Host nutrient milieu drives an essential role for aspartate biosynthesis during invasive Staphylococcus aureus infection

The bacterial pathogen Staphylococcus aureus is capable of infecting a broad spectrum of host tissues, in part due to flexibility of metabolic programs. S. aureus, like all organisms, requires essential biosynthetic intermediates to synthesize macromolecules. We therefore sought to determine the met...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2020-06, Vol.117 (22), p.12394-12401
Hauptverfasser: Potter, Aimee D., Butrico, Casey E., Ford, Caleb A., Curry, Jacob M., Trenary, Irina A., Tummarakota, Srivarun S., Hendrix, Andrew S., Young, Jamey D., Cassat, James E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12401
container_issue 22
container_start_page 12394
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 117
creator Potter, Aimee D.
Butrico, Casey E.
Ford, Caleb A.
Curry, Jacob M.
Trenary, Irina A.
Tummarakota, Srivarun S.
Hendrix, Andrew S.
Young, Jamey D.
Cassat, James E.
description The bacterial pathogen Staphylococcus aureus is capable of infecting a broad spectrum of host tissues, in part due to flexibility of metabolic programs. S. aureus, like all organisms, requires essential biosynthetic intermediates to synthesize macromolecules. We therefore sought to determine the metabolic pathways contributing to synthesis of essential precursors during invasive S. aureus infection. We focused specifically on staphylococcal infection of bone, one of the most common sites of invasive S. aureus infection and a unique environment characterized by dynamic substrate accessibility, infection-induced hypoxia, and a metabolic profile skewed toward aerobic glycolysis. Using a murine model of osteomyelitis, we examined survival of S. aureus mutants deficient in central metabolic pathways, including glycolysis, gluconeogenesis, the tricarboxylic acid (TCA) cycle, and amino acid synthesis/catabolism. Despite the high glycolytic demand of skeletal cells, we discovered that S. aureus requires glycolysis for survival in bone. Furthermore, the TCA cycle is dispensable for survival during osteomyelitis, and S. aureus instead has a critical need for anaplerosis. Bacterial synthesis of aspartate in particular is absolutely essential for staphylococcal survival in bone, despite the presence of an aspartate transporter, which we identified as GltT and confirmed biochemically. This dependence on endogenous aspartate synthesis derives from the presence of excess glutamate in infected tissue, which inhibits aspartate acquisition by S. aureus. Together, these data elucidate the metabolic pathways required for staphylococcal infection within bone and demonstrate that the host nutrient milieu can determine essentiality of bacterial nutrient biosynthesis pathways despite the presence of dedicated transporters.
doi_str_mv 10.1073/pnas.1922211117
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7275739</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26931286</jstor_id><sourcerecordid>26931286</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-da30d520502dc112b98c42c3758161092d389bdbc617fb31c3522e2dc90dee913</originalsourceid><addsrcrecordid>eNpdkc9rFDEUx4NY7Fo9e1ICvXiZNnnJ_MhFkFKtUPCgnkMmk-lmmU3GvMzi_vdm2bpqk8CDvM_78r58CXnD2RVnrbieg8ErrgCAl9M-IyvOFK8aqdhzsmIM2qqTIM_JS8QNY0zVHXtBzgVILhXIFfl1FzHTsOTkXch06yfvFjokv3NITaAOsfx7M9EUJ0fHmKjB2aRssqO9j7gPee3QIx2W5MMD9WFnsEzTb9nM6_0UbbR2KVpLcqX4MDqbfQyvyNloJnSvH-sF-fHp9vvNXXX_9fOXm4_3lZVS5Gowgg01sJrBYDmHXnVWghVt3fGmeIVBdKofetvwduwFt6IGcIVVbHBOcXFBPhx156XfusEWN8lMek5-a9JeR-P1_53g1_oh7nQLbd0KVQTePwqk-HNxmPXWo3XTZIKLC2qQrNzyREEvn6CbuKRQ7BWKQyPrpj4IXh8pmyJicuNpGc70IVV9SFX_TbVMvPvXw4n_E2MB3h6BDeaYTn1olODQNeI3iDqq-w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2412645659</pqid></control><display><type>article</type><title>Host nutrient milieu drives an essential role for aspartate biosynthesis during invasive Staphylococcus aureus infection</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Potter, Aimee D. ; Butrico, Casey E. ; Ford, Caleb A. ; Curry, Jacob M. ; Trenary, Irina A. ; Tummarakota, Srivarun S. ; Hendrix, Andrew S. ; Young, Jamey D. ; Cassat, James E.