Mitochondrial translation and dynamics synergistically extend lifespan in C. elegans through HLH-30
Mitochondrial form and function are closely interlinked in homeostasis and aging. Inhibiting mitochondrial translation is known to increase lifespan in C. elegans, and is accompanied by a fragmented mitochondrial network. However, whether this link between mitochondrial translation and morphology is...
Gespeichert in:
Veröffentlicht in: | The Journal of cell biology 2020-06, Vol.219 (6), p.1 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | 1 |
container_title | The Journal of cell biology |
container_volume | 219 |
creator | Liu, Yasmine J McIntyre, Rebecca L Janssens, Georges E Williams, Evan G Lan, Jiayi van Weeghel, Michel Schomakers, Bauke van der Veen, Henk van der Wel, Nicole N Yao, Pallas Mair, William B Aebersold, Ruedi MacInnes, Alyson W Houtkooper, Riekelt H |
description | Mitochondrial form and function are closely interlinked in homeostasis and aging. Inhibiting mitochondrial translation is known to increase lifespan in C. elegans, and is accompanied by a fragmented mitochondrial network. However, whether this link between mitochondrial translation and morphology is causal in longevity remains uncharacterized. Here, we show in C. elegans that disrupting mitochondrial network homeostasis by blocking fission or fusion synergizes with reduced mitochondrial translation to prolong lifespan and stimulate stress response such as the mitochondrial unfolded protein response, UPRMT. Conversely, immobilizing the mitochondrial network through a simultaneous disruption of fission and fusion abrogates the lifespan increase induced by mitochondrial translation inhibition. Furthermore, we find that the synergistic effect of inhibiting both mitochondrial translation and dynamics on lifespan, despite stimulating UPRMT, does not require it. Instead, this lifespan-extending synergy is exclusively dependent on the lysosome biogenesis and autophagy transcription factor HLH-30/TFEB. Altogether, our study reveals the mechanistic crosstalk between mitochondrial translation, mitochondrial dynamics, and lysosomal signaling in regulating longevity. |
doi_str_mv | 10.1083/jcb.201907067 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7265311</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2404655257</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-c57b96609921d1f3b4168fe32f65c7599efa366ee0b429be0e7951ae796932283</originalsourceid><addsrcrecordid>eNpVUU1vEzEUtBCIpoUjV2SJ86bPnxtfkFBUSKVUXOBseb1vE0cbO9ibqvn3GDVE7eW9w4zmzbwh5BODOYOFuN35bs6BGWhBt2_IjCkJzYJJeEtmAJw1RnF1Ra5L2QGAbKV4T64E58owY2bEP4Qp-W2KfQ5upFN2sYxuCilSF3van6LbB19oOUXMm1Cm4N04nig-TVjxMQxYDi7SEOlyTnHETRWg0zan42ZLV-tVI-ADeTe4seDH874hv7_f_VqumvXPH_fLb-vGS6amxqu2M1qDMZz1bBCdZHoxoOCDVr5VxuDghNaI0EluOgRsjWKuTm1qoIW4IV-fdQ_Hbo-9x1jjjPaQw97lk00u2NdIDFu7SY-25VoJxqrAl7NATn-OWCa7S8ccq2fLJUit6ivbymqeWT6nUjIOlwsM7L9ObO3EXjqp_M8vbV3Y_0sQfwFHdohs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2404655257</pqid></control><display><type>article</type><title>Mitochondrial translation and dynamics synergistically extend lifespan in C. elegans through HLH-30</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Liu, Yasmine J ; McIntyre, Rebecca L ; Janssens, Georges E ; Williams, Evan G ; Lan, Jiayi ; van Weeghel, Michel ; Schomakers, Bauke ; van der Veen, Henk ; van der Wel, Nicole N ; Yao, Pallas ; Mair, William B ; Aebersold, Ruedi ; MacInnes, Alyson W ; Houtkooper, Riekelt H</creator><creatorcontrib>Liu, Yasmine J ; McIntyre, Rebecca L ; Janssens, Georges E ; Williams, Evan G ; Lan, Jiayi ; van Weeghel, Michel ; Schomakers, Bauke ; van der Veen, Henk ; van der Wel, Nicole N ; Yao, Pallas ; Mair, William B ; Aebersold, Ruedi ; MacInnes, Alyson W ; Houtkooper, Riekelt H</creatorcontrib><description>Mitochondrial form and function are closely interlinked in homeostasis and aging. Inhibiting mitochondrial translation is known to increase lifespan in C. elegans, and is accompanied by a fragmented mitochondrial network. However, whether this link between mitochondrial translation and morphology is causal in longevity