Modulation of amygdala reactivity following rapidly acting interventions for major depression

Electroconvulsive therapy (ECT) and ketamine treatment both induce rapidly acting antidepressant effects in patients with major depressive disorder unresponsive to standard treatments, yet their specific impact on emotion processing is unknown. Here, we examined the neural underpinnings of emotion p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Human brain mapping 2020-05, Vol.41 (7), p.1699-1710
Hauptverfasser: Loureiro, Joana R. A., Leaver, Amber, Vasavada, Megha, Sahib, Ashish K., Kubicki, Antoni, Joshi, Shantanu, Woods, Roger P., Wade, Benjamin, Congdon, Eliza, Espinoza, Randall, Narr, Katherine L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1710
container_issue 7
container_start_page 1699
container_title Human brain mapping
container_volume 41
creator Loureiro, Joana R. A.
Leaver, Amber
Vasavada, Megha
Sahib, Ashish K.
Kubicki, Antoni
Joshi, Shantanu
Woods, Roger P.
Wade, Benjamin
Congdon, Eliza
Espinoza, Randall
Narr, Katherine L.
description Electroconvulsive therapy (ECT) and ketamine treatment both induce rapidly acting antidepressant effects in patients with major depressive disorder unresponsive to standard treatments, yet their specific impact on emotion processing is unknown. Here, we examined the neural underpinnings of emotion processing within and across patients (N = 44) receiving either ECT (N = 17, mean age: 36.8, 11.0 SD) or repeated subanesthetic (0.5 mg/kg) intravenous ketamine therapy (N = 27, mean age: 37.3, 10.8 SD) using a naturalistic study design. MRI and clinical data were collected before (TP1) and after treatment (TP2); healthy controls (N = 31, mean age: 34.5, 13.5 SD) completed one MRI session (TP1). An fMRI face‐matching task probed negative‐ and positive‐valence systems. Whole‐brain analysis, comparing neurofunctional changes within and across treatment groups, targeted brain regions involved in emotional facial processing, and included regions‐of‐interest analysis of amygdala responsivity. Main findings revealed a decrease in amygdalar reactivity after both ECT and ketamine for positive and negative emotional face processing (p
doi_str_mv 10.1002/hbm.24895
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7268016</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A710594162</galeid><sourcerecordid>A710594162</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5765-81f7185bab9855c508e4cc74b08415d7b824b0680427450e5f9ef9b159a8b0bf3</originalsourceid><addsrcrecordid>eNp1klFvFCEQxzdGY2v1wS9gNvFFH-4Ku7DAi0nbqDVp44s-GgIsXLmwcMLuNfvtnfVqtUZDAgP85j8zMFX1EqM1Rqg5vdHDuiFc0EfVMUaCrRAW7ePF7uhKEIaPqmelbBHCmCL8tDpqG7A44cfVt-vUT0GNPsU6uVoN86ZXQdXZKjP6vR_n2qUQ0q2Pmzqrne_DXC9XsPVxtHlv4-JcAMv1oLYw93aXbSlw-rx64lQo9sXdelJ9_fD-y8Xl6urzx08XZ1crQxmkyLFjmFOttOCUGoq4JcYwohEnmPZM8wbsjiPSMEKRpU5YJzSmQnGNtGtPqncH3d2kB9sbyCmrIHfZDyrPMikvH95EfyM3aS9ZA6q4A4E3dwI5fZ9sGeXgi7EhqGjTVGTTdoIzJhoE6Ou_0G2acoTygOJdR3mLxG9qo4KVProEcc0iKs8YRlQQ3DVArf9Bwejt4E2K1nk4f-Dw9uBgciolW3dfI0Zy6QUJvSB_9gKwr_58lHvy1-cDcHoAbiHK_H8leXl-fZD8AZYxvdM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2386658309</pqid></control><display><type>article</type><title>Modulation of amygdala reactivity following rapidly acting interventions for major depression</title><source>DOAJ Directory of Open Access Journals</source><source>Access via Wiley Online Library</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><source>PubMed Central</source><creator>Loureiro, Joana R. A. ; Leaver, Amber ; Vasavada, Megha ; Sahib, Ashish K. ; Kubicki, Antoni ; Joshi, Shantanu ; Woods, Roger P. ; Wade, Benjamin ; Congdon, Eliza ; Espinoza, Randall ; Narr, Katherine L.