Host nutrient milieu drives an essential role for aspartate biosynthesis during invasive Staphylococcus aureus infection
The bacterial pathogen Staphylococcus aureus is capable of infecting a broad spectrum of host tissues, in part due to flexibility of metabolic programs. S. aureus, like all organisms, requires essential biosynthetic intermediates to synthesize macromolecules. We therefore sought to determine the met...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2020-06, Vol.117 (22), p.12394-12401 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12401 |
---|---|
container_issue | 22 |
container_start_page | 12394 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 117 |
creator | Potter, Aimee D. Butrico, Casey E. Ford, Caleb A. Curry, Jacob M. Trenary, Irina A. Tummarakota, Srivarun S. Hendrix, Andrew S. Young, Jamey D. Cassat, James E. |
description | The bacterial pathogen Staphylococcus aureus is capable of infecting a broad spectrum of host tissues, in part due to flexibility of metabolic programs. S. aureus, like all organisms, requires essential biosynthetic intermediates to synthesize macromolecules. We therefore sought to determine the metabolic pathways contributing to synthesis of essential precursors during invasive S. aureus infection. We focused specifically on staphylococcal infection of bone, one of the most common sites of invasive S. aureus infection and a unique environment characterized by dynamic substrate accessibility, infection-induced hypoxia, and a metabolic profile skewed toward aerobic glycolysis. Using a murine model of osteomyelitis, we examined survival of S. aureus mutants deficient in central metabolic pathways, including glycolysis, gluconeogenesis, the tricarboxylic acid (TCA) cycle, and amino acid synthesis/catabolism. Despite the high glycolytic demand of skeletal cells, we discovered that S. aureus requires glycolysis for survival in bone. Furthermore, the TCA cycle is dispensable for survival during osteomyelitis, and S. aureus instead has a critical need for anaplerosis. Bacterial synthesis of aspartate in particular is absolutely essential for staphylococcal survival in bone, despite the presence of an aspartate transporter, which we identified as GltT and confirmed biochemically. This dependence on endogenous aspartate synthesis derives from the presence of excess glutamate in infected tissue, which inhibits aspartate acquisition by S. aureus. Together, these data elucidate the metabolic pathways required for staphylococcal infection within bone and demonstrate that the host nutrient milieu can determine essentiality of bacterial nutrient biosynthesis pathways despite the presence of dedicated transporters. |
doi_str_mv | 10.1073/pnas.1922211117 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7275739</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26931286</jstor_id><sourcerecordid>26931286</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-da30d520502dc112b98c42c3758161092d389bdbc617fb31c3522e2dc90dee913</originalsourceid><addsrcrecordid>eNpdkc9rFDEUx4NY7Fo9e1ICvXiZNnnJ_MhFkFKtUPCgnkMmk-lmmU3GvMzi_vdm2bpqk8CDvM_78r58CXnD2RVnrbieg8ErrgCAl9M-IyvOFK8aqdhzsmIM2qqTIM_JS8QNY0zVHXtBzgVILhXIFfl1FzHTsOTkXch06yfvFjokv3NITaAOsfx7M9EUJ0fHmKjB2aRssqO9j7gPee3QIx2W5MMD9WFnsEzTb9nM6_0UbbR2KVpLcqX4MDqbfQyvyNloJnSvH-sF-fHp9vvNXXX_9fOXm4_3lZVS5Gowgg01sJrBYDmHXnVWghVt3fGmeIVBdKofetvwduwFt6IGcIVVbHBOcXFBPhx156XfusEWN8lMek5-a9JeR-P1_53g1_oh7nQLbd0KVQTePwqk-HNxmPXWo3XTZIKLC2qQrNzyREEvn6CbuKRQ7BWKQyPrpj4IXh8pmyJicuNpGc70IVV9SFX_TbVMvPvXw4n_E2MB3h6BDeaYTn1olODQNeI3iDqq-w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2412645659</pqid></control><display><type>article</type><title>Host nutrient milieu drives an essential role for aspartate biosynthesis during invasive Staphylococcus aureus infection</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Potter, Aimee D. ; Butrico, Casey E. ; Ford, Caleb A. ; Curry, Jacob M. ; Trenary, Irina A. ; Tummarakota, Srivarun S. ; Hendrix, Andrew S. ; Young, Jamey D. ; Cassat, James E.