</creator><creatorcontrib>Potter, Aimee D. ; Butrico, Casey E. ; Ford, Caleb A. ; Curry, Jacob M. ; Trenary, Irina A. ; Tummarakota, Srivarun S. ; Hendrix, Andrew S. ; Young, Jamey D. ; Cassat, James E.</creatorcontrib><description>The bacterial pathogen Staphylococcus aureus is capable of infecting a broad spectrum of host tissues, in part due to flexibility of metabolic programs. S. aureus, like all organisms, requires essential biosynthetic intermediates to synthesize macromolecules. We therefore sought to determine the metabolic pathways contributing to synthesis of essential precursors during invasive S. aureus infection. We focused specifically on staphylococcal infection of bone, one of the most common sites of invasive S. aureus infection and a unique environment characterized by dynamic substrate accessibility, infection-induced hypoxia, and a metabolic profile skewed toward aerobic glycolysis. Using a murine model of osteomyelitis, we examined survival of S. aureus mutants deficient in central metabolic pathways, including glycolysis, gluconeogenesis, the tricarboxylic acid (TCA) cycle, and amino acid synthesis/catabolism. Despite the high glycolytic demand of skeletal cells, we discovered that S. aureus requires glycolysis for survival in bone. Furthermore, the TCA cycle is dispensable for survival during osteomyelitis, and S. aureus instead has a critical need for anaplerosis. Bacterial synthesis of aspartate in particular is absolutely essential for staphylococcal survival in bone, despite the presence of an aspartate transporter, which we identified as GltT and confirmed biochemically. This dependence on endogenous aspartate synthesis derives from the presence of excess glutamate in infected tissue, which inhibits aspartate acquisition by S. aureus. Together, these data elucidate the metabolic pathways required for staphylococcal infection within bone and demonstrate that the host nutrient milieu can determine essentiality of bacterial nutrient biosynthesis pathways despite the presence of dedicated transporters.</description><identifier>ISSN: 0027-8424</identifier><identifier>ISSN: 1091-6490</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1922211117</identifier><identifier>PMID: 32414924</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Amino acids ; Animal models ; Animals ; Aspartic Acid - biosynthesis ; Bacteria ; Biological Sciences ; Biomedical materials ; Biosynthesis ; Catabolism ; Disease Models, Animal ; Female ; Gluconeogenesis ; Glycolysis ; Humans ; Hypoxia ; Infections ; Intermediates ; Macromolecules ; Metabolic pathways ; Metabolism ; Mice ; Mice, Inbred C57BL ; Nutrients ; Nutrients - metabolism ; Osteomyelitis ; Osteomyelitis - metabolism ; Osteomyelitis - microbiology ; Penicillin ; Staphylococcal Infections - metabolism ; Staphylococcal Infections - microbiology ; Staphylococcus aureus ; Staphylococcus aureus - genetics ; Staphylococcus aureus - metabolism ; Staphylococcus infections ; Substrates ; Survival ; Tricarboxylic acid cycle</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2020-06, Vol.117 (22), p.12394-12401</ispartof><rights>Copyright © 2020 the Author(s). Published by PNAS.</rights><rights>Copyright National Academy of Sciences Jun 2, 2020</rights><rights>Copyright © 2020 the Author(s). Published by PNAS. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-da30d520502dc112b98c42c3758161092d389bdbc617fb31c3522e2dc90dee913</citedby><cites>FETCH-LOGICAL-c443t-da30d520502dc112b98c42c3758161092d389bdbc617fb31c3522e2dc90dee913</cites><orcidid>0000-0002-1199-1167 ; 0000-0003-1473-1149 ; 0000-0002-8236-7281 ; 0000-0002-0871-1494 ; 0000-0002-3710-8037 ; 0000-0002-9242-0461</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26931286$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26931286$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32414924$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Potter, Aimee D.