Mitochondrial translation and dynamics synergistically extend lifespan in C. elegans through HLH-30

Mitochondrial form and function are closely interlinked in homeostasis and aging. Inhibiting mitochondrial translation is known to increase lifespan in C. elegans, and is accompanied by a fragmented mitochondrial network. However, whether this link between mitochondrial translation and morphology is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of cell biology 2020-06, Vol.219 (6), p.1
Hauptverfasser: Liu, Yasmine J, McIntyre, Rebecca L, Janssens, Georges E, Williams, Evan G, Lan, Jiayi, van Weeghel, Michel, Schomakers, Bauke, van der Veen, Henk, van der Wel, Nicole N, Yao, Pallas, Mair, William B, Aebersold, Ruedi, MacInnes, Alyson W, Houtkooper, Riekelt H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page 1
container_title The Journal of cell biology
container_volume 219
creator Liu, Yasmine J
McIntyre, Rebecca L
Janssens, Georges E
Williams, Evan G
Lan, Jiayi
van Weeghel, Michel
Schomakers, Bauke
van der Veen, Henk
van der Wel, Nicole N
Yao, Pallas
Mair, William B
Aebersold, Ruedi
MacInnes, Alyson W
Houtkooper, Riekelt H
description Mitochondrial form and function are closely interlinked in homeostasis and aging. Inhibiting mitochondrial translation is known to increase lifespan in C. elegans, and is accompanied by a fragmented mitochondrial network. However, whether this link between mitochondrial translation and morphology is causal in longevity remains uncharacterized. Here, we show in C. elegans that disrupting mitochondrial network homeostasis by blocking fission or fusion synergizes with reduced mitochondrial translation to prolong lifespan and stimulate stress response such as the mitochondrial unfolded protein response, UPRMT. Conversely, immobilizing the mitochondrial network through a simultaneous disruption of fission and fusion abrogates the lifespan increase induced by mitochondrial translation inhibition. Furthermore, we find that the synergistic effect of inhibiting both mitochondrial translation and dynamics on lifespan, despite stimulating UPRMT, does not require it. Instead, this lifespan-extending synergy is exclusively dependent on the lysosome biogenesis and autophagy transcription factor HLH-30/TFEB. Altogether, our study reveals the mechanistic crosstalk between mitochondrial translation, mitochondrial dynamics, and lysosomal signaling in regulating longevity.
doi_str_mv 10.1083/jcb.201907067
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7265311</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2404655257</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-c57b96609921d1f3b4168fe32f65c7599efa366ee0b429be0e7951ae796932283</originalsourceid><addsrcrecordid>eNpVUU1vEzEUtBCIpoUjV2SJ86bPnxtfkFBUSKVUXOBseb1vE0cbO9ibqvn3GDVE7eW9w4zmzbwh5BODOYOFuN35bs6BGWhBt2_IjCkJzYJJeEtmAJw1RnF1Ra5L2QGAbKV4T64E58owY2bEP4Qp-W2KfQ5upFN2sYxuCilSF3van6LbB19oOUXMm1Cm4N04nig-TVjxMQxYDi7SEOlyTnHETRWg0zan42ZLV-tVI-ADeTe4seDH874hv7_f_VqumvXPH_fLb-vGS6amxqu2M1qDMZz1bBCdZHoxoOCDVr5VxuDghNaI0EluOgRsjWKuTm1qoIW4IV-fdQ_Hbo-9x1jjjPaQw97lk00u2NdIDFu7SY-25VoJxqrAl7NATn-OWCa7S8ccq2fLJUit6ivbymqeWT6nUjIOlwsM7L9ObO3EXjqp_M8vbV3Y_0sQfwFHdohs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2404655257</pqid></control><display><type>article</type><title>Mitochondrial translation and dynamics synergistically extend lifespan in C. elegans through HLH-30</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Liu, Yasmine J ; McIntyre, Rebecca L ; Janssens, Georges E ; Williams, Evan G ; Lan, Jiayi ; van Weeghel, Michel ; Schomakers, Bauke ; van der Veen, Henk ; van der Wel, Nicole N ; Yao, Pallas ; Mair, William B ; Aebersold, Ruedi ; MacInnes, Alyson W ; Houtkooper, Riekelt H</creator><creatorcontrib>Liu, Yasmine J ; McIntyre, Rebecca L ; Janssens, Georges E ; Williams, Evan G ; Lan, Jiayi ; van Weeghel, Michel ; Schomakers, Bauke ; van der Veen, Henk ; van der Wel, Nicole N ; Yao, Pallas ; Mair, William B ; Aebersold, Ruedi ; MacInnes, Alyson W ; Houtkooper, Riekelt H</creatorcontrib><description>Mitochondrial form and function are closely interlinked in homeostasis and aging. Inhibiting mitochondrial