</creator><creatorcontrib>Potter, Aimee D. ; Butrico, Casey E. ; Ford, Caleb A. ; Curry, Jacob M. ; Trenary, Irina A. ; Tummarakota, Srivarun S. ; Hendrix, Andrew S. ; Young, Jamey D. ; Cassat, James E.</creatorcontrib><description>The bacterial pathogen Staphylococcus aureus is capable of infecting a broad spectrum of host tissues, in part due to flexibility of metabolic programs. S. aureus, like all organisms, requires essential biosynthetic intermediates to synthesize macromolecules. We therefore sought to determine the metabolic pathways contributing to synthesis of essential precursors during invasive S. aureus infection. We focused specifically on staphylococcal infection of bone, one of the most common sites of invasive S. aureus infection and a unique environment characterized by dynamic substrate accessibility, infection-induced hypoxia, and a metabolic profile skewed toward aerobic glycolysis. Using a murine model of osteomyelitis, we examined survival of S. aureus mutants deficient in central metabolic pathways, including glycolysis, gluconeogenesis, the tricarboxylic acid (TCA) cycle, and amino acid synthesis/catabolism. Despite the high glycolytic demand of skeletal cells, we discovered that S. aureus requires glycolysis for survival in bone. Furthermore, the TCA cycle is dispensable for survival during osteomyelitis, and S. aureus instead has a critical need for anaplerosis. Bacterial synthesis of aspartate in particular is absolutely essential for staphylococcal survival in bone, despite the presence of an aspartate transporter, which we identified as GltT and confirmed biochemically. This dependence on endogenous aspartate synthesis derives from the presence of excess glutamate in infected tissue, which inhibits aspartate acquisition by S. aureus. Together, these data elucidate the metabolic pathways required for staphylococcal infection within bone and demonstrate that the host nutrient milieu can determine essentiality of bacterial nutrient biosynthesis pathways despite the presence of dedicated transporters.</description><identifier>ISSN: 0027-8424</identifier><identifier>ISSN: 1091-6490</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1922211117</identifier><identifier>PMID: 32414924</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Amino acids ; Animal models ; Animals ; Aspartic Acid - biosynthesis ; Bacteria ; Biological Sciences ; Biomedical materials ; Biosynthesis ; Catabolism ; Disease Models, Animal ; Female ; Gluconeogenesis ; Glycolysis ; Humans ; Hypoxia ; Infections ; Intermediates ; Macromolecules ; Metabolic pathways ; Metabolism ; Mice ; Mice, Inbred C57BL ; Nutrients ; Nutrients - metabolism ; Osteomyelitis ; Osteomyelitis - metabolism ; Osteomyelitis - microbiology ; Penicillin ; Staphylococcal Infections - metabolism ; Staphylococcal Infections - microbiology ; Staphylococcus aureus ; Staphylococcus aureus - genetics ; Staphylococcus aureus - metabolism ; Staphylococcus infections ; Substrates ; Survival ; Tricarboxylic acid cycle</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2020-06, Vol.117 (22), p.12394-12401</ispartof><rights>Copyright © 2020 the Author(s). Published by PNAS.</rights><rights>Copyright National Academy of Sciences Jun 2, 2020</rights><rights>Copyright © 2020 the Author(s). Published by PNAS. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-da30d520502dc112b98c42c3758161092d389bdbc617fb31c3522e2dc90dee913</citedby><cites>FETCH-LOGICAL-c443t-da30d520502dc112b98c42c3758161092d389bdbc617fb31c3522e2dc90dee913</cites><orcidid>0000-0002-1199-1167 ; 0000-0003-1473-1149 ; 0000-0002-8236-7281 ; 0000-0002-0871-1494 ; 0000-0002-3710-8037 ; 0000-0002-9242-0461</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26931286$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26931286$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32414924$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Potter, Aimee D.