Effectiveness of zinc oxide-assisted photocatalysis for concerned constituents in reclaimed wastewater: 1,4-Dioxane, trihalomethanes, antibiotics, antibiotic resistant bacteria (ARB), and antibiotic resistance genes (ARGs)

Microbial and emerging chemical contaminants are unwanted constituents in reclaimed wastewater, due to the health concerns of using the water for agricultural irrigation, aquifer recharges, and potable water. Removal of these contaminants is required but it is currently challenging, given that there...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment 2019-02, Vol.649, p.1189-1197
Hauptverfasser: Hwangbo, Myung, Claycomb, Everett Caleb, Liu, Yina, Alivio, Theodore E.G., Banerjee, Sarbajit, Chu, Kung-Hui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1197
container_issue
container_start_page 1189
container_title The Science of the total environment
container_volume 649
creator Hwangbo, Myung
Claycomb, Everett Caleb
Liu, Yina
Alivio, Theodore E.G.
Banerjee, Sarbajit
Chu, Kung-Hui
description Microbial and emerging chemical contaminants are unwanted constituents in reclaimed wastewater, due to the health concerns of using the water for agricultural irrigation, aquifer recharges, and potable water. Removal of these contaminants is required but it is currently challenging, given that there is no simple treatment technology to effectively remove the mixture of these contaminants. This study examined the effectiveness of ZnO-assisted photocatalytic degradation of several constituents, including 1,4-dioxane, trihalomethanes (THMs), triclosan (TCS), triclocarban (TCC), antibiotic resistant bacteria (ARB) and antibiotic resistant genes (ARGs), under low intensity of UV exposure. E. coli with an ARGs-carrying circular plasmid (pUC19) was used as a model antibiotic resistant bacterium. Our results show that commercial zinc oxide (C-ZnO) assisted photodegradation of 1,4-dioxane, and dehalogenation of THMs, TCS, and TCC, while tetrapodal zinc oxide (T-ZnO) enhanced the dehalogenation of TCS and TCC. Additionally, T-ZnO assisted the photocatalytic inactivation of the E. coli within 6 h and caused structural changes in the plasmid DNA (pUC19) with additional UV exposure, resulting in non-functional AGR-containing plasmids. These results also suggest that higher UV dose is required not only to inactivate ARB but also to damage ARGs in the ARB in order to decrease risks in promoting ARB population in the environment. Overall, our results implicated that, under low UV intensity, ZnO-assisted photocatalysis is a promising alternative to simultaneously remove biological and emerging chemical contaminants in treated wastewater for safe reuse. C-ZnO = commercial zinc oxide; T-ZnO = tetrapod zinc oxide; ARB = antibiotic resistant bacteria; ARGs = antibiotic resistant genes. [Display omitted] •ZnO-assisted photocatalysis of 1,4-dioxane and THMs was effective.•Photocatalytic activity of ZnO remains unchanged after three times of reuse.•ZnO facilitated rapid inactivation of E. coli under low UV irradiation.•Damages of ARGs-containing plasmids were observed by photocatalysis with only ZnO.
