A comparison of microfluidic methods for high-throughput cell deformability measurements
The mechanical phenotype of a cell is an inherent biophysical marker of its state and function, with many applications in basic and applied biological research. Microfluidics-based methods have enabled single-cell mechanophenotyping at throughputs comparable to those of flow cytometry. Here, we pres...
Gespeichert in:
Veröffentlicht in: | Nature methods 2020-06, Vol.17 (6), p.587-593 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 593 |
---|---|
container_issue | 6 |
container_start_page | 587 |
container_title | Nature methods |
container_volume | 17 |
creator | Urbanska, Marta Muñoz, Hector E. Shaw Bagnall, Josephine Otto, Oliver Manalis, Scott R. Di Carlo, Dino Guck, Jochen |
description | The mechanical phenotype of a cell is an inherent biophysical marker of its state and function, with many applications in basic and applied biological research. Microfluidics-based methods have enabled single-cell mechanophenotyping at throughputs comparable to those of flow cytometry. Here, we present a standardized cross-laboratory study comparing three microfluidics-based approaches for measuring cell mechanical phenotype: constriction-based deformability cytometry (cDC), shear flow deformability cytometry (sDC) and extensional flow deformability cytometry (xDC). All three methods detect cell deformability changes induced by exposure to altered osmolarity. However, a dose-dependent deformability increase upon latrunculin B-induced actin disassembly was detected only with cDC and sDC, which suggests that when exposing cells to the higher strain rate imposed by xDC, cellular components other than the actin cytoskeleton dominate the response. The direct comparison presented here furthers our understanding of the applicability of the different deformability cytometry methods and provides context for the interpretation of deformability measurements performed using different platforms.
This Analysis compares microfluidics-based methods for assessing mechanical properties of cells in high throughput. |
doi_str_mv | 10.1038/s41592-020-0818-8 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7275893</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A625811115</galeid><sourcerecordid>A625811115</sourcerecordid><originalsourceid>FETCH-LOGICAL-c603t-e307f839363107814826707e8afc62a40e315bec8dfeb875f04c9528e007a66f3</originalsourceid><addsrcrecordid>eNp1UUtr3DAQFqWlSZP8gF6CoWeno5clXwpLSNpCoJcWehNaeWQr2NZGsgv776OwSZpAKx0k9D00Mx8hHylcUOD6cxZUtqwGBjVoqmv9hhxTKXStKMi3T3do6RH5kPMtAOeCyffkiDNepEIck9-bysVpZ1PIca6ir6bgUvTjGrrgqgmXIXa58jFVQ-iHehlSXPthty6Vw3GsOizQZLdhDMu-0G1eE044L_mUvPN2zHj2eJ6QX9dXPy-_1Tc_vn6_3NzUrgG-1MhBec1b3nAKSlOhWaNAobbeNcwKQE7lFp3uPG61kh6EayXTCKBs03h-Qr4cfHfrdsLOlb-THc0uhcmmvYk2mNfIHAbTxz9GMSV1y4vBp0eDFO9WzIu5jWuaS82GCWgb0Jy_YPV2RBNmH4uZm0J2ZtMwqWlZsrAu_sEqu8My1zijD-X9lYAeBGXoOSf0z4VTMA8Zm0PGpmRsHjI2umjOX3b8rHgKtRDYgZALNPeY_nb0f9d7u0Oxqg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2409608333</pqid></control><display><type>article</type><title>A comparison of microfluidic methods for high-throughput cell deformability measurements</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Urbanska, Marta ; Muñoz, Hector E. ; Shaw Bagnall, Josephine ; Otto, Oliver ; Manalis, Scott R. ; Di Carlo, Dino ; Guck, Jochen</creator><creatorcontrib>Urbanska, Marta ; Muñoz, Hector E. ; Shaw Bagnall, Josephine ; Otto, Oliver ; Manalis, Scott R. ; Di Carlo, Dino ; Guck, Jochen</creatorcontrib><description>The mechanical phenotype of a cell is an inherent biophysical marker of its state and function, with many applications in basic and applied biological research. Microfluidics-based methods have enabled single-cell mechanophenotyping at throughputs comparable to those of flow cytometry. Here, we present a standardized cross-laboratory study comparing three microfluidics-based approaches for measuring cell mechanical phenotype: constriction-based deformability cytometry (cDC), shear flow deformability cytometry (sDC) and extensional flow deformability cytometry (xDC). All three methods detect cell deformability changes induced by exposure to altered osmolarity. However, a dose-dependent deformability increase upon latrunculin B-induced actin disassembly was detected only with cDC and sDC, which suggests that when exposing cells to the higher strain rate imposed by xDC, cellular components other than the actin cytoskeleton dominate the response. The direct comparison presented here furthers our understanding of the applicability of the different deformability cytometry methods and provides context for the interpretation of deformability measurements performed using different platforms.