</creatorcontrib><creatorcontrib>Butrico, Casey E.</creatorcontrib><creatorcontrib>Ford, Caleb A.</creatorcontrib><creatorcontrib>Curry, Jacob M.</creatorcontrib><creatorcontrib>Trenary, Irina A.</creatorcontrib><creatorcontrib>Tummarakota, Srivarun S.</creatorcontrib><creatorcontrib>Hendrix, Andrew S.</creatorcontrib><creatorcontrib>Young, Jamey D.</creatorcontrib><creatorcontrib>Cassat, James E.</creatorcontrib><title>Host nutrient milieu drives an essential role for aspartate biosynthesis during invasive Staphylococcus aureus infection</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The bacterial pathogen Staphylococcus aureus is capable of infecting a broad spectrum of host tissues, in part due to flexibility of metabolic programs. S. aureus, like all organisms, requires essential biosynthetic intermediates to synthesize macromolecules. We therefore sought to determine the metabolic pathways contributing to synthesis of essential precursors during invasive S. aureus infection. We focused specifically on staphylococcal infection of bone, one of the most common sites of invasive S. aureus infection and a unique environment characterized by dynamic substrate accessibility, infection-induced hypoxia, and a metabolic profile skewed toward aerobic glycolysis. Using a murine model of osteomyelitis, we examined survival of S. aureus mutants deficient in central metabolic pathways, including glycolysis, gluconeogenesis, the tricarboxylic acid (TCA) cycle, and amino acid synthesis/catabolism. Despite the high glycolytic demand of skeletal cells, we discovered that S. aureus requires glycolysis for survival in bone. Furthermore, the TCA cycle is dispensable for survival during osteomyelitis, and S. aureus instead has a critical need for anaplerosis. Bacterial synthesis of aspartate in particular is absolutely essential for staphylococcal survival in bone, despite the presence of an aspartate transporter, which we identified as GltT and confirmed biochemically. This dependence on endogenous aspartate synthesis derives from the presence of excess glutamate in infected tissue, which inhibits aspartate acquisition by S. aureus. Together, these data elucidate the metabolic pathways required for staphylococcal infection within bone and demonstrate that the host nutrient milieu can determine essentiality of bacterial nutrient biosynthesis pathways despite the presence of dedicated transporters.</description><subject>Amino acids</subject><subject>Animal models</subject><subject>Animals</subject><subject>Aspartic Acid - biosynthesis</subject><subject>Bacteria</subject><subject>Biological Sciences</subject><subject>Biomedical materials</subject><subject>Biosynthesis</subject><subject>Catabolism</subject><subject>Disease Models, Animal</subject><subject>Female</subject><subject>Gluconeogenesis</subject><subject>Glycolysis</subject><subject>Humans</subject><subject>Hypoxia</subject><subject>Infections</subject><subject>Intermediates</subject><subject>Macromolecules</subject><subject>Metabolic pathways</subject><subject>Metabolism</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Nutrients</subject><subject>Nutrients - metabolism</subject><subject>Osteomyelitis</subject><subject>Osteomyelitis - metabolism</subject><subject>Osteomyelitis - microbiology</subject><subject>Penicillin</subject><subject>Staphylococcal Infections - metabolism</subject><subject>Staphylococcal Infections - microbiology</subject><subject>Staphylococcus aureus</subject><subject>Staphylococcus aureus - genetics</subject><subject>Staphylococcus aureus - metabolism</subject><subject>Staphylococcus infections</subject><subject>Substrates</subject><subject>Survival</subject><subject>Tricarboxylic acid cycle</subject><issn>0027-8424</issn><issn>1091-6490</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc9rFDEUx4NY7Fo9e1ICvXiZNnnJ_MhFkFKtUPCgnkMmk-lmmU3GvMzi_vdm2bpqk8CDvM_78r58CXnD2RVnrbieg8ErrgCAl9M-IyvOFK8aqdhzsmIM2qqTIM_JS8QNY0zVHXtBzgVILhXIFfl1FzHTsOTkXch06yfvFjokv3NITaAOsfx7M9EUJ0fHmKjB2aRssqO9j7gPee3QIx2W5MMD9WFnsEzTb9nM6_0UbbR2KVpLcqX4MDqbfQyvyNloJnSvH-sF-fHp9vvNXXX_9fOXm4_3lZVS5Gowgg01sJrBYDmHXnVWghVt3fGmeIVBdKofetvwduwFt6IGcIVVbHBOcXFBPhx156XfusEWN8lMek5-a9JeR-P1_53g1_oh7nQLbd0KVQTePwqk-HNxmPXWo3XTZIKLC2qQrNzyREEvn6CbuKRQ7BWKQyPrpj4IXh8pmyJicuNpGc70IVV9SFX_TbVMvPvXw4n_E2MB3h6BDeaYTn1olODQNeI3iDqq-w</recordid><startdate>20200602</startdate><enddate>20200602</enddate><creator>Potter, Aimee D.