doi_str_mv 10.1016/j.scitotenv.2018.08.360
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7263876</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S004896971833331X</els_id><sourcerecordid>30308890</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-539d59e7eade4e62e0cc20158cea99befbfd7a485abcbe4f759ae44acdcd76ba3</originalsourceid><addsrcrecordid>eNqFUdtuEzEQtRCIhsIvgB-plF282Yu9PCCFUgpSJSQEz9asPds4SuzIdtOWj-VbmFUgohISfrFn5pwznjmMvapEWYmqe7Muk3E5ZPT7ciEqVQpV1p14xGaVkn1RiUX3mM2EaFTRd708Yc9SWgs6UlVP2UktaqFUL2bs58U4oslujx5T4mHkP5w3PNw5iwWk5FJGy3erkIOBDJt7yvAxRG6CNxg9FemVsss36HPizvOIZgNuS5VbIPYtZIxveTVvig8u3IHHOc_RrWATtphXFKc5B5_d4EJ25kFAWtMPKMEHMKTjgL9efn1_NoHsv4AG-fU0ygS7TGfP2ZMRNglf_L5P2fePF9_OPxVXXy4_ny-vCtPINhdt3du2R4lgscFugcIYWmurDELfDzgOo5XQqBYGM2AzyrYHbBow1ljZDVCfsncH3d3NQJMb2kWEjd5Ft4V4rwM4_bDi3Upfh72Wi65WsiMBeRAwMaQUcTxyK6Eny_VaHy3Xk-VaKE2WE_Pl362PvD8eE2B5ACAtYO8wTkJIm7KOrMraBvffJr8ArojL1w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Effectiveness of zinc oxide-assisted photocatalysis for concerned constituents in reclaimed wastewater: 1,4-Dioxane, trihalomethanes, antibiotics, antibiotic resistant bacteria (ARB), and antibiotic resistance genes (ARGs)</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Hwangbo, Myung ; Claycomb, Everett Caleb ; Liu, Yina ; Alivio, Theodore E.G. ; Banerjee, Sarbajit ; Chu, Kung-Hui</creator><creatorcontrib>Hwangbo, Myung ; Claycomb, Everett Caleb ; Liu, Yina ; Alivio, Theodore E.G. ; Banerjee, Sarbajit ; Chu, Kung-Hui</creatorcontrib><description>Microbial and emerging chemical contaminants are unwanted constituents in reclaimed wastewater, due to the health concerns of using the water for agricultural irrigation, aquifer recharges, and potable water. Removal of these contaminants is required but it is currently challenging, given that there is no simple treatment technology to effectively remove the mixture of these contaminants. This study examined the effectiveness of ZnO-assisted photocatalytic degradation of several constituents, including 1,4-dioxane, trihalomethanes (THMs), triclosan (TCS), triclocarban (TCC), antibiotic resistant bacteria (ARB) and antibiotic resistant genes (ARGs), under low intensity of UV exposure. E. coli with an ARGs-carrying circular plasmid (pUC19) was used as a model antibiotic resistant bacterium. Our results show that commercial zinc oxide (C-ZnO) assisted photodegradation of 1,4-dioxane, and dehalogenation of THMs, TCS, and TCC, while tetrapodal zinc oxide (T-ZnO) enhanced the dehalogenation of TCS and TCC. Additionally, T-ZnO assisted the photocatalytic inactivation of the E. coli within 6 h and caused structural changes in the plasmid DNA (pUC19) with additional UV exposure, resulting in non-functional AGR-containing plasmids. These results also suggest that higher UV dose is required not only to inactivate ARB but also to damage ARGs in the ARB in order to decrease risks in promoting ARB population in the environment. Overall, our results implicated that, under low UV intensity, ZnO-assisted photocatalysis is a promising alternative to simultaneously remove biological and emerging chemical contaminants in treated wastewater for safe reuse. C-ZnO = commercial zinc oxide; T-ZnO = tetrapod zinc oxide; ARB = antibiotic resistant bacteria; ARGs = antibiotic resistant genes. [Display omitted] •ZnO-assisted photocatalysis of 1,4-dioxane and THMs was effective.•Photocatalytic activity of ZnO remains unchanged after three times of reuse.•ZnO facilitated rapid inactivation of E. coli under low UV irradiation.•Damages of ARGs-containing plasmids were observed by photocatalysis with only ZnO.