translation is known to increase lifespan in C. elegans, and is accompanied by a fragmented mitochondrial network. However, whether this link between mitochondrial translation and morphology is causal in longevity remains uncharacterized. Here, we show in C. elegans that disrupting mitochondrial network homeostasis by blocking fission or fusion synergizes with reduced mitochondrial translation to prolong lifespan and stimulate stress response such as the mitochondrial unfolded protein response, UPRMT. Conversely, immobilizing the mitochondrial network through a simultaneous disruption of fission and fusion abrogates the lifespan increase induced by mitochondrial translation inhibition. Furthermore, we find that the synergistic effect of inhibiting both mitochondrial translation and dynamics on lifespan, despite stimulating UPRMT, does not require it. Instead, this lifespan-extending synergy is exclusively dependent on the lysosome biogenesis and autophagy transcription factor HLH-30/TFEB. Altogether, our study reveals the mechanistic crosstalk between mitochondrial translation, mitochondrial dynamics, and lysosomal signaling in regulating longevity.</description><identifier>ISSN: 0021-9525</identifier><identifier>EISSN: 1540-8140</identifier><identifier>DOI: 10.1083/jcb.201907067</identifier><identifier>PMID: 32259199</identifier><language>eng</language><publisher>United States: Rockefeller University Press</publisher><subject>Aging ; Animals ; Autophagosomes - drug effects ; Autophagosomes - metabolism ; Autophagosomes - ultrastructure ; Autophagy ; Basic Helix-Loop-Helix Transcription Factors - genetics ; Basic Helix-Loop-Helix Transcription Factors - metabolism ; Caenorhabditis elegans - metabolism ; Caenorhabditis elegans Proteins - genetics ; Caenorhabditis elegans Proteins - metabolism ; Cell Metabolism ; Cell Signaling ; Crosstalk ; Disruption ; Electrons ; Fission ; Gene Ontology ; Genetics ; Homeostasis ; Life span ; Longevity ; Longevity - genetics ; Longevity - physiology ; Lysosomes - drug effects ; Lysosomes - metabolism ; Lysosomes - ultrastructure ; Metabolism ; Microscopy, Electron, Transmission ; Mitochondria ; Mitochondria - genetics ; Mitochondria - metabolism ; Mitochondrial Dynamics - drug effects ; Morphology ; Phagocytosis ; Protein Biosynthesis - drug effects ; Protein Biosynthesis - physiology ; Protein folding ; Proteomics ; Reproduction - physiology ; RNA Interference ; Signal Transduction - drug effects ; Signal Transduction - physiology ; Synergistic effect ; Translation ; Unfolded Protein Response - drug effects ; Unfolded Protein Response - genetics ; Yeast</subject><ispartof>The Journal of cell biology, 2020-06, Vol.219 (6), p.1</ispartof><rights>2020 Liu et al.</rights><rights>Copyright Rockefeller University Press Jun 2020</rights><rights>2020 Liu et al. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-c57b96609921d1f3b4168fe32f65c7599efa366ee0b429be0e7951ae796932283</citedby><cites>FETCH-LOGICAL-c415t-c57b96609921d1f3b4168fe32f65c7599efa366ee0b429be0e7951ae796932283</cites><orcidid>0000-0002-6830-8023 ; 0000-0001-6392-3417 ; 0000-0002-4916-2866 ; 0000-0002-2863-8132 ; 0000-0002-9746-376X ; 0000-0002-2278-0779 ; 0000-0001-9961-0842</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32259199$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Yasmine J</creatorcontrib><creatorcontrib>McIntyre, Rebecca L</creatorcontrib><creatorcontrib>Janssens, Georges E</creatorcontrib><creatorcontrib>Williams, Evan G</creatorcontrib><creatorcontrib>Lan, Jiayi</creatorcontrib><creatorcontrib>van Weeghel, Michel</creatorcontrib><creatorcontrib>Schomakers, Bauke</creatorcontrib><creatorcontrib>van der Veen, Henk</creatorcontrib><creatorcontrib>van der Wel, Nicole N</creatorcontrib><creatorcontrib>Yao, Pallas</creatorcontrib><creatorcontrib>Mair, William B</creatorcontrib><creatorcontrib>Aebersold, Ruedi</creatorcontrib><creatorcontrib>MacInnes, Alyson W</creatorcontrib><creatorcontrib>Houtkooper, Riekelt H</creatorcontrib><title>Mitochondrial translation and dynamics synergistically extend lifespan in C. elegans through HLH-30</title><title>The Journal of cell biology</title><addtitle>J Cell