</creator><creator>Butrico, Casey E.</creator><creator>Ford, Caleb A.</creator><creator>Curry, Jacob M.</creator><creator>Trenary, Irina A.</creator><creator>Tummarakota, Srivarun S.</creator><creator>Hendrix, Andrew S.</creator><creator>Young, Jamey D.</creator><creator>Cassat, James E.</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1199-1167</orcidid><orcidid>https://orcid.org/0000-0003-1473-1149</orcidid><orcidid>https://orcid.org/0000-0002-8236-7281</orcidid><orcidid>https://orcid.org/0000-0002-0871-1494</orcidid><orcidid>https://orcid.org/0000-0002-3710-8037</orcidid><orcidid>https://orcid.org/0000-0002-9242-0461</orcidid></search><sort><creationdate>20200602</creationdate><title>Host nutrient milieu drives an essential role for aspartate biosynthesis during invasive Staphylococcus aureus infection</title><author>Potter, Aimee D. ; Butrico, Casey E. ; Ford, Caleb A. ; Curry, Jacob M. ; Trenary, Irina A. ; Tummarakota, Srivarun S. ; Hendrix, Andrew S. ; Young, Jamey D. ; Cassat, James E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-da30d520502dc112b98c42c3758161092d389bdbc617fb31c3522e2dc90dee913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Amino acids</topic><topic>Animal models</topic><topic>Animals</topic><topic>Aspartic Acid - biosynthesis</topic><topic>Bacteria</topic><topic>Biological Sciences</topic><topic>Biomedical materials</topic><topic>Biosynthesis</topic><topic>Catabolism</topic><topic>Disease Models, Animal</topic><topic>Female</topic><topic>Gluconeogenesis</topic><topic>Glycolysis</topic><topic>Humans</topic><topic>Hypoxia</topic><topic>Infections</topic><topic>Intermediates</topic><topic>Macromolecules</topic><topic>Metabolic pathways</topic><topic>Metabolism</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Nutrients</topic><topic>Nutrients - metabolism</topic><topic>Osteomyelitis</topic><topic>Osteomyelitis - metabolism</topic><topic>Osteomyelitis - microbiology</topic><topic>Penicillin</topic><topic>Staphylococcal Infections - metabolism</topic><topic>Staphylococcal Infections - microbiology</topic><topic>Staphylococcus aureus</topic><topic>Staphylococcus aureus - genetics</topic><topic>Staphylococcus aureus - metabolism</topic><topic>Staphylococcus infections</topic><topic>Substrates</topic><topic>Survival</topic><topic>Tricarboxylic acid cycle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Potter, Aimee D.</creatorcontrib><creatorcontrib>Butrico, Casey E.</creatorcontrib><creatorcontrib>Ford, Caleb A.</creatorcontrib><creatorcontrib>Curry, Jacob M.</creatorcontrib><creatorcontrib>Trenary, Irina A.</creatorcontrib><creatorcontrib>Tummarakota, Srivarun S.</creatorcontrib><creatorcontrib>Hendrix, Andrew S.</creatorcontrib><creatorcontrib>Young, Jamey D.</creatorcontrib><creatorcontrib>Cassat, James E.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Potter, Aimee D.</au><au>Butrico, Casey E.</au><au>Ford, Caleb A.</au><au>Curry, Jacob M.</au><au>Trenary, Irina A.</au><au>Tummarakota, Srivarun S.</au><au>Hendrix, Andrew S.</au><au>Young, Jamey D.