</description><identifier>ISSN: 0048-9697</identifier><identifier>EISSN: 1879-1026</identifier><identifier>DOI: 10.1016/j.scitotenv.2018.08.360</identifier><identifier>PMID: 30308890</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Anti-Bacterial Agents - analysis ; Bacteria - drug effects ; Bactericidal effects ; Drug Resistance, Bacterial ; Emerging contaminants ; Genes, Bacterial ; Photocatalytic degradation ; Photolysis ; Plasmid DNA breaking ; Reclaimed water ; Waste Disposal, Fluid - methods ; Waste Water - analysis ; Water Pollutants, Chemical - analysis ; Zinc oxide ; Zinc Oxide - chemistry</subject><ispartof>The Science of the total environment, 2019-02, Vol.649, p.1189-1197</ispartof><rights>2018 Elsevier B.V.</rights><rights>Copyright © 2018 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-539d59e7eade4e62e0cc20158cea99befbfd7a485abcbe4f759ae44acdcd76ba3</citedby><cites>FETCH-LOGICAL-c475t-539d59e7eade4e62e0cc20158cea99befbfd7a485abcbe4f759ae44acdcd76ba3</cites><orcidid>0000-0001-9216-0519</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S004896971833331X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30308890$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hwangbo, Myung</creatorcontrib><creatorcontrib>Claycomb, Everett Caleb</creatorcontrib><creatorcontrib>Liu, Yina</creatorcontrib><creatorcontrib>Alivio, Theodore E.G.</creatorcontrib><creatorcontrib>Banerjee, Sarbajit</creatorcontrib><creatorcontrib>Chu, Kung-Hui</creatorcontrib><title>Effectiveness of zinc oxide-assisted photocatalysis for concerned constituents in reclaimed wastewater: 1,4-Dioxane, trihalomethanes, antibiotics, antibiotic resistant bacteria (ARB), and antibiotic resistance genes (ARGs)</title><title>The Science of the total environment</title><addtitle>Sci Total Environ</addtitle><description>Microbial and emerging chemical contaminants are unwanted constituents in reclaimed wastewater, due to the health concerns of using the water for agricultural irrigation, aquifer recharges, and potable water. Removal of these contaminants is required but it is currently challenging, given that there is no simple treatment technology to effectively remove the mixture of these contaminants. This study examined the effectiveness of ZnO-assisted photocatalytic degradation of several constituents, including 1,4-dioxane, trihalomethanes (THMs), triclosan (TCS), triclocarban (TCC), antibiotic resistant bacteria (ARB) and antibiotic resistant genes (ARGs), under low intensity of UV exposure. E. coli with an ARGs-carrying circular plasmid (pUC19) was used as a model antibiotic resistant bacterium. Our results show that commercial zinc oxide (C-ZnO) assisted photodegradation of 1,4-dioxane, and dehalogenation of THMs, TCS, and TCC, while tetrapodal zinc oxide (T-ZnO) enhanced the dehalogenation of TCS and TCC. Additionally, T-ZnO assisted the photocatalytic inactivation of the E. coli within 6 h and caused structural changes in the plasmid DNA (pUC19) with additional UV exposure, resulting in non-functional AGR-containing plasmids. These results also suggest that higher UV dose is required not only to inactivate ARB but also to damage ARGs in the ARB in order to decrease risks in promoting ARB population in the environment. Overall, our results implicated that, under low UV intensity, ZnO-assisted photocatalysis is a promising alternative to simultaneously remove biological and emerging chemical contaminants in treated wastewater for safe reuse. C-ZnO = commercial zinc oxide; T-ZnO = tetrapod zinc oxide; ARB = antibiotic resistant bacteria; ARGs = antibiotic resistant genes. [Display omitted] •ZnO-assisted photocatalysis of 1,4-dioxane and THMs was effective.•Photocatalytic activity of ZnO remains unchanged after three times of reuse.•ZnO facilitated rapid inactivation of E. coli under low UV irradiation.•Damages of ARGs-containing plasmids were observed by photocatalysis with only ZnO.