SingleCellSignalR: inference of intercellular networks from single-cell transcriptomics
Single-cell transcriptomics offers unprecedented opportunities to infer the ligand-receptor (LR) interactions underlying cellular networks. We introduce a new, curated LR database and a novel regularized score to perform such inferences. For the first time, we try to assess the confidence in predict...
Gespeichert in:
Veröffentlicht in: | Nucleic acids research 2020-06, Vol.48 (10), p.e55-e55 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e55 |
---|---|
container_issue | 10 |
container_start_page | e55 |
container_title | Nucleic acids research |
container_volume | 48 |
creator | Cabello-Aguilar, Simon Alame, Mélissa Kon-Sun-Tack, Fabien Fau, Caroline Lacroix, Matthieu Colinge, Jacques |
description | Single-cell transcriptomics offers unprecedented opportunities to infer the ligand-receptor (LR) interactions underlying cellular networks. We introduce a new, curated LR database and a novel regularized score to perform such inferences. For the first time, we try to assess the confidence in predicted LR interactions and show that our regularized score outperforms other scoring schemes while controlling false positives. SingleCellSignalR is implemented as an open-access R package accessible to entry-level users and available from https://github.com/SCA-IRCM. Analysis results come in a variety of tabular and graphical formats. For instance, we provide a unique network view integrating all the intercellular interactions, and a function relating receptors to expressed intracellular pathways. A detailed comparison of related tools is conducted. Among various examples, we demonstrate SingleCellSignalR on mouse epidermis data and discover an oriented communication structure from external to basal layers. |
doi_str_mv | 10.1093/nar/gkaa183 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7261168</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2381625175</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-28067fa023c14e5c5dc4eeb2d65f77df4ba9d636679708a7f187ea2905afcc523</originalsourceid><addsrcrecordid>eNpdkc1vEzEQxS0EoqFw4o72CEJLPf7c5YBURZQiRUKiII6W4x2nprt2sDdF_Pd1SKiAkzV-v3n2zCPkOdA3QHt-Fm0-29xYCx1_QBbAFWtFr9hDsqCcyhao6E7Ik1K-UwoCpHhMTjiDXgHIBfl2FeJmxCWO41XYRDt-ftuE6DFjdNgkX4sZs6vybrS5iTj_TPmmND6nqSm_e9u92szZxuJy2M5pCq48JY-8HQs-O56n5OvF-y_Ly3b16cPH5fmqdQJgbllHlfaWMu5AoHRycAJxzQYlvdaDF2vbD4orpXtNO6s9dBot66m03jnJ-Cl5d_Dd7tYTDg5j_chotjlMNv8yyQbzrxLDtdmkW6NZXYDqqsGrg8H1f22X5yuzv6MCmOo7eguVfXl8LKcfOyyzmULZT28jpl0xjHegmAQtK_r6gLqcSsno772Bmn1spsZmjrFV-sXfU9yzf3LidyE3ln0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2381625175</pqid></control><display><type>article</type><title>SingleCellSignalR: inference of intercellular networks from single-cell transcriptomics</title><source>MEDLINE</source><source>Open Access: Oxford University Press Open Journals</source><source>PubMed Central</source><source>Directory of Open Access Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Cabello-Aguilar, Simon ; Alame, Mélissa ; Kon-Sun-Tack, Fabien ; Fau, Caroline ; Lacroix, Matthieu ; Colinge, Jacques</creator><creatorcontrib>Cabello-Aguilar, Simon ; Alame, Mélissa ; Kon-Sun-Tack, Fabien ; Fau, Caroline ; Lacroix, Matthieu ; Colinge, Jacques</creatorcontrib><description>Single-cell transcriptomics offers unprecedented opportunities to infer the ligand-receptor (LR) interactions underlying cellular networks. We introduce a new, curated LR database and a novel regularized score to perform such inferences. For the first time, we try to assess the confidence in predicted LR interactions and show that our regularized score outperforms other scoring schemes while controlling false positives. SingleCellSignalR is implemented as an open-access R package accessible to entry-level users and available from https://github.com/SCA-IRCM. Analysis results come in a variety of tabular and graphical formats. For instance, we provide a unique network view integrating all the intercellular interactions, and a function relating receptors to expressed intracellular pathways. A detailed comparison of related tools is conducted. Among various examples, we demonstrate SingleCellSignalR on mouse epidermis data and discover an oriented communication structure from external to basal layers.