This Analysis compares microfluidics-based methods for assessing mechanical properties of cells in high throughput.</description><identifier>ISSN: 1548-7091</identifier><identifier>EISSN: 1548-7105</identifier><identifier>DOI: 10.1038/s41592-020-0818-8</identifier><identifier>PMID: 32341544</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/1647/2204 ; 631/1647/277 ; Actin ; Actins - drug effects ; Analysis ; Bioengineering ; Bioinformatics ; Biological Microscopy ; Biological research ; Biological Techniques ; Biomedical and Life Sciences ; Biomedical Engineering/Biotechnology ; Bridged Bicyclo Compounds, Heterocyclic - administration & dosage ; Cancer ; Cell cycle ; Cell Shape - drug effects ; Cell Size - drug effects ; Change detection ; Comparative analysis ; Cytoskeleton ; Cytoskeleton - drug effects ; Deformability ; Deformation ; Dose-Response Relationship, Drug ; Flow cytometry ; Flow Cytometry - methods ; Flow velocity ; Formability ; Genotype & phenotype ; HL-60 Cells ; Humans ; Image Processing, Computer-Assisted ; Latrunculin B ; Life Sciences ; Mechanical properties ; Mechanics ; Medical laboratories ; Medical research ; Methods ; Microfluidics ; Microfluidics - methods ; Muscle proteins ; Osmolarity ; Phenotypes ; Proteomics ; Reynolds number ; Shear flow ; Strain rate ; Thiazolidines - administration & dosage ; Viscosity</subject><ispartof>Nature methods, 2020-06, Vol.17 (6), p.587-593</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2020</rights><rights>COPYRIGHT 2020 Nature Publishing Group</rights><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c603t-e307f839363107814826707e8afc62a40e315bec8dfeb875f04c9528e007a66f3</citedby><cites>FETCH-LOGICAL-c603t-e307f839363107814826707e8afc62a40e315bec8dfeb875f04c9528e007a66f3</cites><orcidid>0000-0003-0280-5374 ; 0000-0003-3942-4284 ; 0000-0003-3415-3614 ; 0000-0001-7851-2549 ; 0000-0001-5223-9433 ; 0000-0002-6517-5958 ; 0000-0002-1453-6119</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41592-020-0818-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41592-020-0818-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,778,782,883,27911,27912,41475,42544,51306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32341544$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Urbanska, Marta</creatorcontrib><creatorcontrib>Muñoz, Hector E.</creatorcontrib><creatorcontrib>Shaw Bagnall, Josephine</creatorcontrib><creatorcontrib>Otto, Oliver</creatorcontrib><creatorcontrib>Manalis, Scott R.</creatorcontrib><creatorcontrib>Di Carlo, Dino</creatorcontrib><creatorcontrib>Guck, Jochen</creatorcontrib><title>A comparison of microfluidic methods for high-throughput cell deformability measurements</title><title>Nature methods</title><addtitle>Nat Methods</addtitle><addtitle>Nat Methods</addtitle><description>The mechanical phenotype of a cell is an inherent biophysical marker of its state and function, with many applications in basic and applied biological research. Microfluidics-based methods have enabled single-cell mechanophenotyping at throughputs comparable to those of flow cytometry. Here, we present a standardized cross-laboratory study comparing three microfluidics-based approaches for measuring cell mechanical phenotype: constriction-based deformability cytometry (cDC), shear flow deformability cytometry (sDC) and extensional flow deformability cytometry (xDC). All three methods detect cell deformability changes induced by exposure to altered osmolarity. However, a dose-dependent deformability increase upon latrunculin B-induced actin disassembly was detected only with cDC and sDC, which suggests that when exposing cells to the higher strain rate imposed by xDC, cellular components other than the actin cytoskeleton dominate the response. The direct comparison presented here furthers our understanding of the applicability of the different deformability cytometry methods and provides context for the interpretation of deformability measurements performed using different platforms.
