Positron emission tomography visualized stimulation of the vestibular organ is localized in Heschl's gyrus
The existence of a human primary vestibular cortex is still debated. Current knowledge mainly derives from functional magnetic resonance imaging (fMRI) and positron emission tomography (PET) acquisitions during artificial vestibular stimulation. This may be problematic as artificial vestibular stimu...
Gespeichert in:
Veröffentlicht in: | Human brain mapping 2020-01, Vol.41 (1), p.185-193 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 193 |
---|---|
container_issue | 1 |
container_start_page | 185 |
container_title | Human brain mapping |
container_volume | 41 |
creator | Devantier, Louise Hansen, Allan K. Mølby‐Henriksen, Jens‐Jacob Christensen, Christian B. Pedersen, Michael Hansen, Kim V. Magnusson, Måns Ovesen, Therese Borghammer, Per |
description | The existence of a human primary vestibular cortex is still debated. Current knowledge mainly derives from functional magnetic resonance imaging (fMRI) and positron emission tomography (PET) acquisitions during artificial vestibular stimulation. This may be problematic as artificial vestibular stimulation entails coactivation of other sensory receptors. The use of fMRI is challenging as the strong magnetic field and loud noise during MRI may both stimulate the vestibular organ. This study aimed to characterize the cortical activity during natural stimulation of the human vestibular organ. Two fluorodeoxyglucose (FDG)‐PET scans were obtained after natural vestibular stimulation in a self‐propelled chair. Two types of stimuli were applied: (a) rotation (horizontal semicircular canal) and (b) linear sideways movement (utriculus). A comparable baseline FDG‐PET scan was obtained after sitting motion‐less in the chair. In both stimulation paradigms, significantly increased FDG uptake was measured bilaterally in the medial part of Heschl's gyrus, with some overlap into the posterior insula. This is the first neuroimaging study to visualize cortical processing of natural vestibular stimuli. FDG uptake was demonstrated in the medial‐most part of Heschl's gyrus, normally associated with the primary auditory cortex. This anatomical localization seems plausible, considering that the labyrinth contains both the vestibular organ and the cochlea. |
doi_str_mv | 10.1002/hbm.24798 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7268041</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A710623362</galeid><sourcerecordid>A710623362</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5768-8e51c8690ba3efeed9dfece3f0fc6aba9d51ae40804e371cdc02556f0648aba63</originalsourceid><addsrcrecordid>eNp1kk2P0zAQhi0EYpfCgT-ALHEADun6I3biy0rLCijSIjjA2XKcceoqiYudFJVfj0vLwiKQZXk0fuYdzQdCTylZUkLYxboZlqysVH0PnVOiqoJQxe8fbCkKVVb0DD1KaUMIpYLQh-iMU8GIoPIcbT6F5KcYRgyDT8lnYwpD6KLZrvd459Nsev8dWpwmP8y9mQ5EcHhaA95BdjbZGXGInRmxT7gP9hTgR7yCZNf9i4S7fZzTY_TAmT7Bk9O7QF_evvl8vSpuPr57f311U1hRybqoQVBbS0Uaw8EBtKp1YIE74qw0jVGtoAZKUpMSeEVtawkTQjoiyzp_S75Al0fd7dwM0FoYp2h6vY1-MHGvg_H67s_o17oLO10xmUVpFnh5Eojh65yL1Lk1FvrejBDmpBlTRBHKc5MX6Plf6CbMcczlacYZE0pJWv2mOtOD9qMLOa89iOqrKg-JcZ7vAi3_QeXT5tHYMILz2X8n4NUxwMaQUgR3WyMl-rAYOi-G_rkYmX32Z1NuyV-bkIGLI_AtZ9n_X0mvXn84Sv4AT5nECQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2322599617</pqid></control><display><type>article</type><title>Positron emission tomography visualized stimulation of the vestibular organ is localized in Heschl's gyrus</title><source>PubMed Central Free</source><source>MEDLINE</source><source>Wiley Online Library Journals</source><source>Wiley Online Library Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>EZB Electronic Journals Library</source><creator>Devantier, Louise ; Hansen, Allan K. ; Mølby‐Henriksen, Jens‐Jacob ; Christensen, Christian B. ; Pedersen, Michael ; Hansen, Kim