TNTs from preclinical studies associated with MSCs treatment. We discuss the impact of TNTs formation between MSCs and cancer cells and emphasize to study the importance of TNTs-mediated MSCs protection in disease models.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>32423160</pmid><doi>10.3390/ijms21103481</doi><orcidid>https://orcid.org/0000-0001-8728-6176</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1422-0067 |
ispartof | International journal of molecular sciences, 2020-05, Vol.21 (10), p.3481 |
issn | 1422-0067 1661-6596 1422-0067 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7278958 |
source | MDPI - Multidisciplinary Digital Publishing Institute; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Angiogenesis Apoptosis Bioenergetics Biomolecules Bone marrow Bone Marrow Cells - drug effects Bone Marrow Cells - metabolism Cancer Cardiomyocytes Cell Communication - drug effects Cell Line Chemoresistance Chemotherapy Clinical trials Coculture Techniques Cornea Fibroblasts Growth factors Humans Inflammation Ischemia Mesenchymal stem cells Mesenchymal Stem Cells - drug effects Mesenchymal Stem Cells - metabolism Mitochondria Mitochondria - drug effects Mitochondria - pathology Nanotubes - chemistry Organelles Oxidative stress Proteins Regeneration (physiology) Regenerative medicine Review Stem cells Studies Tissue engineering Tumor cells Umbilical cord |
title | Tunneling Nanotubes-Mediated Protection of Mesenchymal Stem Cells: An Update from Preclinical Studies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T06%3A23%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tunneling%20Nanotubes-Mediated%20Protection%20of%20Mesenchymal%20Stem%20Cells:%20An%20Update%20from%20Preclinical%20Studies&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Soundara%20Rajan,%20Thangavelu&rft.date=2020-05-14&rft.volume=21&rft.issue=10&rft.spage=3481&rft.pages=3481-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms21103481&rft_dat=%3Cproquest_pubme%3E2404482902%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2404482902&rft_id=info:pmid/32423160&rfr_iscdi=true |