This Analysis compares microfluidics-based methods for assessing mechanical properties of cells in high throughput.</description><subject>631/1647/2204</subject><subject>631/1647/277</subject><subject>Actin</subject><subject>Actins - drug effects</subject><subject>Analysis</subject><subject>Bioengineering</subject><subject>Bioinformatics</subject><subject>Biological Microscopy</subject><subject>Biological research</subject><subject>Biological Techniques</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>Bridged Bicyclo Compounds, Heterocyclic - administration & dosage</subject><subject>Cancer</subject><subject>Cell cycle</subject><subject>Cell Shape - drug effects</subject><subject>Cell Size - drug effects</subject><subject>Change detection</subject><subject>Comparative analysis</subject><subject>Cytoskeleton</subject><subject>Cytoskeleton - drug effects</subject><subject>Deformability</subject><subject>Deformation</subject><subject>Dose-Response Relationship, Drug</subject><subject>Flow cytometry</subject><subject>Flow Cytometry - methods</subject><subject>Flow velocity</subject><subject>Formability</subject><subject>Genotype & phenotype</subject><subject>HL-60 Cells</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted</subject><subject>Latrunculin B</subject><subject>Life Sciences</subject><subject>Mechanical properties</subject><subject>Mechanics</subject><subject>Medical laboratories</subject><subject>Medical research</subject><subject>Methods</subject><subject>Microfluidics</subject><subject>Microfluidics - methods</subject><subject>Muscle proteins</subject><subject>Osmolarity</subject><subject>Phenotypes</subject><subject>Proteomics</subject><subject>Reynolds number</subject><subject>Shear flow</subject><subject>Strain rate</subject><subject>Thiazolidines - administration & dosage</subject><subject>Viscosity</subject><issn>1548-7091</issn><issn>1548-7105</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1UUtr3DAQFqWlSZP8gF6CoWeno5clXwpLSNpCoJcWehNaeWQr2NZGsgv776OwSZpAKx0k9D00Mx8hHylcUOD6cxZUtqwGBjVoqmv9hhxTKXStKMi3T3do6RH5kPMtAOeCyffkiDNepEIck9-bysVpZ1PIca6ir6bgUvTjGrrgqgmXIXa58jFVQ-iHehlSXPthty6Vw3GsOizQZLdhDMu-0G1eE044L_mUvPN2zHj2eJ6QX9dXPy-_1Tc_vn6_3NzUrgG-1MhBec1b3nAKSlOhWaNAobbeNcwKQE7lFp3uPG61kh6EayXTCKBs03h-Qr4cfHfrdsLOlb-THc0uhcmmvYk2mNfIHAbTxz9GMSV1y4vBp0eDFO9WzIu5jWuaS82GCWgb0Jy_YPV2RBNmH4uZm0J2ZtMwqWlZsrAu_sEqu8My1zijD-X9lYAeBGXoOSf0z4VTMA8Zm0PGpmRsHjI2umjOX3b8rHgKtRDYgZALNPeY_nb0f9d7u0Oxqg</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Urbanska, Marta</creator><creator>Muñoz, Hector E.</creator><creator>Shaw Bagnall, Josephine</creator><creator>Otto, Oliver</creator><creator>Manalis, Scott R.</creator><creator>Di Carlo, Dino</creator><creator>Guck, Jochen</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7SS</scope><scope>7TK</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>RC3</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0280-5374</orcidid><orcidid>https://orcid.org/0000-0003-3942-4284</orcidid><orcidid>https://orcid.org/0000-0003-3415-3614</orcidid><orcidid>https://orcid.org/0000-0001-7851-2549</orcidid><orcidid>https://orcid.org/0000-0001-5223-9433</orcidid><orcidid>https://orcid.org/0000-0002-6517-5958</orcidid><orcidid>https://orcid.org/0000-0002-1453-6119</orcidid></search><sort><creationdate>20200601</creationdate><title>A comparison of microfluidic methods for high-throughput cell deformability measurements</title><author>Urbanska, Marta ; Muñoz, Hector E. ; Shaw Bagnall, Josephine ; Otto, Oliver ; Manalis, Scott R. ; Di Carlo, Dino ; Guck, Jochen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c603t-e307f839363107814826707e8afc62a40e315bec8dfeb875f04c9528e007a66f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>631/1647/2204</topic><topic>631/1647/277</topic><topic>Actin</topic><topic>Actins - drug effects</topic><topic>Analysis</topic><topic>Bioengineering</topic><topic>Bioinformatics</topic><topic>Biological Microscopy</topic><topic>Biological research</topic><topic>Biological Techniques</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>Bridged Bicyclo Compounds, Heterocyclic - administration & dosage</topic><topic>Cancer</topic><topic>Cell cycle</topic><topic>Cell Shape - drug effects</topic><topic>Cell Size - drug effects</topic><topic>Change detection</topic><topic>Comparative analysis</topic><topic>Cytoskeleton</topic><topic>Cytoskeleton - drug effects</topic><topic>Deformability</topic><topic>Deformation</topic><topic>Dose-Response Relationship, Drug</topic><topic>Flow cytometry</topic><topic>Flow Cytometry - methods</topic><topic>Flow velocity</topic><topic>Formability</topic><topic>Genotype & phenotype</topic><topic>HL-60 Cells</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted</topic><topic>Latrunculin B</topic><topic>Life Sciences</topic><topic>Mechanical properties</topic><topic>Mechanics</topic><topic>Medical laboratories</topic><topic>Medical research</topic><topic>Methods</topic><topic>Microfluidics</topic><topic>Microfluidics - methods</topic><topic>Muscle proteins</topic><topic>Osmolarity</topic><topic>Phenotypes</topic><topic>Proteomics</topic><topic>Reynolds number</topic><topic>Shear flow</topic><topic>Strain rate</topic><topic>Thiazolidines - administration & dosage</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Urbanska, Marta</creatorcontrib><creatorcontrib>Muñoz, Hector E.