</creator><creatorcontrib>Loureiro, Joana R. A. ; Leaver, Amber ; Vasavada, Megha ; Sahib, Ashish K. ; Kubicki, Antoni ; Joshi, Shantanu ; Woods, Roger P. ; Wade, Benjamin ; Congdon, Eliza ; Espinoza, Randall ; Narr, Katherine L.</creatorcontrib><description>Electroconvulsive therapy (ECT) and ketamine treatment both induce rapidly acting antidepressant effects in patients with major depressive disorder unresponsive to standard treatments, yet their specific impact on emotion processing is unknown. Here, we examined the neural underpinnings of emotion processing within and across patients (N = 44) receiving either ECT (N = 17, mean age: 36.8, 11.0 SD) or repeated subanesthetic (0.5 mg/kg) intravenous ketamine therapy (N = 27, mean age: 37.3, 10.8 SD) using a naturalistic study design. MRI and clinical data were collected before (TP1) and after treatment (TP2); healthy controls (N = 31, mean age: 34.5, 13.5 SD) completed one MRI session (TP1). An fMRI face‐matching task probed negative‐ and positive‐valence systems. Whole‐brain analysis, comparing neurofunctional changes within and across treatment groups, targeted brain regions involved in emotional facial processing, and included regions‐of‐interest analysis of amygdala responsivity. Main findings revealed a decrease in amygdalar reactivity after both ECT and ketamine for positive and negative emotional face processing (p &lt; .05 family wise‐error (FWE) corrected). Subthreshold changes were observed between treatments within the dorsolateral prefrontal cortex and insula (p &lt; .005, uncorrected). BOLD change for positive faces in the inferior parietal cortex significantly correlated with overall symptom improvement, and BOLD change in frontal regions correlated with anxiety for negative faces, and anhedonia for positive faces (p &lt; .05 FWE corrected). Both serial ketamine and ECT treatment modulate amygdala response, while more subtle treatment‐specific changes occur in the larger functional network. Findings point to both common and differential mechanistic upstream systems‐level effects relating to fast‐acting antidepressant response, and symptoms of anxiety and anhedonia, for the processing of emotionally valenced stimuli.</description><identifier>ISSN: 1065-9471</identifier><identifier>EISSN: 1097-0193</identifier><identifier>DOI: 10.1002/hbm.24895</identifier><identifier>PMID: 32115848</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Age ; Amygdala ; Analysis ; Antidepressants ; Anxiety ; Attentional bias ; Brain ; Brain mapping ; Care and treatment ; Cortex (parietal) ; ECT ; Electroconvulsive therapy ; emotion processing ; Emotions ; Error correction ; Functional magnetic resonance imaging ; Hedonic response ; Information processing ; Intravenous administration ; Ketamine ; Major depressive disorder ; MDD ; Mental depression ; Patients ; Pattern recognition ; Prefrontal cortex ; tfMRI</subject><ispartof>Human brain mapping, 2020-05, Vol.41 (7), p.1699-1710</ispartof><rights>2020 The Authors. published by Wiley Periodicals, Inc.</rights><rights>2020 The Authors. Human Brain Mapping published by Wiley Periodicals, Inc.</rights><rights>COPYRIGHT 2020 John Wiley &amp; Sons, Inc.</rights><rights>2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5765-81f7185bab9855c508e4cc74b08415d7b824b0680427450e5f9ef9b159a8b0bf3</citedby><cites>FETCH-LOGICAL-c5765-81f7185bab9855c508e4cc74b08415d7b824b0680427450e5f9ef9b159a8b0bf3</cites><orcidid>0000-0001-9679-9571 ; 0000-0001-9550-804X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7268016/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7268016/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,1417,11562,27924,27925,45574,45575,46052,46476,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32115848$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Loureiro, Joana R. A.