remains uncharacterized. Here, we show in C. elegans that disrupting mitochondrial network homeostasis by blocking fission or fusion synergizes with reduced mitochondrial translation to prolong lifespan and stimulate stress response such as the mitochondrial unfolded protein response, UPRMT. Conversely, immobilizing the mitochondrial network through a simultaneous disruption of fission and fusion abrogates the lifespan increase induced by mitochondrial translation inhibition. Furthermore, we find that the synergistic effect of inhibiting both mitochondrial translation and dynamics on lifespan, despite stimulating UPRMT, does not require it. Instead, this lifespan-extending synergy is exclusively dependent on the lysosome biogenesis and autophagy transcription factor HLH-30/TFEB. Altogether, our study reveals the mechanistic crosstalk between mitochondrial translation, mitochondrial dynamics, and lysosomal signaling in regulating longevity.</description><identifier>ISSN: 0021-9525</identifier><identifier>EISSN: 1540-8140</identifier><identifier>DOI: 10.1083/jcb.201907067</identifier><identifier>PMID: 32259199</identifier><language>eng</language><publisher>United States: Rockefeller University Press</publisher><subject>Aging ; Animals ; Autophagosomes - drug effects ; Autophagosomes - metabolism ; Autophagosomes - ultrastructure ; Autophagy ; Basic Helix-Loop-Helix Transcription Factors - genetics ; Basic Helix-Loop-Helix Transcription Factors - metabolism ; Caenorhabditis elegans - metabolism ; Caenorhabditis elegans Proteins - genetics ; Caenorhabditis elegans Proteins - metabolism ; Cell Metabolism ; Cell Signaling ; Crosstalk ; Disruption ; Electrons ; Fission ; Gene Ontology ; Genetics ; Homeostasis ; Life span ; Longevity ; Longevity - genetics ; Longevity - physiology ; Lysosomes - drug effects ; Lysosomes - metabolism ; Lysosomes - ultrastructure ; Metabolism ; Microscopy, Electron, Transmission ; Mitochondria ; Mitochondria - genetics ; Mitochondria - metabolism ; Mitochondrial Dynamics - drug effects ; Morphology ; Phagocytosis ; Protein Biosynthesis - drug effects ; Protein Biosynthesis - physiology ; Protein folding ; Proteomics ; Reproduction - physiology ; RNA Interference ; Signal Transduction - drug effects ; Signal Transduction - physiology ; Synergistic effect ; Translation ; Unfolded Protein Response - drug effects ; Unfolded Protein Response - genetics ; Yeast</subject><ispartof>The Journal of cell biology, 2020-06, Vol.219 (6), p.1</ispartof><rights>2020 Liu et al.</rights><rights>Copyright Rockefeller University Press Jun 2020</rights><rights>2020 Liu et al. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-c57b96609921d1f3b4168fe32f65c7599efa366ee0b429be0e7951ae796932283</citedby><cites>FETCH-LOGICAL-c415t-c57b96609921d1f3b4168fe32f65c7599efa366ee0b429be0e7951ae796932283</cites><orcidid>0000-0002-6830-8023 ; 0000-0001-6392-3417 ; 0000-0002-4916-2866 ; 0000-0002-2863-8132 ; 0000-0002-9746-376X ; 0000-0002-2278-0779 ; 0000-0001-9961-0842</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32259199$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Yasmine J</creatorcontrib><creatorcontrib>McIntyre, Rebecca L</creatorcontrib><creatorcontrib>Janssens, Georges E</creatorcontrib><creatorcontrib>Williams, Evan G</creatorcontrib><creatorcontrib>Lan, Jiayi</creatorcontrib><creatorcontrib>van Weeghel, Michel</creatorcontrib><creatorcontrib>Schomakers, Bauke</creatorcontrib><creatorcontrib>van der Veen, Henk</creatorcontrib><creatorcontrib>van der Wel, Nicole N</creatorcontrib><creatorcontrib>Yao, Pallas</creatorcontrib><creatorcontrib>Mair, William B</creatorcontrib><creatorcontrib>Aebersold, Ruedi</creatorcontrib><creatorcontrib>MacInnes, Alyson W</creatorcontrib><creatorcontrib>Houtkooper, Riekelt H</creatorcontrib><title>Mitochondrial translation and dynamics synergistically extend lifespan in C. elegans through HLH-30</title><title>The Journal of cell biology</title><addtitle>J Cell Biol</addtitle><description>Mitochondrial form and function are closely interlinked in homeostasis and aging. Inhibiting mitochondrial translation is known