The two paralogous kiwellin proteins KWL1 and KWL1-b from maize are structurally related and have overlapping functions in plant defense
Many plant-pathogenic bacteria and fungi deploy effector proteins that down-regulate plant defense responses and reprogram plant metabolism for colonization and survival in planta. Kiwellin (KWL) proteins are a widespread family of plant-defense proteins that target these microbial effectors. The KW...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2020-06, Vol.295 (23), p.7816-7825 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7825 |
---|---|
container_issue | 23 |
container_start_page | 7816 |
container_title | The Journal of biological chemistry |
container_volume | 295 |
creator | Altegoer, Florian Weiland, Paul Giammarinaro, Pietro Ivan Freibert, Sven-Andreas Binnebesel, Lynn Han, Xiaowei Lepak, Alexander Kahmann, Regine Lechner, Marcus Bange, Gert |
description | Many plant-pathogenic bacteria and fungi deploy effector proteins that down-regulate plant defense responses and reprogram plant metabolism for colonization and survival in planta. Kiwellin (KWL) proteins are a widespread family of plant-defense proteins that target these microbial effectors. The KWL1 protein from maize (corn, Zea mays) specifically inhibits the enzymatic activity of the secreted chorismate mutase Cmu1, a virulence-promoting effector of the smut fungus Ustilago maydis. In addition to KWL1, 19 additional KWL paralogs have been identified in maize. Here, we investigated the structure and mechanism of the closest KWL1 homolog, KWL1-b (ZEAMA_GRMZM2G305329). We solved the Cmu1–KWL1-b complex to 2.75 Å resolution, revealing a highly symmetric Cmu1–KWL1-b heterotetramer in which each KWL1-b monomer interacts with a monomer of the Cmu1 homodimer. The structure also revealed that the overall architecture of the heterotetramer is highly similar to that of the previously reported Cmu1–KWL1 complex. We found that upon U. maydis infection of Z. mays, KWL1-b is expressed at significantly lower levels than KWL1 and exhibits differential tissue-specific expression patterns. We also show that KWL1-b inhibits Cmu1 activity similarly to KWL1. We conclude that KWL1 and KWL1-b are part of a redundant defense system that tissue-specifically targets Cmu1. This notion was supported by the observation that both KWL proteins are carbohydrate-binding proteins with distinct and likely tissue-related specificities. Moreover, binding by Cmu1 modulated the carbohydrate-binding properties of both KWLs. These findings indicate that KWL proteins are part of a spatiotemporally coordinated, plant-wide defense response comprising proteins with overlapping activities. |
doi_str_mv | 10.1074/jbc.RA119.012207 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7278343</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925817494257</els_id><sourcerecordid>2396854511</sourcerecordid><originalsourceid>FETCH-LOGICAL-c513t-35758aa26d0e897ac83225c8218e3694f657d5c50e80f0db72a8ae8d4ab2981a3</originalsourceid><addsrcrecordid>eNp1kU1v1DAQhiMEokvhzgn5yCWLP-KNwwGpqsqHWAkJFcHNmtiTXZesHWxnq_IL-Nm4u6WCA77Y0rzzzPh9q-o5o0tG2-bVVW-Wn88Y65aUcU7bB9WCUSVqIdm3h9WCUs7qjkt1Uj1J6YqW03TscXUiuJCUMb6ofl1ukeTrQCaIMIZNmBP57q5xHJ0nUwwZnU_k49c1I-Dt4VH3ZIhhR3bgfiKBiCTlOJs8F8B4QyKOkNEe5FvYIwl7jCNMk_MbMszeZBcK8hY_gs_E4oA-4dPq0QBjwmd392n15e3F5fn7ev3p3Yfzs3VtJBO5_KyVCoCvLEXVtWCU4FwaxZlCseqaYSVbK40sVTpQ27ccFKCyDfS8UwzEafXmyJ3mfofWoM9lbz1Ft4N4owM4_W_Fu63ehL1ueatEIwrg5R0ghh8zpqx3LpliGHgs7mkuupWSjWSsSOlRamJIKeJwP4ZRfRugLgHqQ4D6GGBpefH3evcNfxIrgtdHARaT9g6jTsahN2hdRJO1De7_9N9Hrq1S</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2396854511</pqid></control><display><type>article</type><title>The two paralogous kiwellin proteins KWL1 and KWL1-b from maize are structurally related and have overlapping functions in plant defense</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Altegoer, Florian ; Weiland, Paul ; Giammarinaro, Pietro Ivan ; Freibert, Sven-Andreas ; Binnebesel, Lynn ; Han, Xiaowei ; Lepak, Alexander ; Kahmann, Regine ; Lechner, Marcus ; Bange, Gert</creator><creatorcontrib>Altegoer, Florian ; Weiland, Paul ; Giammarinaro, Pietro Ivan ; Freibert, Sven-Andreas ; Binnebesel, Lynn ; Han, Xiaowei ; Lepak, Alexander ; Kahmann, Regine ; Lechner, Marcus ; Bange, Gert</creatorcontrib><description>Many plant-pathogenic bacteria and fungi deploy effector proteins that down-regulate plant defense responses and reprogram plant metabolism for colonization and