</creatorcontrib><creatorcontrib>Leaver, Amber</creatorcontrib><creatorcontrib>Vasavada, Megha</creatorcontrib><creatorcontrib>Sahib, Ashish K.</creatorcontrib><creatorcontrib>Kubicki, Antoni</creatorcontrib><creatorcontrib>Joshi, Shantanu</creatorcontrib><creatorcontrib>Woods, Roger P.</creatorcontrib><creatorcontrib>Wade, Benjamin</creatorcontrib><creatorcontrib>Congdon, Eliza</creatorcontrib><creatorcontrib>Espinoza, Randall</creatorcontrib><creatorcontrib>Narr, Katherine L.</creatorcontrib><title>Modulation of amygdala reactivity following rapidly acting interventions for major depression</title><title>Human brain mapping</title><addtitle>Hum Brain Mapp</addtitle><description>Electroconvulsive therapy (ECT) and ketamine treatment both induce rapidly acting antidepressant effects in patients with major depressive disorder unresponsive to standard treatments, yet their specific impact on emotion processing is unknown. Here, we examined the neural underpinnings of emotion processing within and across patients (N = 44) receiving either ECT (N = 17, mean age: 36.8, 11.0 SD) or repeated subanesthetic (0.5 mg/kg) intravenous ketamine therapy (N = 27, mean age: 37.3, 10.8 SD) using a naturalistic study design. MRI and clinical data were collected before (TP1) and after treatment (TP2); healthy controls (N = 31, mean age: 34.5, 13.5 SD) completed one MRI session (TP1). An fMRI face‐matching task probed negative‐ and positive‐valence systems. Whole‐brain analysis, comparing neurofunctional changes within and across treatment groups, targeted brain regions involved in emotional facial processing, and included regions‐of‐interest analysis of amygdala responsivity. Main findings revealed a decrease in amygdalar reactivity after both ECT and ketamine for positive and negative emotional face processing (p &lt; .05 family wise‐error (FWE) corrected). Subthreshold changes were observed between treatments within the dorsolateral prefrontal cortex and insula (p &lt; .005, uncorrected). BOLD change for positive faces in the inferior parietal cortex significantly correlated with overall symptom improvement, and BOLD change in frontal regions correlated with anxiety for negative faces, and anhedonia for positive faces (p &lt; .05 FWE corrected). Both serial ketamine and ECT treatment modulate amygdala response, while more subtle treatment‐specific changes occur in the larger functional network. Findings point to both common and differential mechanistic upstream systems‐level effects relating to fast‐acting antidepressant response, and symptoms of anxiety and anhedonia, for the processing of emotionally valenced stimuli.</description><subject>Age</subject><subject>Amygdala</subject><subject>Analysis</subject><subject>Antidepressants</subject><subject>Anxiety</subject><subject>Attentional bias</subject><subject>Brain</subject><subject>Brain mapping</subject><subject>Care and treatment</subject><subject>Cortex (parietal)</subject><subject>ECT</subject><subject>Electroconvulsive therapy</subject><subject>emotion processing</subject><subject>Emotions</subject><subject>Error correction</subject><subject>Functional magnetic resonance imaging</subject><subject>Hedonic response</subject><subject>Information processing</subject><subject>Intravenous administration</subject><subject>Ketamine</subject><subject>Major depressive disorder</subject><subject>MDD</subject><subject>Mental depression</subject><subject>Patients</subject><subject>Pattern recognition</subject><subject>Prefrontal