Independent anterograde transport and retrograde cotransport of domain components of myelinated axons

Neurons are highly polarized cells organized into functionally and molecularly distinct domains. A key question is whether the multiprotein complexes that comprise these domains are preassembled, transported, and inserted as a complex or whether their components are transported independently and ass...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of cell biology 2020-06, Vol.219 (6), p.1
Hauptverfasser: Bekku, Yoko, Salzer, James L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page 1
container_title The Journal of cell biology
container_volume 219
creator Bekku, Yoko
Salzer, James L
description Neurons are highly polarized cells organized into functionally and molecularly distinct domains. A key question is whether the multiprotein complexes that comprise these domains are preassembled, transported, and inserted as a complex or whether their components are transported independently and assemble locally. Here, we have dynamically imaged, in pairwise combinations, the vesicular transport of fluorescently tagged components of the nodes of Ranvier and other myelinated axonal domains in sensory neurons cultured alone or together with Schwann cells at the onset of myelination. In general, most proteins are transported independently in the anterograde direction. In contrast, there is substantial cotransport of proteins from distinct domains in the retrograde direction likely due to coendocytosis along the axon. Early myelination did not substantially change these patterns of transport, although it increased the overall numbers of axonal transport vesicles. Our results indicate domain components are transported in separate vesicles for local assembly, not as preformed complexes, and implicate endocytosis along axons as a mechanism of clearance.
doi_str_mv 10.1083/jcb.201906071
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7265310</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2404657790</sourcerecordid><originalsourceid>FETCH-LOGICAL-c481t-ee9e59f541e50f810ced45e0ed4586e885020e2878ea1f781fa109d732a45fc23</originalsourceid><addsrcrecordid>eNpdkUFP3DAQha0KVLbbHntFkbj0Ephx7LV9QUIr2iIhcYGzZZIJzSqxg51F8O9xBCyFy1h67-nTjB9jPxGOEXR1sqlvjzmggRUo_MIWKAWUGgXssQUAx9JILg_Yt5Q2ACCUqL6yg4pzbVCqBaML39BIefipcH6iGO6ia6iYovNpDHFWmyLS9GbU4d0KbdGEwXU-q8MYfIakWRyeqO-8m6gp3GPw6Tvbb12f6Mfru2Q3v8-v13_Ly6s_F-uzy7IWGqeSyJA0rRRIElqNUFMjJME89Yq0lsCBuFaaHLZKY-sQTKMq7oRsa14t2ekLd9zeDtTUeZ_oejvGbnDxyQbX2Y-O7_7Zu_BgFV_JCiEDfr0CYrjfUprs0KWa-t55CttkeWUAhRH555fs6FN0E7bR5_MsFyBWUikzA8uXVB1DSpHa3TIIdi7Q5gLtrsCcP_z_gl36rbHqGcLAmQA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2404657790</pqid></control><display><type>article</type><title>Independent anterograde transport and retrograde cotransport of domain components of myelinated axons</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Bekku, Yoko ; Salzer, James L</creator><creatorcontrib>Bekku, Yoko ; Salzer, James L</creatorcontrib><description>Neurons are highly polarized cells organized into functionally and molecularly distinct domains. A key question is whether the multiprotein complexes that comprise these domains are preassembled, transported, and inserted as a complex or whether their components are transported independently and assemble locally. Here, we have dynamically imaged, in pairwise combinations, the vesicular transport of fluorescently tagged components of the nodes of Ranvier and other myelinated axonal domains in sensory neurons cultured alone or together with Schwann cells at the onset of myelination. In general, most proteins are transported independently in the anterograde direction. In contrast, there is substantial cotransport of proteins from distinct domains in the retrograde direction likely due to coendocytosis along the axon. Early myelination did not substantially change these patterns of transport, although it increased the overall numbers of axonal transport vesicles. Our results indicate domain components are transported in separate vesicles for local assembly, not as preformed complexes, and implicate endocytosis along axons as a mechanism of clearance.</description><identifier>ISSN: 0021-9525</identifier><identifier>EISSN: 1540-8140</identifier><identifier>DOI: 10.1083/jcb.201906071</identifier><identifier>PMID: 32289157</identifier><language>eng</language><publisher>United States: Rockefeller University Press</publisher><subject>Animals ; Ankyrins - genetics ; Ankyrins - metabolism ; Anterograde transport ; Axonal transport ; Axonal Transport - physiology ; Axons ; Axons - metabolism ; Cell Adhesion Molecules - genetics ; Cell Adhesion Molecules - metabolism ; Cells, Cultured ; Cytoplasm - metabolism ; Endocytosis ; Endocytosis - genetics ; Endocytosis - physiology ; Myelin Sheath - metabolism ; Myelination ; Nerve Growth Factors - genetics ; Nerve Growth Factors - metabolism ; Neurons ; Neurons - metabolism ; Neuroscience ; Nodes of Ranvier ; Protein Domains ; Protein transport ; Proteins ; Rats ; Rats, Sprague-Dawley ; Schwann Cells ; Sensory neurons ; Trafficking ; Transport ; Transport Vesicles - metabolism ; Vesicles ; Vesicular Transport Proteins - genetics ; Vesicular Transport Proteins - metabolism</subject><ispartof>The Journal of cell biology, 2020-06, Vol.219 (6), p.1</ispartof><rights>2020 Bekku and Salzer.