</description><subject>Anti-Bacterial Agents - analysis</subject><subject>Bacteria - drug effects</subject><subject>Bactericidal effects</subject><subject>Drug Resistance, Bacterial</subject><subject>Emerging contaminants</subject><subject>Genes, Bacterial</subject><subject>Photocatalytic degradation</subject><subject>Photolysis</subject><subject>Plasmid DNA breaking</subject><subject>Reclaimed water</subject><subject>Waste Disposal, Fluid - methods</subject><subject>Waste Water - analysis</subject><subject>Water Pollutants, Chemical - analysis</subject><subject>Zinc oxide</subject><subject>Zinc Oxide - chemistry</subject><issn>0048-9697</issn><issn>1879-1026</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFUdtuEzEQtRCIhsIvgB-plF282Yu9PCCFUgpSJSQEz9asPds4SuzIdtOWj-VbmFUgohISfrFn5pwznjmMvapEWYmqe7Muk3E5ZPT7ciEqVQpV1p14xGaVkn1RiUX3mM2EaFTRd708Yc9SWgs6UlVP2UktaqFUL2bs58U4oslujx5T4mHkP5w3PNw5iwWk5FJGy3erkIOBDJt7yvAxRG6CNxg9FemVsss36HPizvOIZgNuS5VbIPYtZIxveTVvig8u3IHHOc_RrWATtphXFKc5B5_d4EJ25kFAWtMPKMEHMKTjgL9efn1_NoHsv4AG-fU0ygS7TGfP2ZMRNglf_L5P2fePF9_OPxVXXy4_ny-vCtPINhdt3du2R4lgscFugcIYWmurDELfDzgOo5XQqBYGM2AzyrYHbBow1ljZDVCfsncH3d3NQJMb2kWEjd5Ft4V4rwM4_bDi3Upfh72Wi65WsiMBeRAwMaQUcTxyK6Eny_VaHy3Xk-VaKE2WE_Pl362PvD8eE2B5ACAtYO8wTkJIm7KOrMraBvffJr8ArojL1w</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Hwangbo, Myung</creator><creator>Claycomb, Everett Caleb</creator><creator>Liu, Yina</creator><creator>Alivio, Theodore E.G.</creator><creator>Banerjee, Sarbajit</creator><creator>Chu, Kung-Hui</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9216-0519</orcidid></search><sort><creationdate>20190201</creationdate><title>Effectiveness of zinc oxide-assisted photocatalysis for concerned constituents in reclaimed wastewater: 1,4-Dioxane, trihalomethanes, antibiotics, antibiotic resistant bacteria (ARB), and antibiotic resistance genes (ARGs)</title><author>Hwangbo, Myung ; Claycomb, Everett Caleb ; Liu, Yina ; Alivio, Theodore E.G. ; Banerjee, Sarbajit ; Chu, Kung-Hui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-539d59e7eade4e62e0cc20158cea99befbfd7a485abcbe4f759ae44acdcd76ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Anti-Bacterial Agents - analysis</topic><topic>Bacteria - drug effects</topic><topic>Bactericidal effects</topic><topic>Drug Resistance, Bacterial</topic><topic>Emerging contaminants</topic><topic>Genes, Bacterial</topic><topic>Photocatalytic degradation</topic><topic>Photolysis</topic><topic>Plasmid DNA breaking</topic><topic>Reclaimed water</topic><topic>Waste Disposal, Fluid - methods</topic><topic>Waste Water - analysis</topic><topic>Water Pollutants, Chemical - analysis</topic><topic>Zinc oxide</topic><topic>Zinc Oxide - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hwangbo, Myung</creatorcontrib><creatorcontrib>Claycomb, Everett Caleb</creatorcontrib><creatorcontrib>Liu, Yina</creatorcontrib><creatorcontrib>Alivio, Theodore E.G.</creatorcontrib><creatorcontrib>Banerjee, Sarbajit</creatorcontrib><creatorcontrib>Chu, Kung-Hui</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Science of the total environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hwangbo, Myung</au><au>Claycomb, Everett Caleb</au><au>Liu, Yina</au><au>Alivio, Theodore E.G.</au><au>Banerjee, Sarbajit</au><au>Chu, Kung-Hui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effectiveness of zinc oxide-assisted photocatalysis for concerned constituents in reclaimed wastewater: 1,4-Dioxane, trihalomethanes, antibiotics, antibiotic resistant bacteria (ARB), and antibiotic resistance genes (ARGs)</atitle><jtitle>The Science of the total environment</jtitle><addtitle>Sci Total Environ</addtitle><date>2019-02-01</date><risdate>2019</risdate><volume>649</volume><spage>1189</spage><epage>1197</epage><pages>1189-1197</pages><issn>0048-9697</issn><eissn>1879-1026</eissn><abstract>Microbial and emerging chemical contaminants are unwanted constituents in