survival in planta. Kiwellin (KWL) proteins are a widespread family of plant-defense proteins that target these microbial effectors. The KWL1 protein from maize (corn, Zea mays) specifically inhibits the enzymatic activity of the secreted chorismate mutase Cmu1, a virulence-promoting effector of the smut fungus Ustilago maydis. In addition to KWL1, 19 additional KWL paralogs have been identified in maize. Here, we investigated the structure and mechanism of the closest KWL1 homolog, KWL1-b (ZEAMA_GRMZM2G305329). We solved the Cmu1–KWL1-b complex to 2.75 Å resolution, revealing a highly symmetric Cmu1–KWL1-b heterotetramer in which each KWL1-b monomer interacts with a monomer of the Cmu1 homodimer. The structure also revealed that the overall architecture of the heterotetramer is highly similar to that of the previously reported Cmu1–KWL1 complex. We found that upon U. maydis infection of Z. mays, KWL1-b is expressed at significantly lower levels than KWL1 and exhibits differential tissue-specific expression patterns. We also show that KWL1-b inhibits Cmu1 activity similarly to KWL1. We conclude that KWL1 and KWL1-b are part of a redundant defense system that tissue-specifically targets Cmu1. This notion was supported by the observation that both KWL proteins are carbohydrate-binding proteins with distinct and likely tissue-related specificities. Moreover, binding by Cmu1 modulated the carbohydrate-binding properties of both KWLs. These findings indicate that KWL proteins are part of a spatiotemporally coordinated, plant-wide defense response comprising proteins with overlapping activities.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.RA119.012207</identifier><identifier>PMID: 32350112</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>carbohydrate-binding protein ; chorismate mutase ; Editors' Picks ; fungi ; KWL1-b ; Models, Molecular ; plant defense ; Plant Diseases - microbiology ; Plant Proteins - chemistry ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Protein Conformation ; salicylic acid pathway ; Sequence Analysis, RNA ; structure-function ; Ustilago - isolation & purification ; Ustilago maydis ; X-ray crystallography ; Zea mays ; Zea mays - chemistry ; Zea mays - metabolism</subject><ispartof>The Journal of biological chemistry, 2020-06, Vol.295 (23), p.7816-7825</ispartof><rights>2020 © 2020 Altegoer et al.</rights><rights>2020 Altegoer et al.</rights><rights>2020 Altegoer et al. 2020 Altegoer et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c513t-35758aa26d0e897ac83225c8218e3694f657d5c50e80f0db72a8ae8d4ab2981a3</citedby><cites>FETCH-LOGICAL-c513t-35758aa26d0e897ac83225c8218e3694f657d5c50e80f0db72a8ae8d4ab2981a3</cites><orcidid>0000-0001-9098-4960 ; 0000-0002-7826-0932 ; 0000-0002-6012-9047</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7278343/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7278343/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27922,27923,53789,53791</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32350112$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Altegoer, Florian</creatorcontrib><creatorcontrib>Weiland, Paul</creatorcontrib><creatorcontrib>Giammarinaro, Pietro Ivan</creatorcontrib><creatorcontrib>Freibert, Sven-Andreas</creatorcontrib><creatorcontrib>Binnebesel, Lynn</creatorcontrib><creatorcontrib>Han, Xiaowei</creatorcontrib><creatorcontrib>Lepak, Alexander</creatorcontrib><creatorcontrib>Kahmann, Regine</creatorcontrib><creatorcontrib>Lechner, Marcus</creatorcontrib><creatorcontrib>Bange, Gert</creatorcontrib><title>The two paralogous kiwellin proteins KWL1 and KWL1-b from maize are structurally related and have overlapping functions in plant defense</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Many plant-pathogenic bacteria and fungi deploy effector proteins that down-regulate plant defense responses and reprogram plant metabolism for colonization and survival in planta. Kiwellin (KWL) proteins are a widespread family of plant-defense proteins that target these microbial effectors. The KWL1 protein from maize (corn, Zea mays) specifically inhibits the enzymatic activity of the secreted chorismate mutase Cmu1, a virulence-promoting effector of the smut fungus Ustilago maydis. In addition to KWL1, 19 additional KWL paralogs have been identified in maize. Here, we investigated the structure and mechanism of the closest KWL1 homolog, KWL1-b (ZEAMA_GRMZM2G305329). We solved the Cmu1–KWL1-b complex to 2.75 Å resolution, revealing