Biol</addtitle><description>Mitochondrial form and function are closely interlinked in homeostasis and aging. Inhibiting mitochondrial translation is known to increase lifespan in C. elegans, and is accompanied by a fragmented mitochondrial network. However, whether this link between mitochondrial translation and morphology is causal in longevity remains uncharacterized. Here, we show in C. elegans that disrupting mitochondrial network homeostasis by blocking fission or fusion synergizes with reduced mitochondrial translation to prolong lifespan and stimulate stress response such as the mitochondrial unfolded protein response, UPRMT. Conversely, immobilizing the mitochondrial network through a simultaneous disruption of fission and fusion abrogates the lifespan increase induced by mitochondrial translation inhibition. Furthermore, we find that the synergistic effect of inhibiting both mitochondrial translation and dynamics on lifespan, despite stimulating UPRMT, does not require it. Instead, this lifespan-extending synergy is exclusively dependent on the lysosome biogenesis and autophagy transcription factor HLH-30/TFEB. Altogether, our study reveals the mechanistic crosstalk between mitochondrial translation, mitochondrial dynamics, and lysosomal signaling in regulating longevity.</description><subject>Aging</subject><subject>Animals</subject><subject>Autophagosomes - drug effects</subject><subject>Autophagosomes - metabolism</subject><subject>Autophagosomes - ultrastructure</subject><subject>Autophagy</subject><subject>Basic Helix-Loop-Helix Transcription Factors - genetics</subject><subject>Basic Helix-Loop-Helix Transcription Factors - metabolism</subject><subject>Caenorhabditis elegans - metabolism</subject><subject>Caenorhabditis elegans Proteins - genetics</subject><subject>Caenorhabditis elegans Proteins - metabolism</subject><subject>Cell Metabolism</subject><subject>Cell Signaling</subject><subject>Crosstalk</subject><subject>Disruption</subject><subject>Electrons</subject><subject>Fission</subject><subject>Gene Ontology</subject><subject>Genetics</subject><subject>Homeostasis</subject><subject>Life span</subject><subject>Longevity</subject><subject>Longevity - genetics</subject><subject>Longevity - physiology</subject><subject>Lysosomes - drug effects</subject><subject>Lysosomes - metabolism</subject><subject>Lysosomes - ultrastructure</subject><subject>Metabolism</subject><subject>Microscopy, Electron, Transmission</subject><subject>Mitochondria</subject><subject>Mitochondria - genetics</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondrial Dynamics - drug effects</subject><subject>Morphology</subject><subject>Phagocytosis</subject><subject>Protein Biosynthesis - drug effects</subject><subject>Protein Biosynthesis - physiology</subject><subject>Protein folding</subject><subject>Proteomics</subject><subject>Reproduction - physiology</subject><subject>RNA Interference</subject><subject>Signal Transduction - drug effects</subject><subject>Signal Transduction - physiology</subject><subject>Synergistic effect</subject><subject>Translation</subject><subject>Unfolded Protein Response - drug effects</subject><subject>Unfolded Protein Response - genetics</subject><subject>Yeast</subject><issn>0021-9525</issn><issn>1540-8140</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVUU1vEzEUtBCIpoUjV2SJ86bPnxtfkFBUSKVUXOBseb1vE0cbO9ibqvn3GDVE7eW9w4zmzbwh5BODOYOFuN35bs6BGWhBt2_IjCkJzYJJeEtmAJw1RnF1Ra5L2QGAbKV4T64E58owY2bEP4Qp-W2KfQ5upFN2sYxuCilSF3van6LbB19oOUXMm1Cm4N04nig-TVjxMQxYDi7SEOlyTnHETRWg0zan42ZLV-tVI-ADeTe4seDH874hv7_f_VqumvXPH_fLb-vGS6amxqu2M1qDMZz1bBCdZHoxoOCDVr5VxuDghNaI0EluOgRsjWKuTm1qoIW4IV-fdQ_Hbo-9x1jjjPaQw97lk00u2NdIDFu7SY-25VoJxqrAl7NATn-OWCa7S8ccq2fLJUit6ivbymqeWT6nUjIOlwsM7L9ObO3EXjqp_M8vbV3Y_0sQfwFHdohs</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Liu, Yasmine J</creator><creator>McIntyre, Rebecca L</creator><creator>Janssens, Georges E</creator><creator>Williams, Evan G</creator><creator>Lan, Jiayi</creator><creator>van Weeghel, Michel</creator><creator>Schomakers, Bauke</creator><creator>van der Veen, Henk</creator><creator>van der Wel, Nicole N</creator><creator>Yao, Pallas</creator><creator>Mair, William