to increase lifespan in C. elegans, and is accompanied by a fragmented mitochondrial network. However, whether this link between mitochondrial translation and morphology is causal in longevity remains uncharacterized. Here, we show in C. elegans that disrupting mitochondrial network homeostasis by blocking fission or fusion synergizes with reduced mitochondrial translation to prolong lifespan and stimulate stress response such as the mitochondrial unfolded protein response, UPRMT. Conversely, immobilizing the mitochondrial network through a simultaneous disruption of fission and fusion abrogates the lifespan increase induced by mitochondrial translation inhibition. Furthermore, we find that the synergistic effect of inhibiting both mitochondrial translation and dynamics on lifespan, despite stimulating UPRMT, does not require it. Instead, this lifespan-extending synergy is exclusively dependent on the lysosome biogenesis and autophagy transcription factor HLH-30/TFEB. Altogether, our study reveals the mechanistic crosstalk between mitochondrial translation, mitochondrial dynamics, and lysosomal signaling in regulating longevity.</description><subject>Aging</subject><subject>Animals</subject><subject>Autophagosomes - drug effects</subject><subject>Autophagosomes - metabolism</subject><subject>Autophagosomes - ultrastructure</subject><subject>Autophagy</subject><subject>Basic Helix-Loop-Helix Transcription Factors - genetics</subject><subject>Basic Helix-Loop-Helix Transcription Factors - metabolism</subject><subject>Caenorhabditis elegans - metabolism</subject><subject>Caenorhabditis elegans Proteins - genetics</subject><subject>Caenorhabditis elegans Proteins - metabolism</subject><subject>Cell Metabolism</subject><subject>Cell Signaling</subject><subject>Crosstalk</subject><subject>Disruption</subject><subject>Electrons</subject><subject>Fission</subject><subject>Gene Ontology</subject><subject>Genetics</subject><subject>Homeostasis</subject><subject>Life span</subject><subject>Longevity</subject><subject>Longevity - genetics</subject><subject>Longevity - physiology</subject><subject>Lysosomes - drug effects</subject><subject>Lysosomes - metabolism</subject><subject>Lysosomes - ultrastructure</subject><subject>Metabolism</subject><subject>Microscopy, Electron, Transmission</subject><subject>Mitochondria</subject><subject>Mitochondria - genetics</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondrial Dynamics - drug effects</subject><subject>Morphology</subject><subject>Phagocytosis</subject><subject>Protein Biosynthesis - drug effects</subject><subject>Protein Biosynthesis - physiology</subject><subject>Protein folding</subject><subject>Proteomics</subject><subject>Reproduction - physiology</subject><subject>RNA Interference</subject><subject>Signal Transduction - drug effects</subject><subject>Signal Transduction - physiology</subject><subject>Synergistic effect</subject><subject>Translation</subject><subject>Unfolded Protein Response - drug effects</subject><subject>Unfolded Protein Response - genetics</subject><subject>Yeast</subject><issn>0021-9525</issn><issn>1540-8140</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVUU1vEzEUtBCIpoUjV2SJ86bPnxtfkFBUSKVUXOBseb1vE0cbO9ibqvn3GDVE7eW9w4zmzbwh5BODOYOFuN35bs6BGWhBt2_IjCkJzYJJeEtmAJw1RnF1Ra5L2QGAbKV4T64E58owY2bEP4Qp-W2KfQ5upFN2sYxuCilSF3van6LbB19oOUXMm1Cm4N04nig-TVjxMQxYDi7SEOlyTnHETRWg0zan42ZLV-tVI-ADeTe4seDH874hv7_f_VqumvXPH_fLb-vGS6amxqu2M1qDMZz1bBCdZHoxoOCDVr5VxuDghNaI0EluOgRsjWKuTm1qoIW4IV-fdQ_Hbo-9x1jjjPaQw97lk00u2NdIDFu7SY-25VoJxqrAl7NATn-OWCa7S8ccq2fLJUit6ivbymqeWT6nUjIOlwsM7L9ObO3EXjqp_M8vbV3Y_0sQfwFHdohs</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Liu, Yasmine J</creator><creator>McIntyre, Rebecca L</creator><creator>Janssens, Georges E</creator><creator>Williams, Evan G</creator><creator>Lan, Jiayi</creator><creator>van Weeghel, Michel</creator><creator>Schomakers, Bauke</creator><creator>van der Veen, Henk</creator><creator>van der Wel, Nicole N</creator><creator>Yao, Pallas</creator><creator>Mair, William B</creator><creator>Aebersold, Ruedi</creator><creator>MacInnes, Alyson