a highly symmetric Cmu1–KWL1-b heterotetramer in which each KWL1-b monomer interacts with a monomer of the Cmu1 homodimer. The structure also revealed that the overall architecture of the heterotetramer is highly similar to that of the previously reported Cmu1–KWL1 complex. We found that upon U. maydis infection of Z. mays, KWL1-b is expressed at significantly lower levels than KWL1 and exhibits differential tissue-specific expression patterns. We also show that KWL1-b inhibits Cmu1 activity similarly to KWL1. We conclude that KWL1 and KWL1-b are part of a redundant defense system that tissue-specifically targets Cmu1. This notion was supported by the observation that both KWL proteins are carbohydrate-binding proteins with distinct and likely tissue-related specificities. Moreover, binding by Cmu1 modulated the carbohydrate-binding properties of both KWLs. These findings indicate that KWL proteins are part of a spatiotemporally coordinated, plant-wide defense response comprising proteins with overlapping activities.</description><subject>carbohydrate-binding protein</subject><subject>chorismate mutase</subject><subject>Editors' Picks</subject><subject>fungi</subject><subject>KWL1-b</subject><subject>Models, Molecular</subject><subject>plant defense</subject><subject>Plant Diseases - microbiology</subject><subject>Plant Proteins - chemistry</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Protein Conformation</subject><subject>salicylic acid pathway</subject><subject>Sequence Analysis, RNA</subject><subject>structure-function</subject><subject>Ustilago - isolation & purification</subject><subject>Ustilago maydis</subject><subject>X-ray crystallography</subject><subject>Zea mays</subject><subject>Zea mays - chemistry</subject><subject>Zea mays - metabolism</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kU1v1DAQhiMEokvhzgn5yCWLP-KNwwGpqsqHWAkJFcHNmtiTXZesHWxnq_IL-Nm4u6WCA77Y0rzzzPh9q-o5o0tG2-bVVW-Wn88Y65aUcU7bB9WCUSVqIdm3h9WCUs7qjkt1Uj1J6YqW03TscXUiuJCUMb6ofl1ukeTrQCaIMIZNmBP57q5xHJ0nUwwZnU_k49c1I-Dt4VH3ZIhhR3bgfiKBiCTlOJs8F8B4QyKOkNEe5FvYIwl7jCNMk_MbMszeZBcK8hY_gs_E4oA-4dPq0QBjwmd392n15e3F5fn7ev3p3Yfzs3VtJBO5_KyVCoCvLEXVtWCU4FwaxZlCseqaYSVbK40sVTpQ27ccFKCyDfS8UwzEafXmyJ3mfofWoM9lbz1Ft4N4owM4_W_Fu63ehL1ueatEIwrg5R0ghh8zpqx3LpliGHgs7mkuupWSjWSsSOlRamJIKeJwP4ZRfRugLgHqQ4D6GGBpefH3evcNfxIrgtdHARaT9g6jTsahN2hdRJO1De7_9N9Hrq1S</recordid><startdate>20200605</startdate><enddate>20200605</enddate><creator>Altegoer, Florian</creator><creator>Weiland, Paul</creator><creator>Giammarinaro, Pietro Ivan</creator><creator>Freibert, Sven-Andreas</creator><creator>Binnebesel, Lynn</creator><creator>Han, Xiaowei</creator><creator>Lepak, Alexander</creator><creator>Kahmann, Regine</creator><creator>Lechner, Marcus</creator><creator>Bange, Gert</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9098-4960</orcidid><orcidid>https://orcid.org/0000-0002-7826-0932</orcidid><orcidid>https://orcid.org/0000-0002-6012-9047</orcidid></search><sort><creationdate>20200605</creationdate><title>The two paralogous kiwellin proteins KWL1 and KWL1-b from maize are structurally related and have overlapping functions in plant defense</title><author>Altegoer, Florian ; Weiland, Paul ; Giammarinaro, Pietro Ivan ; Freibert, Sven-Andreas ; Binnebesel, Lynn ; Han, Xiaowei ; Lepak, Alexander ; Kahmann, Regine ; Lechner, Marcus ; Bange, Gert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c513t-35758aa26d0e897ac83225c8218e3694f657d5c50e80f0db72a8ae8d4ab2981a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>carbohydrate-binding protein</topic><topic>chorismate mutase</topic><topic>Editors' Picks</topic><topic>fungi</topic><topic>KWL1-b</topic><topic>Models, Molecular</topic><topic>plant defense</topic><topic>Plant Diseases - microbiology</topic><topic>Plant Proteins - chemistry</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Protein Conformation</topic><topic>salicylic acid pathway</topic><topic>Sequence Analysis, RNA</topic><topic>structure-function</topic><topic>Ustilago - isolation & purification</topic><topic>Ustilago maydis</topic><topic>X-ray crystallography</topic><topic>Zea mays</topic><topic>Zea mays - chemistry</topic><topic>Zea mays - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Altegoer, Florian</creatorcontrib><creatorcontrib>Weiland, Paul</creatorcontrib><creatorcontrib>Giammarinaro, Pietro