</creatorcontrib><creatorcontrib>Butrico, Casey E.</creatorcontrib><creatorcontrib>Ford, Caleb A.</creatorcontrib><creatorcontrib>Curry, Jacob M.</creatorcontrib><creatorcontrib>Trenary, Irina A.</creatorcontrib><creatorcontrib>Tummarakota, Srivarun S.</creatorcontrib><creatorcontrib>Hendrix, Andrew S.</creatorcontrib><creatorcontrib>Young, Jamey D.</creatorcontrib><creatorcontrib>Cassat, James E.</creatorcontrib><title>Host nutrient milieu drives an essential role for aspartate biosynthesis during invasive Staphylococcus aureus infection</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The bacterial pathogen Staphylococcus aureus is capable of infecting a broad spectrum of host tissues, in part due to flexibility of metabolic programs. S. aureus, like all organisms, requires essential biosynthetic intermediates to synthesize macromolecules. We therefore sought to determine the metabolic pathways contributing to synthesis of essential precursors during invasive S. aureus infection. We focused specifically on staphylococcal infection of bone, one of the most common sites of invasive S. aureus infection and a unique environment characterized by dynamic substrate accessibility, infection-induced hypoxia, and a metabolic profile skewed toward aerobic glycolysis. Using a murine model of osteomyelitis, we examined survival of S. aureus mutants deficient in central metabolic pathways, including glycolysis, gluconeogenesis, the tricarboxylic acid (TCA) cycle, and amino acid synthesis/catabolism. Despite the high glycolytic demand of skeletal cells, we discovered that S. aureus requires glycolysis for survival in bone. Furthermore, the TCA cycle is dispensable for survival during osteomyelitis, and S. aureus instead has a critical need for anaplerosis. Bacterial synthesis of aspartate in particular is absolutely essential for staphylococcal survival in bone, despite the presence of an aspartate transporter, which we identified as GltT and confirmed biochemically. This dependence on endogenous aspartate synthesis derives from the presence of excess glutamate in infected tissue, which inhibits aspartate acquisition by S. aureus. Together, these data elucidate the metabolic pathways required for staphylococcal infection within bone and demonstrate that the host nutrient milieu can determine essentiality of bacterial nutrient biosynthesis pathways despite the presence of dedicated transporters.</description><subject>Amino acids</subject><subject>Animal models</subject><subject>Animals</subject><subject>Aspartic Acid - biosynthesis</subject><subject>Bacteria</subject><subject>Biological Sciences</subject><subject>Biomedical materials</subject><subject>Biosynthesis</subject><subject>Catabolism</subject><subject>Disease Models, Animal</subject><subject>Female</subject><subject>Gluconeogenesis</subject><subject>Glycolysis</subject><subject>Humans</subject><subject>Hypoxia</subject><subject>Infections</subject><subject>Intermediates</subject><subject>Macromolecules</subject><subject>Metabolic pathways</subject><subject>Metabolism</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Nutrients</subject><subject>Nutrients - metabolism</subject><subject>Osteomyelitis</subject><subject>Osteomyelitis - metabolism</subject><subject>Osteomyelitis - microbiology</subject><subject>Penicillin</subject><subject>Staphylococcal Infections - metabolism</subject><subject>Staphylococcal Infections - microbiology</subject><subject>Staphylococcus aureus</subject><subject>Staphylococcus aureus - genetics</subject><subject>Staphylococcus aureus - metabolism</subject><subject>Staphylococcus infections</subject><subject>Substrates</subject><subject>Survival</subject><subject>Tricarboxylic acid cycle</subject><issn>0027-8424</issn><issn>1091-6490</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc9rFDEUx4NY7Fo9e1ICvXiZNnnJ_MhFkFKtUPCgnkMmk-lmmU3GvMzi_vdm2bpqk8CDvM_78r58CXnD2RVnrbieg8ErrgCAl9M-IyvOFK8aqdhzsmIM2qqTIM_JS8QNY0zVHXtBzgVILhXIFfl1FzHTsOTkXch06yfvFjokv3NITaAOsfx7M9EUJ0fHmKjB2aRssqO9j7gPee3QIx2W5MMD9WFnsEzTb9nM6_0UbbR2KVpLcqX4MDqbfQyvyNloJnSvH-sF-fHp9vvNXXX_9fOXm4_3lZVS5Gowgg01sJrBYDmHXnVWghVt3fGmeIVBdKofetvwduwFt6IGcIVVbHBOcXFBPhx156XfusEWN8lMek5-a9JeR-P1_53g1_oh7nQLbd0KVQTePwqk-HNxmPXWo3XTZIKLC2qQrNzyREEvn6CbuKRQ7BWKQyPrpj4IXh8pmyJicuNpGc70IVV9SFX_TbVMvPvXw4n_E2MB3h6BDeaYTn1olODQNeI3iDqq-w</recordid><startdate>20200602</startdate><enddate>20200602</enddate><creator>Potter, Aimee D.