</au><au>Cassat, James E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Host nutrient milieu drives an essential role for aspartate biosynthesis during invasive Staphylococcus aureus infection</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2020-06-02</date><risdate>2020</risdate><volume>117</volume><issue>22</issue><spage>12394</spage><epage>12401</epage><pages>12394-12401</pages><issn>0027-8424</issn><issn>1091-6490</issn><eissn>1091-6490</eissn><abstract>The bacterial pathogen Staphylococcus aureus is capable of infecting a broad spectrum of host tissues, in part due to flexibility of metabolic programs. S. aureus, like all organisms, requires essential biosynthetic intermediates to synthesize macromolecules. We therefore sought to determine the metabolic pathways contributing to synthesis of essential precursors during invasive S. aureus infection. We focused specifically on staphylococcal infection of bone, one of the most common sites of invasive S. aureus infection and a unique environment characterized by dynamic substrate accessibility, infection-induced hypoxia, and a metabolic profile skewed toward aerobic glycolysis. Using a murine model of osteomyelitis, we examined survival of S. aureus mutants deficient in central metabolic pathways, including glycolysis, gluconeogenesis, the tricarboxylic acid (TCA) cycle, and amino acid synthesis/catabolism. Despite the high glycolytic demand of skeletal cells, we discovered that S. aureus requires glycolysis for survival in bone. Furthermore, the TCA cycle is dispensable for survival during osteomyelitis, and S. aureus instead has a critical need for anaplerosis. Bacterial synthesis of aspartate in particular is absolutely essential for staphylococcal survival in bone, despite the presence of an aspartate transporter, which we identified as GltT and confirmed biochemically. This dependence on endogenous aspartate synthesis derives from the presence of excess glutamate in infected tissue, which inhibits aspartate acquisition by S. aureus. Together, these data elucidate the metabolic pathways required for staphylococcal infection within bone and demonstrate that the host nutrient milieu can determine essentiality of bacterial nutrient biosynthesis pathways despite the presence of dedicated transporters.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>32414924</pmid><doi>10.1073/pnas.1922211117</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-1199-1167</orcidid><orcidid>https://orcid.org/0000-0003-1473-1149</orcidid><orcidid>https://orcid.org/0000-0002-8236-7281</orcidid><orcidid>https://orcid.org/0000-0002-0871-1494</orcidid><orcidid>https://orcid.org/0000-0002-3710-8037</orcidid><orcidid>https://orcid.org/0000-0002-9242-0461</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2020-06, Vol.117 (22), p.12394-12401 |
issn | 0027-8424 1091-6490 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7275739 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Amino acids Animal models Animals Aspartic Acid - biosynthesis Bacteria Biological Sciences Biomedical materials Biosynthesis Catabolism Disease Models, Animal Female Gluconeogenesis Glycolysis Humans Hypoxia Infections Intermediates Macromolecules Metabolic pathways Metabolism Mice Mice, Inbred C57BL Nutrients Nutrients - metabolism Osteomyelitis Osteomyelitis - metabolism Osteomyelitis - microbiology Penicillin Staphylococcal Infections - metabolism Staphylococcal Infections - microbiology Staphylococcus aureus Staphylococcus aureus - genetics Staphylococcus aureus - metabolism Staphylococcus infections Substrates Survival Tricarboxylic acid cycle |
title | Host nutrient milieu drives an essential role for aspartate biosynthesis during invasive Staphylococcus aureus infection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T03%3A11%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Host%20nutrient%20milieu%20drives%20an%20essential%20role%20for%20aspartate%20biosynthesis%20during%20invasive%20Staphylococcus%20aureus%20infection&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Potter,%20Aimee%20D.&rft.date=2020-06-02&rft.volume=117&rft.issue=22&rft.spage=12394&rft.epage=12401&rft.pages=12394-12401&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1922211117&rft_dat=%3Cjstor_pubme%3E26931286%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2412645659&rft_id=info:pmid/32414924&rft_jstor_id=26931286&rfr_iscdi=true |