Ivan</creatorcontrib><creatorcontrib>Freibert, Sven-Andreas</creatorcontrib><creatorcontrib>Binnebesel, Lynn</creatorcontrib><creatorcontrib>Han, Xiaowei</creatorcontrib><creatorcontrib>Lepak, Alexander</creatorcontrib><creatorcontrib>Kahmann, Regine</creatorcontrib><creatorcontrib>Lechner, Marcus</creatorcontrib><creatorcontrib>Bange, Gert</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Altegoer, Florian</au><au>Weiland, Paul</au><au>Giammarinaro, Pietro Ivan</au><au>Freibert, Sven-Andreas</au><au>Binnebesel, Lynn</au><au>Han, Xiaowei</au><au>Lepak, Alexander</au><au>Kahmann, Regine</au><au>Lechner, Marcus</au><au>Bange, Gert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The two paralogous kiwellin proteins KWL1 and KWL1-b from maize are structurally related and have overlapping functions in plant defense</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2020-06-05</date><risdate>2020</risdate><volume>295</volume><issue>23</issue><spage>7816</spage><epage>7825</epage><pages>7816-7825</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Many plant-pathogenic bacteria and fungi deploy effector proteins that down-regulate plant defense responses and reprogram plant metabolism for colonization and survival in planta. Kiwellin (KWL) proteins are a widespread family of plant-defense proteins that target these microbial effectors. The KWL1 protein from maize (corn, Zea mays) specifically inhibits the enzymatic activity of the secreted chorismate mutase Cmu1, a virulence-promoting effector of the smut fungus Ustilago maydis. In addition to KWL1, 19 additional KWL paralogs have been identified in maize. Here, we investigated the structure and mechanism of the closest KWL1 homolog, KWL1-b (ZEAMA_GRMZM2G305329). We solved the Cmu1–KWL1-b complex to 2.75 Å resolution, revealing a highly symmetric Cmu1–KWL1-b heterotetramer in which each KWL1-b monomer interacts with a monomer of the Cmu1 homodimer. The structure also revealed that the overall architecture of the heterotetramer is highly similar to that of the previously reported Cmu1–KWL1 complex. We found that upon U. maydis infection of Z. mays, KWL1-b is expressed at significantly lower levels than KWL1 and exhibits differential tissue-specific expression patterns. We also show that KWL1-b inhibits Cmu1 activity similarly to KWL1. We conclude that KWL1 and KWL1-b are part of a redundant defense system that tissue-specifically targets Cmu1. This notion was supported by the observation that both KWL proteins are carbohydrate-binding proteins with distinct and likely tissue-related specificities. Moreover, binding by Cmu1 modulated the carbohydrate-binding properties of both KWLs. These findings indicate that KWL proteins are part of a spatiotemporally coordinated, plant-wide defense response comprising proteins with overlapping activities.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>32350112</pmid><doi>10.1074/jbc.RA119.012207</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-9098-4960</orcidid><orcidid>https://orcid.org/0000-0002-7826-0932</orcidid><orcidid>https://orcid.org/0000-0002-6012-9047</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2020-06, Vol.295 (23), p.7816-7825 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7278343 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection |
subjects | carbohydrate-binding protein chorismate mutase Editors' Picks fungi KWL1-b Models, Molecular plant defense Plant Diseases - microbiology Plant Proteins - chemistry Plant Proteins - genetics Plant Proteins - metabolism Protein Conformation salicylic acid pathway Sequence Analysis, RNA structure-function Ustilago - isolation & purification Ustilago maydis X-ray crystallography Zea mays Zea mays - chemistry Zea mays - metabolism |
title | The two paralogous kiwellin proteins KWL1 and KWL1-b from maize are structurally related and have overlapping functions in plant defense |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T05%3A24%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20two%20paralogous%20kiwellin%20proteins%20KWL1%20and%20KWL1-b%20from%20maize%20are%20structurally%20related%20and%20have%20overlapping%20functions%20in%20plant%20defense&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Altegoer,%20Florian&rft.date=2020-06-05&rft.volume=295&rft.issue=23&rft.spage=7816&rft.epage=7825&rft.pages=7816-7825&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.RA119.012207&rft_dat=%3Cproquest_pubme%3E2396854511%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2396854511&rft_id=info:pmid/32350112&rft_els_id=S0021925817494257&rfr_iscdi=true |