</creator><creator>Butrico, Casey E.</creator><creator>Ford, Caleb A.</creator><creator>Curry, Jacob M.</creator><creator>Trenary, Irina A.</creator><creator>Tummarakota, Srivarun S.</creator><creator>Hendrix, Andrew S.</creator><creator>Young, Jamey D.</creator><creator>Cassat, James E.</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1199-1167</orcidid><orcidid>https://orcid.org/0000-0003-1473-1149</orcidid><orcidid>https://orcid.org/0000-0002-8236-7281</orcidid><orcidid>https://orcid.org/0000-0002-0871-1494</orcidid><orcidid>https://orcid.org/0000-0002-3710-8037</orcidid><orcidid>https://orcid.org/0000-0002-9242-0461</orcidid></search><sort><creationdate>20200602</creationdate><title>Host nutrient milieu drives an essential role for aspartate biosynthesis during invasive Staphylococcus aureus infection</title><author>Potter, Aimee D. ; Butrico, Casey E. ; Ford, Caleb A. ; Curry, Jacob M. ; Trenary, Irina A. ; Tummarakota, Srivarun S. ; Hendrix, Andrew S. ; Young, Jamey D. ; Cassat, James E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-da30d520502dc112b98c42c3758161092d389bdbc617fb31c3522e2dc90dee913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Amino acids</topic><topic>Animal models</topic><topic>Animals</topic><topic>Aspartic Acid - biosynthesis</topic><topic>Bacteria</topic><topic>Biological Sciences</topic><topic>Biomedical materials</topic><topic>Biosynthesis</topic><topic>Catabolism</topic><topic>Disease Models, Animal</topic><topic>Female</topic><topic>Gluconeogenesis</topic><topic>Glycolysis</topic><topic>Humans</topic><topic>Hypoxia</topic><topic>Infections</topic><topic>Intermediates</topic><topic>Macromolecules</topic><topic>Metabolic pathways</topic><topic>Metabolism</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Nutrients</topic><topic>Nutrients - metabolism</topic><topic>Osteomyelitis</topic><topic>Osteomyelitis - metabolism</topic><topic>Osteomyelitis - microbiology</topic><topic>Penicillin</topic><topic>Staphylococcal Infections - metabolism</topic><topic>Staphylococcal Infections - microbiology</topic><topic>Staphylococcus aureus</topic><topic>Staphylococcus aureus - genetics</topic><topic>Staphylococcus aureus - metabolism</topic><topic>Staphylococcus infections</topic><topic>Substrates</topic><topic>Survival</topic><topic>Tricarboxylic acid cycle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Potter, Aimee D.</creatorcontrib><creatorcontrib>Butrico, Casey E.</creatorcontrib><creatorcontrib>Ford, Caleb A.</creatorcontrib><creatorcontrib>Curry, Jacob M.</creatorcontrib><creatorcontrib>Trenary, Irina A.</creatorcontrib><creatorcontrib>Tummarakota, Srivarun S.</creatorcontrib><creatorcontrib>Hendrix, Andrew S.</creatorcontrib><creatorcontrib>Young, Jamey D.</creatorcontrib><creatorcontrib>Cassat, James E.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Potter, Aimee D.</au><au>Butrico, Casey E.</au><au>Ford, Caleb A.</au><au>Curry, Jacob M.</au><au>Trenary, Irina A.</au><au>Tummarakota, Srivarun S.</au><au>Hendrix, Andrew S.</au><au>Young, Jamey D.