W</creator><creator>Houtkooper, Riekelt H</creator><general>Rockefeller University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6830-8023</orcidid><orcidid>https://orcid.org/0000-0001-6392-3417</orcidid><orcidid>https://orcid.org/0000-0002-4916-2866</orcidid><orcidid>https://orcid.org/0000-0002-2863-8132</orcidid><orcidid>https://orcid.org/0000-0002-9746-376X</orcidid><orcidid>https://orcid.org/0000-0002-2278-0779</orcidid><orcidid>https://orcid.org/0000-0001-9961-0842</orcidid></search><sort><creationdate>20200601</creationdate><title>Mitochondrial translation and dynamics synergistically extend lifespan in C. elegans through HLH-30</title><author>Liu, Yasmine J ; McIntyre, Rebecca L ; Janssens, Georges E ; Williams, Evan G ; Lan, Jiayi ; van Weeghel, Michel ; Schomakers, Bauke ; van der Veen, Henk ; van der Wel, Nicole N ; Yao, Pallas ; Mair, William B ; Aebersold, Ruedi ; MacInnes, Alyson W ; Houtkooper, Riekelt H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-c57b96609921d1f3b4168fe32f65c7599efa366ee0b429be0e7951ae796932283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aging</topic><topic>Animals</topic><topic>Autophagosomes - drug effects</topic><topic>Autophagosomes - metabolism</topic><topic>Autophagosomes - ultrastructure</topic><topic>Autophagy</topic><topic>Basic Helix-Loop-Helix Transcription Factors - genetics</topic><topic>Basic Helix-Loop-Helix Transcription Factors - metabolism</topic><topic>Caenorhabditis elegans - metabolism</topic><topic>Caenorhabditis elegans Proteins - genetics</topic><topic>Caenorhabditis elegans Proteins - metabolism</topic><topic>Cell Metabolism</topic><topic>Cell Signaling</topic><topic>Crosstalk</topic><topic>Disruption</topic><topic>Electrons</topic><topic>Fission</topic><topic>Gene Ontology</topic><topic>Genetics</topic><topic>Homeostasis</topic><topic>Life span</topic><topic>Longevity</topic><topic>Longevity - genetics</topic><topic>Longevity - physiology</topic><topic>Lysosomes - drug effects</topic><topic>Lysosomes - metabolism</topic><topic>Lysosomes - ultrastructure</topic><topic>Metabolism</topic><topic>Microscopy, Electron, Transmission</topic><topic>Mitochondria</topic><topic>Mitochondria - genetics</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondrial Dynamics - drug effects</topic><topic>Morphology</topic><topic>Phagocytosis</topic><topic>Protein Biosynthesis - drug effects</topic><topic>Protein Biosynthesis - physiology</topic><topic>Protein folding</topic><topic>Proteomics</topic><topic>Reproduction - physiology</topic><topic>RNA Interference</topic><topic>Signal Transduction - drug effects</topic><topic>Signal Transduction - physiology</topic><topic>Synergistic effect</topic><topic>Translation</topic><topic>Unfolded Protein Response - drug effects</topic><topic>Unfolded Protein Response - genetics</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yasmine J</creatorcontrib><creatorcontrib>McIntyre, Rebecca L</creatorcontrib><creatorcontrib>Janssens, Georges E</creatorcontrib><creatorcontrib>Williams, Evan G</creatorcontrib><creatorcontrib>Lan, Jiayi</creatorcontrib><creatorcontrib>van Weeghel, Michel</creatorcontrib><creatorcontrib>Schomakers, Bauke</creatorcontrib><creatorcontrib>van der Veen, Henk</creatorcontrib><creatorcontrib>van der Wel, Nicole N</creatorcontrib><creatorcontrib>Yao, Pallas</creatorcontrib><creatorcontrib>Mair, William B</creatorcontrib><creatorcontrib>Aebersold, Ruedi</creatorcontrib><creatorcontrib>MacInnes, Alyson W</creatorcontrib><creatorcontrib>Houtkooper, Riekelt H</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of cell biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Yasmine J</au><au>McIntyre, Rebecca L</au><au>Janssens, Georges E</au><au>Williams, Evan G</au><au>Lan, Jiayi</au><au>van Weeghel, Michel</au><au>Schomakers, Bauke</au><au>van der Veen, Henk</au><au>van der Wel, Nicole N</au><au>Yao, Pallas</au><au>Mair, William B</au><au>Aebersold, Ruedi</au><au>MacInnes, Alyson W</au><au>Houtkooper, Riekelt H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mitochondrial translation and dynamics synergistically extend lifespan in