V. ; Magnusson, Måns ; Ovesen, Therese ; Borghammer, Per</creator><creatorcontrib>Devantier, Louise ; Hansen, Allan K. ; Mølby‐Henriksen, Jens‐Jacob ; Christensen, Christian B. ; Pedersen, Michael ; Hansen, Kim V. ; Magnusson, Måns ; Ovesen, Therese ; Borghammer, Per</creatorcontrib><description>The existence of a human primary vestibular cortex is still debated. Current knowledge mainly derives from functional magnetic resonance imaging (fMRI) and positron emission tomography (PET) acquisitions during artificial vestibular stimulation. This may be problematic as artificial vestibular stimulation entails coactivation of other sensory receptors. The use of fMRI is challenging as the strong magnetic field and loud noise during MRI may both stimulate the vestibular organ. This study aimed to characterize the cortical activity during natural stimulation of the human vestibular organ. Two fluorodeoxyglucose (FDG)‐PET scans were obtained after natural vestibular stimulation in a self‐propelled chair. Two types of stimuli were applied: (a) rotation (horizontal semicircular canal) and (b) linear sideways movement (utriculus). A comparable baseline FDG‐PET scan was obtained after sitting motion‐less in the chair. In both stimulation paradigms, significantly increased FDG uptake was measured bilaterally in the medial part of Heschl's gyrus, with some overlap into the posterior insula. This is the first neuroimaging study to visualize cortical processing of natural vestibular stimuli. FDG uptake was demonstrated in the medial‐most part of Heschl's gyrus, normally associated with the primary auditory cortex. This anatomical localization seems plausible, considering that the labyrinth contains both the vestibular organ and the cochlea.</description><identifier>ISSN: 1065-9471</identifier><identifier>EISSN: 1097-0193</identifier><identifier>DOI: 10.1002/hbm.24798</identifier><identifier>PMID: 31520516</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Aged ; Auditory Cortex - diagnostic imaging ; Auditory Cortex - physiology ; Brain ; Brain Mapping ; central nervous system ; Cochlea ; Cortex (auditory) ; Cortex (somatosensory) ; Female ; Fluorodeoxyglucose F18 ; Functional magnetic resonance imaging ; functional neuroimaging ; Humans ; Labyrinth ; Localization ; Magnetic fields ; Magnetic resonance imaging ; Male ; Medical imaging ; Middle Aged ; Neuroimaging ; neurotology ; NMR ; Nuclear magnetic resonance ; PET imaging ; Physical Stimulation ; Positron emission ; Positron emission tomography ; Proprioception - physiology ; Radiopharmaceuticals ; Receptors ; Semicircular canals ; Stimulation ; Stimuli ; Temporal Lobe - diagnostic imaging ; Temporal Lobe - physiology ; Tomography ; vertigo ; Vestibular stimuli ; Vestibular system ; vestibule ; Vestibule, Labyrinth - diagnostic imaging ; Vestibule, Labyrinth - physiology</subject><ispartof>Human brain mapping, 2020-01, Vol.41 (1), p.185-193</ispartof><rights>2019 The Authors. published by Wiley Periodicals, Inc.</rights><rights>2019 The Authors. Human Brain Mapping published by Wiley Periodicals, Inc.</rights><rights>COPYRIGHT 2019 John Wiley & Sons, Inc.</rights><rights>2019. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5768-8e51c8690ba3efeed9dfece3f0fc6aba9d51ae40804e371cdc02556f0648aba63</citedby><cites>FETCH-LOGICAL-c5768-8e51c8690ba3efeed9dfece3f0fc6aba9d51ae40804e371cdc02556f0648aba63</cites><orcidid>0000-0001-7811-4874</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7268041/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7268041/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,1417,11562,27924,27925,45574,45575,46052,46476,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31520516$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Devantier, Louise</creatorcontrib><creatorcontrib>Hansen, Allan K.