cortex</subject><subject>tfMRI</subject><issn>1065-9471</issn><issn>1097-0193</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp1klFvFCEQxzdGY2v1wS9gNvFFH-4Ku7DAi0nbqDVp44s-GgIsXLmwcMLuNfvtnfVqtUZDAgP85j8zMFX1EqM1Rqg5vdHDuiFc0EfVMUaCrRAW7ePF7uhKEIaPqmelbBHCmCL8tDpqG7A44cfVt-vUT0GNPsU6uVoN86ZXQdXZKjP6vR_n2qUQ0q2Pmzqrne_DXC9XsPVxtHlv4-JcAMv1oLYw93aXbSlw-rx64lQo9sXdelJ9_fD-y8Xl6urzx08XZ1crQxmkyLFjmFOttOCUGoq4JcYwohEnmPZM8wbsjiPSMEKRpU5YJzSmQnGNtGtPqncH3d2kB9sbyCmrIHfZDyrPMikvH95EfyM3aS9ZA6q4A4E3dwI5fZ9sGeXgi7EhqGjTVGTTdoIzJhoE6Ou_0G2acoTygOJdR3mLxG9qo4KVProEcc0iKs8YRlQQ3DVArf9Bwejt4E2K1nk4f-Dw9uBgciolW3dfI0Zy6QUJvSB_9gKwr_58lHvy1-cDcHoAbiHK_H8leXl-fZD8AZYxvdM</recordid><startdate>202005</startdate><enddate>202005</enddate><creator>Loureiro, Joana R. A.</creator><creator>Leaver, Amber</creator><creator>Vasavada, Megha</creator><creator>Sahib, Ashish K.</creator><creator>Kubicki, Antoni</creator><creator>Joshi, Shantanu</creator><creator>Woods, Roger P.</creator><creator>Wade, Benjamin</creator><creator>Congdon, Eliza</creator><creator>Espinoza, Randall</creator><creator>Narr, Katherine L.</creator><general>John Wiley &amp; Sons, Inc</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9679-9571</orcidid><orcidid>https://orcid.org/0000-0001-9550-804X</orcidid></search><sort><creationdate>202005</creationdate><title>Modulation of amygdala reactivity following rapidly acting interventions for major depression</title><author>Loureiro, Joana R. A. ; Leaver, Amber ; Vasavada, Megha ; Sahib, Ashish K. ; Kubicki, Antoni ; Joshi, Shantanu ; Woods, Roger P. ; Wade, Benjamin ; Congdon, Eliza ; Espinoza, Randall ; Narr, Katherine L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5765-81f7185bab9855c508e4cc74b08415d7b824b0680427450e5f9ef9b159a8b0bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Age</topic><topic>Amygdala</topic><topic>Analysis</topic><topic>Antidepressants</topic><topic>Anxiety</topic><topic>Attentional bias</topic><topic>Brain</topic><topic>Brain mapping</topic><topic>Care and treatment</topic><topic>Cortex (parietal)</topic><topic>ECT</topic><topic>Electroconvulsive therapy</topic><topic>emotion processing</topic><topic>Emotions</topic><topic>Error correction</topic><topic>Functional magnetic resonance imaging</topic><topic>Hedonic response</topic><topic>Information processing</topic><topic>Intravenous administration</topic><topic>Ketamine</topic><topic>Major depressive disorder</topic><topic>MDD</topic><topic>Mental depression</topic><topic>Patients</topic><topic>Pattern recognition</topic><topic>Prefrontal cortex</topic><topic>tfMRI</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Loureiro, Joana R. A.</creatorcontrib><creatorcontrib>Leaver, Amber</creatorcontrib><creatorcontrib>Vasavada, Megha</creatorcontrib><creatorcontrib>Sahib, Ashish K.</creatorcontrib><creatorcontrib>Kubicki, Antoni</creatorcontrib><creatorcontrib>Joshi, Shantanu</creatorcontrib><creatorcontrib>Woods, Roger P.</creatorcontrib><creatorcontrib>Wade, Benjamin</creatorcontrib><creatorcontrib>Congdon, Eliza</creatorcontrib><creatorcontrib>Espinoza, Randall</creatorcontrib><creatorcontrib>Narr, Katherine L.</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Human brain mapping</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Loureiro, Joana R. A.</au><au>Leaver, Amber</au><au>Vasavada, Megha</au><au>Sahib, Ashish K.</au><au>Kubicki, Antoni</au><au>Joshi, Shantanu</au><au>Woods, Roger P.