C. elegans through HLH-30</atitle><jtitle>The Journal of cell biology</jtitle><addtitle>J Cell Biol</addtitle><date>2020-06-01</date><risdate>2020</risdate><volume>219</volume><issue>6</issue><spage>1</spage><pages>1-</pages><issn>0021-9525</issn><eissn>1540-8140</eissn><abstract>Mitochondrial form and function are closely interlinked in homeostasis and aging. Inhibiting mitochondrial translation is known to increase lifespan in C. elegans, and is accompanied by a fragmented mitochondrial network. However, whether this link between mitochondrial translation and morphology is causal in longevity remains uncharacterized. Here, we show in C. elegans that disrupting mitochondrial network homeostasis by blocking fission or fusion synergizes with reduced mitochondrial translation to prolong lifespan and stimulate stress response such as the mitochondrial unfolded protein response, UPRMT. Conversely, immobilizing the mitochondrial network through a simultaneous disruption of fission and fusion abrogates the lifespan increase induced by mitochondrial translation inhibition. Furthermore, we find that the synergistic effect of inhibiting both mitochondrial translation and dynamics on lifespan, despite stimulating UPRMT, does not require it. Instead, this lifespan-extending synergy is exclusively dependent on the lysosome biogenesis and autophagy transcription factor HLH-30/TFEB. Altogether, our study reveals the mechanistic crosstalk between mitochondrial translation, mitochondrial dynamics, and lysosomal signaling in regulating longevity.</abstract><cop>United States</cop><pub>Rockefeller University Press</pub><pmid>32259199</pmid><doi>10.1083/jcb.201907067</doi><orcidid>https://orcid.org/0000-0002-6830-8023</orcidid><orcidid>https://orcid.org/0000-0001-6392-3417</orcidid><orcidid>https://orcid.org/0000-0002-4916-2866</orcidid><orcidid>https://orcid.org/0000-0002-2863-8132</orcidid><orcidid>https://orcid.org/0000-0002-9746-376X</orcidid><orcidid>https://orcid.org/0000-0002-2278-0779</orcidid><orcidid>https://orcid.org/0000-0001-9961-0842</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9525 |
ispartof | The Journal of cell biology, 2020-06, Vol.219 (6), p.1 |
issn | 0021-9525 1540-8140 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7265311 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Aging Animals Autophagosomes - drug effects Autophagosomes - metabolism Autophagosomes - ultrastructure Autophagy Basic Helix-Loop-Helix Transcription Factors - genetics Basic Helix-Loop-Helix Transcription Factors - metabolism Caenorhabditis elegans - metabolism Caenorhabditis elegans Proteins - genetics Caenorhabditis elegans Proteins - metabolism Cell Metabolism Cell Signaling Crosstalk Disruption Electrons Fission Gene Ontology Genetics Homeostasis Life span Longevity Longevity - genetics Longevity - physiology Lysosomes - drug effects Lysosomes - metabolism Lysosomes - ultrastructure Metabolism Microscopy, Electron, Transmission Mitochondria Mitochondria - genetics Mitochondria - metabolism Mitochondrial Dynamics - drug effects Morphology Phagocytosis Protein Biosynthesis - drug effects Protein Biosynthesis - physiology Protein folding Proteomics Reproduction - physiology RNA Interference Signal Transduction - drug effects Signal Transduction - physiology Synergistic effect Translation Unfolded Protein Response - drug effects Unfolded Protein Response - genetics Yeast |
title | Mitochondrial translation and dynamics synergistically extend lifespan in C. elegans through HLH-30 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T17%3A59%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mitochondrial%20translation%20and%20dynamics%20synergistically%20extend%20lifespan%20in%20C.%20elegans%20through%20HLH-30&rft.jtitle=The%20Journal%20of%20cell%20biology&rft.au=Liu,%20Yasmine%20J&rft.date=2020-06-01&rft.volume=219&rft.issue=6&rft.spage=1&rft.pages=1-&rft.issn=0021-9525&rft.eissn=1540-8140&rft_id=info:doi/10.1083/jcb.201907067&rft_dat=%3Cproquest_pubme%3E2404655257%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2404655257&rft_id=info:pmid/32259199&rfr_iscdi=true |