</creatorcontrib><creatorcontrib>Mølby‐Henriksen, Jens‐Jacob</creatorcontrib><creatorcontrib>Christensen, Christian B.</creatorcontrib><creatorcontrib>Pedersen, Michael</creatorcontrib><creatorcontrib>Hansen, Kim V.</creatorcontrib><creatorcontrib>Magnusson, Måns</creatorcontrib><creatorcontrib>Ovesen, Therese</creatorcontrib><creatorcontrib>Borghammer, Per</creatorcontrib><title>Positron emission tomography visualized stimulation of the vestibular organ is localized in Heschl's gyrus</title><title>Human brain mapping</title><addtitle>Hum Brain Mapp</addtitle><description>The existence of a human primary vestibular cortex is still debated. Current knowledge mainly derives from functional magnetic resonance imaging (fMRI) and positron emission tomography (PET) acquisitions during artificial vestibular stimulation. This may be problematic as artificial vestibular stimulation entails coactivation of other sensory receptors. The use of fMRI is challenging as the strong magnetic field and loud noise during MRI may both stimulate the vestibular organ. This study aimed to characterize the cortical activity during natural stimulation of the human vestibular organ. Two fluorodeoxyglucose (FDG)‐PET scans were obtained after natural vestibular stimulation in a self‐propelled chair. Two types of stimuli were applied: (a) rotation (horizontal semicircular canal) and (b) linear sideways movement (utriculus). A comparable baseline FDG‐PET scan was obtained after sitting motion‐less in the chair. In both stimulation paradigms, significantly increased FDG uptake was measured bilaterally in the medial part of Heschl's gyrus, with some overlap into the posterior insula. This is the first neuroimaging study to visualize cortical processing of natural vestibular stimuli. FDG uptake was demonstrated in the medial‐most part of Heschl's gyrus, normally associated with the primary auditory cortex. This anatomical localization seems plausible, considering that the labyrinth contains both the vestibular organ and the cochlea.</description><subject>Aged</subject><subject>Auditory Cortex - diagnostic imaging</subject><subject>Auditory Cortex - physiology</subject><subject>Brain</subject><subject>Brain Mapping</subject><subject>central nervous system</subject><subject>Cochlea</subject><subject>Cortex (auditory)</subject><subject>Cortex (somatosensory)</subject><subject>Female</subject><subject>Fluorodeoxyglucose F18</subject><subject>Functional magnetic resonance imaging</subject><subject>functional neuroimaging</subject><subject>Humans</subject><subject>Labyrinth</subject><subject>Localization</subject><subject>Magnetic fields</subject><subject>Magnetic resonance imaging</subject><subject>Male</subject><subject>Medical imaging</subject><subject>Middle Aged</subject><subject>Neuroimaging</subject><subject>neurotology</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>PET imaging</subject><subject>Physical Stimulation</subject><subject>Positron emission</subject><subject>Positron emission tomography</subject><subject>Proprioception - physiology</subject><subject>Radiopharmaceuticals</subject><subject>Receptors</subject><subject>Semicircular canals</subject><subject>Stimulation</subject><subject>Stimuli</subject><subject>Temporal Lobe - diagnostic imaging</subject><subject>Temporal Lobe - physiology</subject><subject>Tomography</subject><subject>vertigo</subject><subject>Vestibular stimuli</subject><subject>Vestibular system</subject><subject>vestibule</subject><subject>Vestibule, Labyrinth - diagnostic imaging</subject><subject>Vestibule, Labyrinth - physiology</subject><issn>1065-9471</issn><issn>1097-0193</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNp1kk2P0zAQhi0EYpfCgT-ALHEADun6I3biy0rLCijSIjjA2XKcceoqiYudFJVfj0vLwiKQZXk0fuYdzQdCTylZUkLYxboZlqysVH0PnVOiqoJQxe8fbCkKVVb0DD1KaUMIpYLQh-iMU8GIoPIcbT6F5KcYRgyDT8lnYwpD6KLZrvd459Nsev8dWpwmP8y9mQ5EcHhaA95BdjbZGXGInRmxT7gP9hTgR7yCZNf9i4S7fZzTY_TAmT7Bk9O7QF_evvl8vSpuPr57f311U1hRybqoQVBbS0Uaw8EBtKp1YIE74qw0jVGtoAZKUpMSeEVtawkTQjoiyzp_S75Al0fd7dwM0FoYp2h6vY1-MHGvg_H67s_o17oLO10xmUVpFnh5Eojh65yL1Lk1FvrejBDmpBlTRBHKc5MX6Plf6CbMcczlacYZE0pJWv2mOtOD9qMLOa89iOqrKg-JcZ7vAi3_QeXT5tHYMILz2X8n4NUxwMaQUgR3WyMl-rAYOi-G_rkYmX32Z1NuyV-bkIGLI_AtZ9n_X0mvXn84Sv4AT5nECQ</recordid><startdate>202001</startdate><enddate>202001</enddate><creator>Devantier, Louise</creator><creator>Hansen, Allan K.