</rights><rights>Copyright Rockefeller University Press Jun 2020</rights><rights>2020 Bekku and Salzer 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c481t-ee9e59f541e50f810ced45e0ed4586e885020e2878ea1f781fa109d732a45fc23</citedby><cites>FETCH-LOGICAL-c481t-ee9e59f541e50f810ced45e0ed4586e885020e2878ea1f781fa109d732a45fc23</cites><orcidid>0000-0003-3206-1396 ; 0000-0001-9126-7197</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32289157$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bekku, Yoko</creatorcontrib><creatorcontrib>Salzer, James L</creatorcontrib><title>Independent anterograde transport and retrograde cotransport of domain components of myelinated axons</title><title>The Journal of cell biology</title><addtitle>J Cell Biol</addtitle><description>Neurons are highly polarized cells organized into functionally and molecularly distinct domains. A key question is whether the multiprotein complexes that comprise these domains are preassembled, transported, and inserted as a complex or whether their components are transported independently and assemble locally. Here, we have dynamically imaged, in pairwise combinations, the vesicular transport of fluorescently tagged components of the nodes of Ranvier and other myelinated axonal domains in sensory neurons cultured alone or together with Schwann cells at the onset of myelination. In general, most proteins are transported independently in the anterograde direction. In contrast, there is substantial cotransport of proteins from distinct domains in the retrograde direction likely due to coendocytosis along the axon. Early myelination did not substantially change these patterns of transport, although it increased the overall numbers of axonal transport vesicles. Our results indicate domain components are transported in separate vesicles for local assembly, not as preformed complexes, and implicate endocytosis along axons as a mechanism of clearance.</description><subject>Animals</subject><subject>Ankyrins - genetics</subject><subject>Ankyrins - metabolism</subject><subject>Anterograde transport</subject><subject>Axonal transport</subject><subject>Axonal Transport - physiology</subject><subject>Axons</subject><subject>Axons - metabolism</subject><subject>Cell Adhesion Molecules - genetics</subject><subject>Cell Adhesion Molecules - metabolism</subject><subject>Cells, Cultured</subject><subject>Cytoplasm - metabolism</subject><subject>Endocytosis</subject><subject>Endocytosis - genetics</subject><subject>Endocytosis - physiology</subject><subject>Myelin Sheath - metabolism</subject><subject>Myelination</subject><subject>Nerve Growth Factors - genetics</subject><subject>Nerve Growth Factors - metabolism</subject><subject>Neurons</subject><subject>Neurons - metabolism</subject><subject>Neuroscience</subject><subject>Nodes of Ranvier</subject><subject>Protein Domains</subject><subject>Protein transport</subject><subject>Proteins</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Schwann Cells</subject><subject>Sensory neurons</subject><subject>Trafficking</subject><subject>Transport</subject><subject>Transport Vesicles - metabolism</subject><subject>Vesicles</subject><subject>Vesicular Transport Proteins - genetics</subject><subject>Vesicular Transport Proteins - metabolism</subject><issn>0021-9525</issn><issn>1540-8140</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkUFP3DAQha0KVLbbHntFkbj0Ephx7LV9QUIr2iIhcYGzZZIJzSqxg51F8O9xBCyFy1h67-nTjB9jPxGOEXR1sqlvjzmggRUo_MIWKAWUGgXssQUAx9JILg_Yt5Q2ACCUqL6yg4pzbVCqBaML39BIefipcH6iGO6ia6iYovNpDHFWmyLS9GbU4d0KbdGEwXU-q8MYfIakWRyeqO-8m6gp3GPw6Tvbb12f6Mfru2Q3v8-v13_Ly6s_F-uzy7IWGqeSyJA0rRRIElqNUFMjJME89Yq0lsCBuFaaHLZKY-sQTKMq7oRsa14t2ekLd9zeDtTUeZ_oejvGbnDxyQbX2Y-O7_7Zu_BgFV_JCiEDfr0CYrjfUprs0KWa-t55CttkeWUAhRH555fs6FN0E7bR5_MsFyBWUikzA8uXVB1DSpHa3TIIdi7Q5gLtrsCcP_z_gl36rbHqGcLAmQA</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Bekku, Yoko</creator><creator>Salzer, James L</creator><general>Rockefeller University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3206-1396</orcidid><orcidid>https://orcid.org/0000-0001-9126-7197</orcidid></search><sort><creationdate>20200601</creationdate><title>Independent anterograde transport and retrograde cotransport of domain components of myelinated axons</title><author>Bekku, Yoko ; Salzer, James L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c481t-ee9e59f541e50f810ced45e0ed4586e885020e2878ea1f781fa109d732a45fc23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Ankyrins - genetics</topic><topic>Ankyrins - metabolism</topic><topic>Anterograde transport</topic><topic>Axonal transport</topic><topic>Axonal Transport - physiology</topic><topic>Axons</topic><topic>Axons - metabolism</topic><topic>Cell Adhesion Molecules - genetics</topic><topic>Cell Adhesion Molecules - metabolism</topic><topic>Cells, Cultured</topic><topic>Cytoplasm - metabolism</topic><topic>Endocytosis</topic><topic>Endocytosis - genetics</topic><topic>Endocytosis - physiology</topic><topic>Myelin Sheath - metabolism</topic><topic>Myelination</topic><topic>Nerve Growth Factors - genetics</topic><topic>Nerve Growth Factors - metabolism</topic><topic>Neurons</topic><topic>Neurons - metabolism</topic><topic>Neuroscience</topic><topic>Nodes of Ranvier</topic><topic>Protein Domains</topic><topic>Protein transport</topic><topic>Proteins</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Schwann Cells</topic><topic>Sensory neurons</topic><topic>Trafficking</topic><topic>Transport</topic><topic>Transport Vesicles - metabolism</topic><topic>Vesicles</topic><topic>Vesicular Transport Proteins - genetics</topic><topic>Vesicular Transport Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bekku, Yoko</creatorcontrib><creatorcontrib>Salzer, James L</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of cell biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bekku, Yoko</au><au>Salzer, James L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Independent anterograde transport and retrograde cotransport of domain components of myelinated axons</atitle><jtitle>The Journal of cell biology</jtitle><addtitle>J Cell Biol</addtitle><date>2020-06-01</date><risdate>2020</risdate><volume>219</volume><issue>6</issue><spage>1</spage><pages>1-</pages><issn>0021-9525</issn><eissn>1540-8140</eissn><abstract>Neurons are highly polarized cells organized into functionally and molecularly distinct domains. A key question is whether the multiprotein complexes that comprise these domains are preassembled, transported, and inserted as a complex or whether their components are transported independently and assemble locally. Here, we have dynamically imaged, in pairwise combinations, the vesicular transport of fluorescently tagged components of the nodes of Ranvier and other myelinated axonal domains in sensory neurons cultured alone or together with Schwann cells at the onset of myelination. In general, most proteins are transported independently in the anterograde direction. In contrast, there is substantial cotransport of proteins from distinct domains in the retrograde direction likely due to coendocytosis along the axon. Early myelination did not substantially change these patterns of transport, although it increased the overall numbers of axonal transport vesicles. Our results indicate domain components are transported in separate vesicles for local assembly, not as preformed complexes, and implicate endocytosis along axons as a mechanism of clearance.</abstract><cop>United States</cop><pub>Rockefeller University Press</pub><pmid>32289157</pmid><doi>10.1083/jcb.201906071</doi><orcidid>https://orcid.org/0000-0003-3206-1396</orcidid><orcidid>https://orcid.org/0000-0001-9126-7197</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9525
ispartof The Journal of cell biology, 2020-06, Vol.219 (6), p.1
issn 0021-9525
1540-8140
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7265310
source MEDLINE; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Animals
Ankyrins - genetics
Ankyrins - metabolism
Anterograde transport
Axonal transport
Axonal Transport - physiology
Axons
Axons - metabolism
Cell Adhesion Molecules - genetics
Cell Adhesion Molecules - metabolism
Cells, Cultured
Cytoplasm - metabolism
Endocytosis
Endocytosis - genetics
Endocytosis - physiology
Myelin Sheath - metabolism
Myelination
Nerve Growth Factors - genetics
Nerve Growth Factors - metabolism
Neurons
Neurons - metabolism
Neuroscience
Nodes of Ranvier
Protein Domains
Protein transport
Proteins
Rats
Rats, Sprague-Dawley
Schwann Cells
Sensory neurons
Trafficking
Transport
Transport Vesicles - metabolism
Vesicles
Vesicular Transport Proteins - genetics
Vesicular Transport Proteins - metabolism
title Independent anterograde transport and retrograde cotransport of domain components of myelinated axons
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T03%3A37%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Independent%20anterograde%20transport%20and%20retrograde%20cotransport%20of%20domain%20components%20of%20myelinated%20axons&rft.jtitle=The%20Journal%20of%20cell%20biology&rft.au=Bekku,%20Yoko&rft.date=2020-06-01&rft.volume=219&rft.issue=6&rft.spage=1&rft.pages=1-&rft.issn=0021-9525&rft.eissn=1540-8140&rft_id=info:doi/10.1083/jcb.201906071&rft_dat=%3Cproquest_pubme%3E2404657790%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2404657790&rft_id=info:pmid/32289157&rfr_iscdi=true