reclaimed wastewater, due to the health concerns of using the water for agricultural irrigation, aquifer recharges, and potable water. Removal of these contaminants is required but it is currently challenging, given that there is no simple treatment technology to effectively remove the mixture of these contaminants. This study examined the effectiveness of ZnO-assisted photocatalytic degradation of several constituents, including 1,4-dioxane, trihalomethanes (THMs), triclosan (TCS), triclocarban (TCC), antibiotic resistant bacteria (ARB) and antibiotic resistant genes (ARGs), under low intensity of UV exposure. E. coli with an ARGs-carrying circular plasmid (pUC19) was used as a model antibiotic resistant bacterium. Our results show that commercial zinc oxide (C-ZnO) assisted photodegradation of 1,4-dioxane, and dehalogenation of THMs, TCS, and TCC, while tetrapodal zinc oxide (T-ZnO) enhanced the dehalogenation of TCS and TCC. Additionally, T-ZnO assisted the photocatalytic inactivation of the E. coli within 6 h and caused structural changes in the plasmid DNA (pUC19) with additional UV exposure, resulting in non-functional AGR-containing plasmids. These results also suggest that higher UV dose is required not only to inactivate ARB but also to damage ARGs in the ARB in order to decrease risks in promoting ARB population in the environment. Overall, our results implicated that, under low UV intensity, ZnO-assisted photocatalysis is a promising alternative to simultaneously remove biological and emerging chemical contaminants in treated wastewater for safe reuse. C-ZnO = commercial zinc oxide; T-ZnO = tetrapod zinc oxide; ARB = antibiotic resistant bacteria; ARGs = antibiotic resistant genes. [Display omitted] •ZnO-assisted photocatalysis of 1,4-dioxane and THMs was effective.•Photocatalytic activity of ZnO remains unchanged after three times of reuse.•ZnO facilitated rapid inactivation of E. coli under low UV irradiation.•Damages of ARGs-containing plasmids were observed by photocatalysis with only ZnO.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>30308890</pmid><doi>10.1016/j.scitotenv.2018.08.360</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-9216-0519</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0048-9697
ispartof The Science of the total environment, 2019-02, Vol.649, p.1189-1197
issn 0048-9697
1879-1026
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7263876
source MEDLINE; Elsevier ScienceDirect Journals
subjects Anti-Bacterial Agents - analysis
Bacteria - drug effects
Bactericidal effects
Drug Resistance, Bacterial
Emerging contaminants
Genes, Bacterial
Photocatalytic degradation
Photolysis
Plasmid DNA breaking
Reclaimed water
Waste Disposal, Fluid - methods
Waste Water - analysis
Water Pollutants, Chemical - analysis
Zinc oxide
Zinc Oxide - chemistry
title Effectiveness of zinc oxide-assisted photocatalysis for concerned constituents in reclaimed wastewater: 1,4-Dioxane, trihalomethanes, antibiotics, antibiotic resistant bacteria (ARB), and antibiotic resistance genes (ARGs)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T16%3A39%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effectiveness%20of%20zinc%20oxide-assisted%20photocatalysis%20for%20concerned%20constituents%20in%20reclaimed%20wastewater:%201,4-Dioxane,%20trihalomethanes,%20antibiotics,%20antibiotic%20resistant%20bacteria%20(ARB),%20and%20antibiotic%20resistance%20genes%20(ARGs)&rft.jtitle=The%20Science%20of%20the%20total%20environment&rft.au=Hwangbo,%20Myung&rft.date=2019-02-01&rft.volume=649&rft.spage=1189&rft.epage=1197&rft.pages=1189-1197&rft.issn=0048-9697&rft.eissn=1879-1026&rft_id=info:doi/10.1016/j.scitotenv.2018.08.360&rft_dat=%3Cpubmed_cross%3E30308890%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/30308890&rft_els_id=S004896971833331X&rfr_iscdi=true