</creatorcontrib><creatorcontrib>Shaw Bagnall, Josephine</creatorcontrib><creatorcontrib>Otto, Oliver</creatorcontrib><creatorcontrib>Manalis, Scott R.</creatorcontrib><creatorcontrib>Di Carlo, Dino</creatorcontrib><creatorcontrib>Guck, Jochen</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Urbanska, Marta</au><au>Muñoz, Hector E.</au><au>Shaw Bagnall, Josephine</au><au>Otto, Oliver</au><au>Manalis, Scott R.</au><au>Di Carlo, Dino</au><au>Guck, Jochen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A comparison of microfluidic methods for high-throughput cell deformability measurements</atitle><jtitle>Nature methods</jtitle><stitle>Nat Methods</stitle><addtitle>Nat Methods</addtitle><date>2020-06-01</date><risdate>2020</risdate><volume>17</volume><issue>6</issue><spage>587</spage><epage>593</epage><pages>587-593</pages><issn>1548-7091</issn><eissn>1548-7105</eissn><abstract>The mechanical phenotype of a cell is an inherent biophysical marker of its state and function, with many applications in basic and applied biological research. Microfluidics-based methods have enabled single-cell mechanophenotyping at throughputs comparable to those of flow cytometry. Here, we present a standardized cross-laboratory study comparing three microfluidics-based approaches for measuring cell mechanical phenotype: constriction-based deformability cytometry (cDC), shear flow deformability cytometry (sDC) and extensional flow deformability cytometry (xDC). All three methods detect cell deformability changes induced by exposure to altered osmolarity. However, a dose-dependent deformability increase upon latrunculin B-induced actin disassembly was detected only with cDC and sDC, which suggests that when exposing cells to the higher strain rate imposed by xDC, cellular components other than the actin cytoskeleton dominate the response. The direct comparison presented here furthers our understanding of the applicability of the different deformability cytometry methods and provides context for the interpretation of deformability measurements performed using different platforms.
This Analysis compares microfluidics-based methods for assessing mechanical properties of cells in high throughput.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>32341544</pmid><doi>10.1038/s41592-020-0818-8</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-0280-5374</orcidid><orcidid>https://orcid.org/0000-0003-3942-4284</orcidid><orcidid>https://orcid.org/0000-0003-3415-3614</orcidid><orcidid>https://orcid.org/0000-0001-7851-2549</orcidid><orcidid>https://orcid.org/0000-0001-5223-9433</orcidid><orcidid>https://orcid.org/0000-0002-6517-5958</orcidid><orcidid>https://orcid.org/0000-0002-1453-6119</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1548-7091 |
ispartof | Nature methods, 2020-06, Vol.17 (6), p.587-593 |
issn | 1548-7091 1548-7105 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7275893 |
source | MEDLINE; Springer Nature - Complete Springer Journals; Nature Journals Online |
subjects | 631/1647/2204 631/1647/277 Actin Actins - drug effects Analysis Bioengineering Bioinformatics Biological Microscopy Biological research Biological Techniques Biomedical and Life Sciences Biomedical Engineering/Biotechnology Bridged Bicyclo Compounds, Heterocyclic - administration & dosage Cancer Cell cycle Cell Shape - drug effects Cell Size - drug effects Change detection Comparative analysis Cytoskeleton Cytoskeleton - drug effects Deformability Deformation Dose-Response Relationship, Drug Flow cytometry Flow Cytometry - methods Flow velocity Formability Genotype & phenotype HL-60 Cells Humans Image Processing, Computer-Assisted Latrunculin B Life Sciences Mechanical properties Mechanics Medical laboratories Medical research Methods Microfluidics Microfluidics - methods Muscle proteins Osmolarity Phenotypes Proteomics Reynolds number Shear flow Strain rate Thiazolidines - administration & dosage Viscosity |
title | A comparison of microfluidic methods for high-throughput cell deformability measurements |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T17%3A35%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20comparison%20of%20microfluidic%20methods%20for%20high-throughput%20cell%20deformability%20measurements&rft.jtitle=Nature%20methods&rft.au=Urbanska,%20Marta&rft.date=2020-06-01&rft.volume=17&rft.issue=6&rft.spage=587&rft.epage=593&rft.pages=587-593&rft.issn=1548-7091&rft.eissn=1548-7105&rft_id=info:doi/10.1038/s41592-020-0818-8&rft_dat=%3Cgale_pubme%3EA625811115%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2409608333&rft_id=info:pmid/32341544&rft_galeid=A625811115&rfr_iscdi=true |