B</creator><creator>Aebersold, Ruedi</creator><creator>MacInnes, Alyson W</creator><creator>Houtkooper, Riekelt H</creator><general>Rockefeller University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6830-8023</orcidid><orcidid>https://orcid.org/0000-0001-6392-3417</orcidid><orcidid>https://orcid.org/0000-0002-4916-2866</orcidid><orcidid>https://orcid.org/0000-0002-2863-8132</orcidid><orcidid>https://orcid.org/0000-0002-9746-376X</orcidid><orcidid>https://orcid.org/0000-0002-2278-0779</orcidid><orcidid>https://orcid.org/0000-0001-9961-0842</orcidid></search><sort><creationdate>20200601</creationdate><title>Mitochondrial translation and dynamics synergistically extend lifespan in C. elegans through HLH-30</title><author>Liu, Yasmine J ; McIntyre, Rebecca L ; Janssens, Georges E ; Williams, Evan G ; Lan, Jiayi ; van Weeghel, Michel ; Schomakers, Bauke ; van der Veen, Henk ; van der Wel, Nicole N ; Yao, Pallas ; Mair, William B ; Aebersold, Ruedi ; MacInnes, Alyson W ; Houtkooper, Riekelt H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-c57b96609921d1f3b4168fe32f65c7599efa366ee0b429be0e7951ae796932283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aging</topic><topic>Animals</topic><topic>Autophagosomes - drug effects</topic><topic>Autophagosomes - metabolism</topic><topic>Autophagosomes - ultrastructure</topic><topic>Autophagy</topic><topic>Basic Helix-Loop-Helix Transcription Factors - genetics</topic><topic>Basic Helix-Loop-Helix Transcription Factors - metabolism</topic><topic>Caenorhabditis elegans - metabolism</topic><topic>Caenorhabditis elegans Proteins - genetics</topic><topic>Caenorhabditis elegans Proteins - metabolism</topic><topic>Cell Metabolism</topic><topic>Cell Signaling</topic><topic>Crosstalk</topic><topic>Disruption</topic><topic>Electrons</topic><topic>Fission</topic><topic>Gene Ontology</topic><topic>Genetics</topic><topic>Homeostasis</topic><topic>Life span</topic><topic>Longevity</topic><topic>Longevity - genetics</topic><topic>Longevity - physiology</topic><topic>Lysosomes - drug effects</topic><topic>Lysosomes - metabolism</topic><topic>Lysosomes - ultrastructure</topic><topic>Metabolism</topic><topic>Microscopy, Electron, Transmission</topic><topic>Mitochondria</topic><topic>Mitochondria - genetics</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondrial Dynamics - drug effects</topic><topic>Morphology</topic><topic>Phagocytosis</topic><topic>Protein Biosynthesis - drug effects</topic><topic>Protein Biosynthesis - physiology</topic><topic>Protein folding</topic><topic>Proteomics</topic><topic>Reproduction - physiology</topic><topic>RNA Interference</topic><topic>Signal Transduction - drug effects</topic><topic>Signal Transduction - physiology</topic><topic>Synergistic effect</topic><topic>Translation</topic><topic>Unfolded Protein Response - drug effects</topic><topic>Unfolded Protein Response - genetics</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yasmine J</creatorcontrib><creatorcontrib>McIntyre, Rebecca L</creatorcontrib><creatorcontrib>Janssens, Georges E</creatorcontrib><creatorcontrib>Williams, Evan G</creatorcontrib><creatorcontrib>Lan, Jiayi</creatorcontrib><creatorcontrib>van Weeghel, Michel</creatorcontrib><creatorcontrib>Schomakers, Bauke</creatorcontrib><creatorcontrib>van der Veen, Henk</creatorcontrib><creatorcontrib>van der Wel, Nicole N</creatorcontrib><creatorcontrib>Yao, Pallas</creatorcontrib><creatorcontrib>Mair, William B</creatorcontrib><creatorcontrib>Aebersold, Ruedi</creatorcontrib><creatorcontrib>MacInnes, Alyson W</creatorcontrib><creatorcontrib>Houtkooper, Riekelt H</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of cell biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Yasmine J</au><au>McIntyre, Rebecca L</au><au>Janssens, Georges E</au><au>Williams, Evan G</au><au>Lan, Jiayi</au><au>van Weeghel, Michel</au><au>Schomakers, Bauke</au><au>van der Veen, Henk</au><au>van der Wel, Nicole N</au><au>Yao, Pallas</au><au>Mair, William B</au><au>Aebersold, Ruedi</au><au>MacInnes, Alyson W</au><au>Houtkooper, Riekelt H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mitochondrial translation