</creator><creator>Mølby‐Henriksen, Jens‐Jacob</creator><creator>Christensen, Christian B.</creator><creator>Pedersen, Michael</creator><creator>Hansen, Kim V.</creator><creator>Magnusson, Måns</creator><creator>Ovesen, Therese</creator><creator>Borghammer, Per</creator><general>John Wiley & Sons, Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7811-4874</orcidid></search><sort><creationdate>202001</creationdate><title>Positron emission tomography visualized stimulation of the vestibular organ is localized in Heschl's gyrus</title><author>Devantier, Louise ; Hansen, Allan K. ; Mølby‐Henriksen, Jens‐Jacob ; Christensen, Christian B. ; Pedersen, Michael ; Hansen, Kim V. ; Magnusson, Måns ; Ovesen, Therese ; Borghammer, Per</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5768-8e51c8690ba3efeed9dfece3f0fc6aba9d51ae40804e371cdc02556f0648aba63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aged</topic><topic>Auditory Cortex - diagnostic imaging</topic><topic>Auditory Cortex - physiology</topic><topic>Brain</topic><topic>Brain Mapping</topic><topic>central nervous system</topic><topic>Cochlea</topic><topic>Cortex (auditory)</topic><topic>Cortex (somatosensory)</topic><topic>Female</topic><topic>Fluorodeoxyglucose F18</topic><topic>Functional magnetic resonance imaging</topic><topic>functional neuroimaging</topic><topic>Humans</topic><topic>Labyrinth</topic><topic>Localization</topic><topic>Magnetic fields</topic><topic>Magnetic resonance imaging</topic><topic>Male</topic><topic>Medical imaging</topic><topic>Middle Aged</topic><topic>Neuroimaging</topic><topic>neurotology</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>PET imaging</topic><topic>Physical Stimulation</topic><topic>Positron emission</topic><topic>Positron emission tomography</topic><topic>Proprioception - physiology</topic><topic>Radiopharmaceuticals</topic><topic>Receptors</topic><topic>Semicircular canals</topic><topic>Stimulation</topic><topic>Stimuli</topic><topic>Temporal Lobe - diagnostic imaging</topic><topic>Temporal Lobe - physiology</topic><topic>Tomography</topic><topic>vertigo</topic><topic>Vestibular stimuli</topic><topic>Vestibular system</topic><topic>vestibule</topic><topic>Vestibule, Labyrinth - diagnostic imaging</topic><topic>Vestibule, Labyrinth - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Devantier, Louise</creatorcontrib><creatorcontrib>Hansen, Allan K.</creatorcontrib><creatorcontrib>Mølby‐Henriksen, Jens‐Jacob</creatorcontrib><creatorcontrib>Christensen, Christian B.</creatorcontrib><creatorcontrib>Pedersen, Michael</creatorcontrib><creatorcontrib>Hansen, Kim V.</creatorcontrib><creatorcontrib>Magnusson, Måns</creatorcontrib><creatorcontrib>Ovesen, Therese</creatorcontrib><creatorcontrib>Borghammer, Per</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Human brain mapping</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Devantier, Louise</au><au>Hansen, Allan K.</au><au>Mølby‐Henriksen, Jens‐Jacob</au><au>Christensen, Christian B.</au><au>Pedersen, Michael</au><au>Hansen, Kim V.