</au><au>Wade, Benjamin</au><au>Congdon, Eliza</au><au>Espinoza, Randall</au><au>Narr, Katherine L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modulation of amygdala reactivity following rapidly acting interventions for major depression</atitle><jtitle>Human brain mapping</jtitle><addtitle>Hum Brain Mapp</addtitle><date>2020-05</date><risdate>2020</risdate><volume>41</volume><issue>7</issue><spage>1699</spage><epage>1710</epage><pages>1699-1710</pages><issn>1065-9471</issn><eissn>1097-0193</eissn><abstract>Electroconvulsive therapy (ECT) and ketamine treatment both induce rapidly acting antidepressant effects in patients with major depressive disorder unresponsive to standard treatments, yet their specific impact on emotion processing is unknown. Here, we examined the neural underpinnings of emotion processing within and across patients (N = 44) receiving either ECT (N = 17, mean age: 36.8, 11.0 SD) or repeated subanesthetic (0.5 mg/kg) intravenous ketamine therapy (N = 27, mean age: 37.3, 10.8 SD) using a naturalistic study design. MRI and clinical data were collected before (TP1) and after treatment (TP2); healthy controls (N = 31, mean age: 34.5, 13.5 SD) completed one MRI session (TP1). An fMRI face‐matching task probed negative‐ and positive‐valence systems. Whole‐brain analysis, comparing neurofunctional changes within and across treatment groups, targeted brain regions involved in emotional facial processing, and included regions‐of‐interest analysis of amygdala responsivity. Main findings revealed a decrease in amygdalar reactivity after both ECT and ketamine for positive and negative emotional face processing (p &lt; .05 family wise‐error (FWE) corrected). Subthreshold changes were observed between treatments within the dorsolateral prefrontal cortex and insula (p &lt; .005, uncorrected). BOLD change for positive faces in the inferior parietal cortex significantly correlated with overall symptom improvement, and BOLD change in frontal regions correlated with anxiety for negative faces, and anhedonia for positive faces (p &lt; .05 FWE corrected). Both serial ketamine and ECT treatment modulate amygdala response, while more subtle treatment‐specific changes occur in the larger functional network. Findings point to both common and differential mechanistic upstream systems‐level effects relating to fast‐acting antidepressant response, and symptoms of anxiety and anhedonia, for the processing of emotionally valenced stimuli.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>32115848</pmid><doi>10.1002/hbm.24895</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-9679-9571</orcidid><orcidid>https://orcid.org/0000-0001-9550-804X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1065-9471
ispartof Human brain mapping, 2020-05, Vol.41 (7), p.1699-1710
issn 1065-9471
1097-0193
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7268016
source DOAJ Directory of Open Access Journals; Access via Wiley Online Library; EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection); PubMed Central
subjects Age
Amygdala
Analysis
Antidepressants
Anxiety
Attentional bias
Brain
Brain mapping
Care and treatment
Cortex (parietal)
ECT
Electroconvulsive therapy
emotion processing
Emotions
Error correction
Functional magnetic resonance imaging
Hedonic response
Information processing
Intravenous administration
Ketamine
Major depressive disorder
MDD
Mental depression
Patients
Pattern recognition
Prefrontal cortex
tfMRI
title Modulation of amygdala reactivity following rapidly acting interventions for major depression
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T15%3A30%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modulation%20of%20amygdala%20reactivity%20following%20rapidly%20acting%20interventions%20for%20major%20depression&rft.jtitle=Human%20brain%20mapping&rft.au=Loureiro,%20Joana%20R.%20A.&rft.date=2020-05&rft.volume=41&rft.issue=7&rft.spage=1699&rft.epage=1710&rft.pages=1699-1710&rft.issn=1065-9471&rft.eissn=1097-0193&rft_id=info:doi/10.1002/hbm.24895&rft_dat=%3Cgale_pubme%3EA710594162%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2386658309&rft_id=info:pmid/32115848&rft_galeid=A710594162&rfr_iscdi=true