</au><au>Cassat, James E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Host nutrient milieu drives an essential role for aspartate biosynthesis during invasive Staphylococcus aureus infection</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2020-06-02</date><risdate>2020</risdate><volume>117</volume><issue>22</issue><spage>12394</spage><epage>12401</epage><pages>12394-12401</pages><issn>0027-8424</issn><issn>1091-6490</issn><eissn>1091-6490</eissn><abstract>The bacterial pathogen Staphylococcus aureus is capable of infecting a broad spectrum of host tissues, in part due to flexibility of metabolic programs. S. aureus, like all organisms, requires essential biosynthetic intermediates to synthesize macromolecules. We therefore sought to determine the metabolic pathways contributing to synthesis of essential precursors during invasive S. aureus infection. We focused specifically on staphylococcal infection of bone, one of the most common sites of invasive S. aureus infection and a unique environment characterized by dynamic substrate accessibility, infection-induced hypoxia, and a metabolic profile skewed toward aerobic glycolysis. Using a murine model of osteomyelitis, we examined survival of S. aureus mutants deficient in central metabolic pathways, including glycolysis, gluconeogenesis, the tricarboxylic acid (TCA) cycle, and amino acid synthesis/catabolism. Despite the high glycolytic demand of skeletal cells, we discovered that S. aureus requires glycolysis for survival in bone. Furthermore, the TCA cycle is dispensable for survival during osteomyelitis, and S. aureus instead has a critical need for anaplerosis. Bacterial synthesis of aspartate in particular is absolutely essential for staphylococcal survival in bone, despite the presence of an aspartate transporter, which we identified as GltT and confirmed biochemically. This dependence on endogenous aspartate synthesis derives from the presence of excess glutamate in infected tissue, which inhibits aspartate acquisition by S. aureus. Together, these data elucidate the metabolic pathways required for staphylococcal infection within bone and demonstrate that the host nutrient milieu can determine essentiality of bacterial nutrient biosynthesis pathways despite the presence of dedicated transporters.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>32414924</pmid><doi>10.1073/pnas.1922211117</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-1199-1167</orcidid><orcidid>https://orcid.org/0000-0003-1473-1149</orcidid><orcidid>https://orcid.org/0000-0002-8236-7281</orcidid><orcidid>https://orcid.org/0000-0002-0871-1494</orcidid><orcidid>https://orcid.org/0000-0002-3710-8037</orcidid><orcidid>https://orcid.org/0000-0002-9242-0461</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2020-06, Vol.117 (22), p.12394-12401
issn 0027-8424
1091-6490
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7275739
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Amino acids
Animal models
Animals
Aspartic Acid - biosynthesis
Bacteria
Biological Sciences
Biomedical materials
Biosynthesis
Catabolism
Disease Models, Animal
Female
Gluconeogenesis
Glycolysis
Humans
Hypoxia
Infections
Intermediates
Macromolecules
Metabolic pathways
Metabolism
Mice
Mice, Inbred C57BL
Nutrients
Nutrients - metabolism
Osteomyelitis
Osteomyelitis - metabolism
Osteomyelitis - microbiology
Penicillin
Staphylococcal Infections - metabolism
Staphylococcal Infections - microbiology
Staphylococcus aureus
Staphylococcus aureus - genetics
Staphylococcus aureus - metabolism
Staphylococcus infections
Substrates
Survival
Tricarboxylic acid cycle
title Host nutrient milieu drives an essential role for aspartate biosynthesis during invasive Staphylococcus aureus infection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T03%3A11%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Host%20nutrient%20milieu%20drives%20an%20essential%20role%20for%20aspartate%20biosynthesis%20during%20invasive%20Staphylococcus%20aureus%20infection&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Potter,%20Aimee%20D.&rft.date=2020-06-02&rft.volume=117&rft.issue=22&rft.spage=12394&rft.epage=12401&rft.pages=12394-12401&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1922211117&rft_dat=%3Cjstor_pubme%3E26931286%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2412645659&rft_id=info:pmid/32414924&rft_jstor_id=26931286&rfr_iscdi=true