</au><au>Magnusson, Måns</au><au>Ovesen, Therese</au><au>Borghammer, Per</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Positron emission tomography visualized stimulation of the vestibular organ is localized in Heschl's gyrus</atitle><jtitle>Human brain mapping</jtitle><addtitle>Hum Brain Mapp</addtitle><date>2020-01</date><risdate>2020</risdate><volume>41</volume><issue>1</issue><spage>185</spage><epage>193</epage><pages>185-193</pages><issn>1065-9471</issn><eissn>1097-0193</eissn><abstract>The existence of a human primary vestibular cortex is still debated. Current knowledge mainly derives from functional magnetic resonance imaging (fMRI) and positron emission tomography (PET) acquisitions during artificial vestibular stimulation. This may be problematic as artificial vestibular stimulation entails coactivation of other sensory receptors. The use of fMRI is challenging as the strong magnetic field and loud noise during MRI may both stimulate the vestibular organ. This study aimed to characterize the cortical activity during natural stimulation of the human vestibular organ. Two fluorodeoxyglucose (FDG)‐PET scans were obtained after natural vestibular stimulation in a self‐propelled chair. Two types of stimuli were applied: (a) rotation (horizontal semicircular canal) and (b) linear sideways movement (utriculus). A comparable baseline FDG‐PET scan was obtained after sitting motion‐less in the chair. In both stimulation paradigms, significantly increased FDG uptake was measured bilaterally in the medial part of Heschl's gyrus, with some overlap into the posterior insula. This is the first neuroimaging study to visualize cortical processing of natural vestibular stimuli. FDG uptake was demonstrated in the medial‐most part of Heschl's gyrus, normally associated with the primary auditory cortex. This anatomical localization seems plausible, considering that the labyrinth contains both the vestibular organ and the cochlea.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><pmid>31520516</pmid><doi>10.1002/hbm.24798</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-7811-4874</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1065-9471 |
ispartof | Human brain mapping, 2020-01, Vol.41 (1), p.185-193 |
issn | 1065-9471 1097-0193 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7268041 |
source | PubMed Central Free; MEDLINE; Wiley Online Library Journals; Wiley Online Library Open Access; DOAJ Directory of Open Access Journals; EZB Electronic Journals Library |
subjects | Aged Auditory Cortex - diagnostic imaging Auditory Cortex - physiology Brain Brain Mapping central nervous system Cochlea Cortex (auditory) Cortex (somatosensory) Female Fluorodeoxyglucose F18 Functional magnetic resonance imaging functional neuroimaging Humans Labyrinth Localization Magnetic fields Magnetic resonance imaging Male Medical imaging Middle Aged Neuroimaging neurotology NMR Nuclear magnetic resonance PET imaging Physical Stimulation Positron emission Positron emission tomography Proprioception - physiology Radiopharmaceuticals Receptors Semicircular canals Stimulation Stimuli Temporal Lobe - diagnostic imaging Temporal Lobe - physiology Tomography vertigo Vestibular stimuli Vestibular system vestibule Vestibule, Labyrinth - diagnostic imaging Vestibule, Labyrinth - physiology |
title | Positron emission tomography visualized stimulation of the vestibular organ is localized in Heschl's gyrus |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T16%3A47%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Positron%20emission%20tomography%20visualized%20stimulation%20of%20the%20vestibular%20organ%20is%20localized%20in%20Heschl's%20gyrus&rft.jtitle=Human%20brain%20mapping&rft.au=Devantier,%20Louise&rft.date=2020-01&rft.volume=41&rft.issue=1&rft.spage=185&rft.epage=193&rft.pages=185-193&rft.issn=1065-9471&rft.eissn=1097-0193&rft_id=info:doi/10.1002/hbm.24798&rft_dat=%3Cgale_pubme%3EA710623362%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2322599617&rft_id=info:pmid/31520516&rft_galeid=A710623362&rfr_iscdi=true |