and dynamics synergistically extend lifespan in C. elegans through HLH-30</atitle><jtitle>The Journal of cell biology</jtitle><addtitle>J Cell Biol</addtitle><date>2020-06-01</date><risdate>2020</risdate><volume>219</volume><issue>6</issue><spage>1</spage><pages>1-</pages><issn>0021-9525</issn><eissn>1540-8140</eissn><abstract>Mitochondrial form and function are closely interlinked in homeostasis and aging. Inhibiting mitochondrial translation is known to increase lifespan in C. elegans, and is accompanied by a fragmented mitochondrial network. However, whether this link between mitochondrial translation and morphology is causal in longevity remains uncharacterized. Here, we show in C. elegans that disrupting mitochondrial network homeostasis by blocking fission or fusion synergizes with reduced mitochondrial translation to prolong lifespan and stimulate stress response such as the mitochondrial unfolded protein response, UPRMT. Conversely, immobilizing the mitochondrial network through a simultaneous disruption of fission and fusion abrogates the lifespan increase induced by mitochondrial translation inhibition. Furthermore, we find that the synergistic effect of inhibiting both mitochondrial translation and dynamics on lifespan, despite stimulating UPRMT, does not require it. Instead, this lifespan-extending synergy is exclusively dependent on the lysosome biogenesis and autophagy transcription factor HLH-30/TFEB. Altogether, our study reveals the mechanistic crosstalk between mitochondrial translation, mitochondrial dynamics, and lysosomal signaling in regulating longevity.</abstract><cop>United States</cop><pub>Rockefeller University Press</pub><pmid>32259199</pmid><doi>10.1083/jcb.201907067</doi><orcidid>https://orcid.org/0000-0002-6830-8023</orcidid><orcidid>https://orcid.org/0000-0001-6392-3417</orcidid><orcidid>https://orcid.org/0000-0002-4916-2866</orcidid><orcidid>https://orcid.org/0000-0002-2863-8132</orcidid><orcidid>https://orcid.org/0000-0002-9746-376X</orcidid><orcidid>https://orcid.org/0000-0002-2278-0779</orcidid><orcidid>https://orcid.org/0000-0001-9961-0842</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9525
ispartof The Journal of cell biology, 2020-06, Vol.219 (6), p.1
issn 0021-9525
1540-8140
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7265311
source MEDLINE; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Aging
Animals
Autophagosomes - drug effects
Autophagosomes - metabolism
Autophagosomes - ultrastructure
Autophagy
Basic Helix-Loop-Helix Transcription Factors - genetics
Basic Helix-Loop-Helix Transcription Factors - metabolism
Caenorhabditis elegans - metabolism
Caenorhabditis elegans Proteins - genetics
Caenorhabditis elegans Proteins - metabolism
Cell Metabolism
Cell Signaling
Crosstalk
Disruption
Electrons
Fission
Gene Ontology
Genetics
Homeostasis
Life span
Longevity
Longevity - genetics
Longevity - physiology
Lysosomes - drug effects
Lysosomes - metabolism
Lysosomes - ultrastructure
Metabolism
Microscopy, Electron, Transmission
Mitochondria
Mitochondria - genetics
Mitochondria - metabolism
Mitochondrial Dynamics - drug effects
Morphology
Phagocytosis
Protein Biosynthesis - drug effects
Protein Biosynthesis - physiology
Protein folding
Proteomics
Reproduction - physiology
RNA Interference
Signal Transduction - drug effects
Signal Transduction - physiology
Synergistic effect
Translation
Unfolded Protein Response - drug effects
Unfolded Protein Response - genetics
Yeast
title Mitochondrial translation and dynamics synergistically extend lifespan in C. elegans through HLH-30
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T17%3A59%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mitochondrial%20translation%20and%20dynamics%20synergistically%20extend%20lifespan%20in%20C.%20elegans%20through%20HLH-30&rft.jtitle=The%20Journal%20of%20cell%20biology&rft.au=Liu,%20Yasmine%20J&rft.date=2020-06-01&rft.volume=219&rft.issue=6&rft.spage=1&rft.pages=1-&rft.issn=0021-9525&rft.eissn=1540-8140&rft_id=info:doi/10.1083/jcb.201907067&rft_dat=%3Cproquest_pubme%3E2404655257%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2404655257&rft_id=info:pmid/32259199&rfr_iscdi=true