</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkaa183</identifier><identifier>PMID: 32196115</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Animals ; Epidermis ; Epidermis - metabolism ; Gene Expression Profiling ; Gene Expression Profiling - methods ; Life Sciences ; Ligands ; Methods Online ; Mice ; Signal Transduction ; Single-Cell Analysis ; Single-Cell Analysis - methods ; Software ; Workflow</subject><ispartof>Nucleic acids research, 2020-06, Vol.48 (10), p.e55-e55</ispartof><rights>The Author(s) 2020. Published by Oxford University Press on behalf of Nucleic Acids Research.</rights><rights>Attribution - NoDerivatives</rights><rights>The Author(s) 2020. Published by Oxford University Press on behalf of Nucleic Acids Research. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-28067fa023c14e5c5dc4eeb2d65f77df4ba9d636679708a7f187ea2905afcc523</citedby><cites>FETCH-LOGICAL-c411t-28067fa023c14e5c5dc4eeb2d65f77df4ba9d636679708a7f187ea2905afcc523</cites><orcidid>0000-0002-2904-7430 ; 0000-0002-1268-9058 ; 0000-0003-2466-4824</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7261168/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7261168/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32196115$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04126980$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Cabello-Aguilar, Simon</creatorcontrib><creatorcontrib>Alame, Mélissa</creatorcontrib><creatorcontrib>Kon-Sun-Tack, Fabien</creatorcontrib><creatorcontrib>Fau, Caroline</creatorcontrib><creatorcontrib>Lacroix, Matthieu</creatorcontrib><creatorcontrib>Colinge, Jacques</creatorcontrib><title>SingleCellSignalR: inference of intercellular networks from single-cell transcriptomics</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>Single-cell transcriptomics offers unprecedented opportunities to infer the ligand-receptor (LR) interactions underlying cellular networks. We introduce a new, curated LR database and a novel regularized score to perform such inferences. For the first time, we try to assess the confidence in predicted LR interactions and show that our regularized score outperforms other scoring schemes while controlling false positives. SingleCellSignalR is implemented as an open-access R package accessible to entry-level users and available from https://github.com/SCA-IRCM. Analysis results come in a variety of tabular and graphical formats. For instance, we provide a unique network view integrating all the intercellular interactions, and a function relating receptors to expressed intracellular pathways. A detailed comparison of related tools is conducted. Among various examples, we demonstrate SingleCellSignalR on mouse epidermis data and discover an oriented communication structure from external to basal layers.</description><subject>Animals</subject><subject>Epidermis</subject><subject>Epidermis - metabolism</subject><subject>Gene Expression Profiling</subject><subject>Gene Expression Profiling - methods</subject><subject>Life Sciences</subject><subject>Ligands</subject><subject>Methods Online</subject><subject>Mice</subject><subject>Signal Transduction</subject><subject>Single-Cell Analysis</subject><subject>Single-Cell Analysis - methods</subject><subject>Software</subject><subject>Workflow</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1vEzEQxS0EoqFw4o72CEJLPf7c5YBURZQiRUKiII6W4x2nprt2sDdF_Pd1SKiAkzV-v3n2zCPkOdA3QHt-Fm0-29xYCx1_QBbAFWtFr9hDsqCcyhao6E7Ik1K-UwoCpHhMTjiDXgHIBfl2FeJmxCWO41XYRDt-ftuE6DFjdNgkX4sZs6vybrS5iTj_TPmmND6nqSm_e9u92szZxuJy2M5pCq48JY-8HQs-O56n5OvF-y_Ly3b16cPH5fmqdQJgbllHlfaWMu5AoHRycAJxzQYlvdaDF2vbD4orpXtNO6s9dBot66m03jnJ-Cl5d_Dd7tYTDg5j_chotjlMNv8yyQbzrxLDtdmkW6NZXYDqqsGrg8H1f22X5yuzv6MCmOo7eguVfXl8LKcfOyyzmULZT28jpl0xjHegmAQtK_r6gLqcSsno772Bmn1spsZmjrFV-sXfU9yzf3LidyE3ln0</recordid><startdate>20200604</startdate><enddate>20200604</enddate><creator>Cabello-Aguilar, Simon</creator><creator>Alame, Mélissa</creator><creator>Kon-Sun-Tack, Fabien</creator><creator>Fau, Caroline</creator><creator>Lacroix, Matthieu</creator><creator>Colinge, Jacques</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2904-7430</orcidid><orcidid>https://orcid.org/0000-0002-1268-9058</orcidid><orcidid>https://orcid.org/0000-0003-2466-4824</orcidid></search><sort><creationdate>20200604</creationdate><title>SingleCellSignalR: inference of intercellular networks from single-cell transcriptomics</title><author>Cabello-Aguilar, Simon ; Alame, Mélissa ; Kon-Sun-Tack, Fabien ; Fau, Caroline ; Lacroix, Matthieu ; Colinge, Jacques</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-28067fa023c14e5c5dc4eeb2d65f77df4ba9d636679708a7f187ea2905afcc523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Epidermis</topic><topic>Epidermis - metabolism</topic><topic>Gene Expression Profiling</topic><topic>Gene Expression Profiling - methods</topic><topic>Life Sciences</topic><topic>Ligands</topic><topic>Methods Online</topic><topic>Mice</topic><topic>Signal Transduction</topic><topic>Single-Cell Analysis</topic><topic>Single-Cell Analysis - methods</topic><topic>Software</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cabello-Aguilar, Simon</creatorcontrib><creatorcontrib>Alame, Mélissa</creatorcontrib><creatorcontrib>Kon-Sun-Tack, Fabien</creatorcontrib><creatorcontrib>Fau, Caroline</creatorcontrib><creatorcontrib>Lacroix, Matthieu</creatorcontrib><creatorcontrib>Colinge, Jacques</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cabello-Aguilar, Simon</au><au>Alame, Mélissa</au><au>Kon-Sun-Tack, Fabien</au><au>Fau, Caroline</au><au>Lacroix, Matthieu</au><au>Colinge, Jacques</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SingleCellSignalR: inference of intercellular networks from single-cell transcriptomics</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2020-06-04</date><risdate>2020</risdate><volume>48</volume><issue>10</issue><spage>e55</spage><epage>e55</epage><pages>e55-e55</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><abstract>Single-cell transcriptomics offers unprecedented opportunities to infer the ligand-receptor (LR) interactions underlying cellular networks. We introduce a new, curated LR database and a novel regularized score to perform such inferences. For the first time, we try to assess the confidence in predicted LR interactions and show that our regularized score outperforms other scoring schemes while controlling false positives. SingleCellSignalR is implemented as an open-access R package accessible to entry-level users and available from https://github.com/SCA-IRCM. Analysis results come in a variety of tabular and graphical formats. For instance, we provide a unique network view integrating all the intercellular interactions, and a function relating receptors to expressed intracellular pathways. A detailed comparison of related tools is conducted. Among various examples, we demonstrate SingleCellSignalR on mouse epidermis data and discover an oriented communication structure from external to basal layers.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>32196115</pmid><doi>10.1093/nar/gkaa183</doi><orcidid>https://orcid.org/0000-0002-2904-7430</orcidid><orcidid>https://orcid.org/0000-0002-1268-9058</orcidid><orcidid>https://orcid.org/0000-0003-2466-4824</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0305-1048 |
ispartof | Nucleic acids research, 2020-06, Vol.48 (10), p.e55-e55 |
issn | 0305-1048 1362-4962 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7261168 |
source | MEDLINE; Open Access: Oxford University Press Open Journals; PubMed Central; Directory of Open Access Journals; Free Full-Text Journals in Chemistry |
subjects | Animals Epidermis Epidermis - metabolism Gene Expression Profiling Gene Expression Profiling - methods Life Sciences Ligands Methods Online Mice Signal Transduction Single-Cell Analysis Single-Cell Analysis - methods Software Workflow |
title | SingleCellSignalR: inference of intercellular networks from single-cell transcriptomics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T13%3A25%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SingleCellSignalR:%20inference%20of%20intercellular%20networks%20from%20single-cell%20transcriptomics&rft.jtitle=Nucleic%20acids%20research&rft.au=Cabello-Aguilar,%20Simon&rft.date=2020-06-04&rft.volume=48&rft.issue=10&rft.spage=e55&rft.epage=e55&rft.pages=e55-e55&rft.issn=0305-1048&rft.eissn=1362-4962&rft_id=info:doi/10.1093/nar/gkaa183&rft_dat=%3Cproquest_pubme%3E2381625175%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2381625175&rft_id=info:pmid/32196115&rfr_iscdi=true |