SingleCellSignalR: inference of intercellular networks from single-cell transcriptomics

Single-cell transcriptomics offers unprecedented opportunities to infer the ligand-receptor (LR) interactions underlying cellular networks. We introduce a new, curated LR database and a novel regularized score to perform such inferences. For the first time, we try to assess the confidence in predict...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nucleic acids research 2020-06, Vol.48 (10), p.e55-e55
Hauptverfasser: Cabello-Aguilar, Simon, Alame, Mélissa, Kon-Sun-Tack, Fabien, Fau, Caroline, Lacroix, Matthieu, Colinge, Jacques
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e55
container_issue 10
container_start_page e55
container_title Nucleic acids research
container_volume 48
creator Cabello-Aguilar, Simon
Alame, Mélissa
Kon-Sun-Tack, Fabien
Fau, Caroline
Lacroix, Matthieu
Colinge, Jacques
description Single-cell transcriptomics offers unprecedented opportunities to infer the ligand-receptor (LR) interactions underlying cellular networks. We introduce a new, curated LR database and a novel regularized score to perform such inferences. For the first time, we try to assess the confidence in predicted LR interactions and show that our regularized score outperforms other scoring schemes while controlling false positives. SingleCellSignalR is implemented as an open-access R package accessible to entry-level users and available from https://github.com/SCA-IRCM. Analysis results come in a variety of tabular and graphical formats. For instance, we provide a unique network view integrating all the intercellular interactions, and a function relating receptors to expressed intracellular pathways. A detailed comparison of related tools is conducted. Among various examples, we demonstrate SingleCellSignalR on mouse epidermis data and discover an oriented communication structure from external to basal layers.
doi_str_mv 10.1093/nar/gkaa183
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7261168</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2381625175</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-28067fa023c14e5c5dc4eeb2d65f77df4ba9d636679708a7f187ea2905afcc523</originalsourceid><addsrcrecordid>eNpdkc1vEzEQxS0EoqFw4o72CEJLPf7c5YBURZQiRUKiII6W4x2nprt2sDdF_Pd1SKiAkzV-v3n2zCPkOdA3QHt-Fm0-29xYCx1_QBbAFWtFr9hDsqCcyhao6E7Ik1K-UwoCpHhMTjiDXgHIBfl2FeJmxCWO41XYRDt-ftuE6DFjdNgkX4sZs6vybrS5iTj_TPmmND6nqSm_e9u92szZxuJy2M5pCq48JY-8HQs-O56n5OvF-y_Ly3b16cPH5fmqdQJgbllHlfaWMu5AoHRycAJxzQYlvdaDF2vbD4orpXtNO6s9dBot66m03jnJ-Cl5d_Dd7tYTDg5j_chotjlMNv8yyQbzrxLDtdmkW6NZXYDqqsGrg8H1f22X5yuzv6MCmOo7eguVfXl8LKcfOyyzmULZT28jpl0xjHegmAQtK_r6gLqcSsno772Bmn1spsZmjrFV-sXfU9yzf3LidyE3ln0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2381625175</pqid></control><display><type>article</type><title>SingleCellSignalR: inference of intercellular networks from single-cell transcriptomics</title><source>MEDLINE</source><source>Open Access: Oxford University Press Open Journals</source><source>PubMed Central</source><source>Directory of Open Access Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Cabello-Aguilar, Simon ; Alame, Mélissa ; Kon-Sun-Tack, Fabien ; Fau, Caroline ; Lacroix, Matthieu ; Colinge, Jacques</creator><creatorcontrib>Cabello-Aguilar, Simon ; Alame, Mélissa ; Kon-Sun-Tack, Fabien ; Fau, Caroline ; Lacroix, Matthieu ; Colinge, Jacques</creatorcontrib><description>Single-cell transcriptomics offers unprecedented opportunities to infer the ligand-receptor (LR) interactions underlying cellular networks. We introduce a new, curated LR database and a novel regularized score to perform such inferences. For the first time, we try to assess the confidence in predicted LR interactions and show that our regularized score outperforms other scoring schemes while controlling false positives. SingleCellSignalR is implemented as an open-access R package accessible to entry-level users and available from https://github.com/SCA-IRCM. Analysis results come in a variety of tabular and graphical formats. For instance, we provide a unique network view integrating all the intercellular interactions, and a function relating receptors to expressed intracellular pathways. A detailed comparison of related tools is conducted. Among various examples, we demonstrate SingleCellSignalR on mouse epidermis data and discover an oriented communication structure from external to basal layers.</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkaa183</identifier><identifier>PMID: 32196115</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Animals ; Epidermis ; Epidermis - metabolism ; Gene Expression Profiling ; Gene Expression Profiling - methods ; Life Sciences ; Ligands ; Methods Online ; Mice ; Signal Transduction ; Single-Cell Analysis ; Single-Cell Analysis - methods ; Software ; Workflow</subject><ispartof>Nucleic acids research, 2020-06, Vol.48 (10), p.e55-e55</ispartof><rights>The Author(s) 2020. Published by Oxford University Press on behalf of Nucleic Acids Research.</rights><rights>Attribution - NoDerivatives</rights><rights>The Author(s) 2020. Published by Oxford University Press on behalf of Nucleic Acids Research. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-28067fa023c14e5c5dc4eeb2d65f77df4ba9d636679708a7f187ea2905afcc523</citedby><cites>FETCH-LOGICAL-c411t-28067fa023c14e5c5dc4eeb2d65f77df4ba9d636679708a7f187ea2905afcc523</cites><orcidid>0000-0002-2904-7430 ; 0000-0002-1268-9058 ; 0000-0003-2466-4824</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7261168/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7261168/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32196115$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04126980$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Cabello-Aguilar, Simon</creatorcontrib><creatorcontrib>Alame, Mélissa</creatorcontrib><creatorcontrib>Kon-Sun-Tack, Fabien</creatorcontrib><creatorcontrib>Fau, Caroline</creatorcontrib><creatorcontrib>Lacroix, Matthieu</creatorcontrib><creatorcontrib>Colinge, Jacques</creatorcontrib><title>SingleCellSignalR: inference of intercellular networks from single-cell transcriptomics</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>Single-cell transcriptomics offers unprecedented opportunities to infer the ligand-receptor (LR) interactions underlying cellular networks. We introduce a new, curated LR database and a novel regularized score to perform such inferences. For the first time, we try to assess the confidence in predicted LR interactions and show that our regularized score outperforms other scoring schemes while controlling false positives. SingleCellSignalR is implemented as an open-access R package accessible to entry-level users and available from https://github.com/SCA-IRCM. Analysis results come in a variety of tabular and graphical formats. For instance, we provide a unique network view integrating all the intercellular interactions, and a function relating receptors to expressed intracellular pathways. A detailed comparison of related tools is conducted. Among various examples, we demonstrate SingleCellSignalR on mouse epidermis data and discover an oriented communication structure from external to basal layers.</description><subject>Animals</subject><subject>Epidermis</subject><subject>Epidermis - metabolism</subject><subject>Gene Expression Profiling</subject><subject>Gene Expression Profiling - methods</subject><subject>Life Sciences</subject><subject>Ligands</subject><subject>Methods Online</subject><subject>Mice</subject><subject>Signal Transduction</subject><subject>Single-Cell Analysis</subject><subject>Single-Cell Analysis - methods</subject><subject>Software</subject><subject>Workflow</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1vEzEQxS0EoqFw4o72CEJLPf7c5YBURZQiRUKiII6W4x2nprt2sDdF_Pd1SKiAkzV-v3n2zCPkOdA3QHt-Fm0-29xYCx1_QBbAFWtFr9hDsqCcyhao6E7Ik1K-UwoCpHhMTjiDXgHIBfl2FeJmxCWO41XYRDt-ftuE6DFjdNgkX4sZs6vybrS5iTj_TPmmND6nqSm_e9u92szZxuJy2M5pCq48JY-8HQs-O56n5OvF-y_Ly3b16cPH5fmqdQJgbllHlfaWMu5AoHRycAJxzQYlvdaDF2vbD4orpXtNO6s9dBot66m03jnJ-Cl5d_Dd7tYTDg5j_chotjlMNv8yyQbzrxLDtdmkW6NZXYDqqsGrg8H1f22X5yuzv6MCmOo7eguVfXl8LKcfOyyzmULZT28jpl0xjHegmAQtK_r6gLqcSsno772Bmn1spsZmjrFV-sXfU9yzf3LidyE3ln0</recordid><startdate>20200604</startdate><enddate>20200604</enddate><creator>Cabello-Aguilar, Simon</creator><creator>Alame, Mélissa</creator><creator>Kon-Sun-Tack, Fabien</creator><creator>Fau, Caroline</creator><creator>Lacroix, Matthieu</creator><creator>Colinge, Jacques</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2904-7430</orcidid><orcidid>https://orcid.org/0000-0002-1268-9058</orcidid><orcidid>https://orcid.org/0000-0003-2466-4824</orcidid></search><sort><creationdate>20200604</creationdate><title>SingleCellSignalR: inference of intercellular networks from single-cell transcriptomics</title><author>Cabello-Aguilar, Simon ; Alame, Mélissa ; Kon-Sun-Tack, Fabien ; Fau, Caroline ; Lacroix, Matthieu ; Colinge, Jacques</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-28067fa023c14e5c5dc4eeb2d65f77df4ba9d636679708a7f187ea2905afcc523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Epidermis</topic><topic>Epidermis - metabolism</topic><topic>Gene Expression Profiling</topic><topic>Gene Expression Profiling - methods</topic><topic>Life Sciences</topic><topic>Ligands</topic><topic>Methods Online</topic><topic>Mice</topic><topic>Signal Transduction</topic><topic>Single-Cell Analysis</topic><topic>Single-Cell Analysis - methods</topic><topic>Software</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cabello-Aguilar, Simon</creatorcontrib><creatorcontrib>Alame, Mélissa</creatorcontrib><creatorcontrib>Kon-Sun-Tack, Fabien</creatorcontrib><creatorcontrib>Fau, Caroline</creatorcontrib><creatorcontrib>Lacroix, Matthieu</creatorcontrib><creatorcontrib>Colinge, Jacques</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cabello-Aguilar, Simon</au><au>Alame, Mélissa</au><au>Kon-Sun-Tack, Fabien</au><au>Fau, Caroline</au><au>Lacroix, Matthieu</au><au>Colinge, Jacques</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SingleCellSignalR: inference of intercellular networks from single-cell transcriptomics</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2020-06-04</date><risdate>2020</risdate><volume>48</volume><issue>10</issue><spage>e55</spage><epage>e55</epage><pages>e55-e55</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><abstract>Single-cell transcriptomics offers unprecedented opportunities to infer the ligand-receptor (LR) interactions underlying cellular networks. We introduce a new, curated LR database and a novel regularized score to perform such inferences. For the first time, we try to assess the confidence in predicted LR interactions and show that our regularized score outperforms other scoring schemes while controlling false positives. SingleCellSignalR is implemented as an open-access R package accessible to entry-level users and available from https://github.com/SCA-IRCM. Analysis results come in a variety of tabular and graphical formats. For instance, we provide a unique network view integrating all the intercellular interactions, and a function relating receptors to expressed intracellular pathways. A detailed comparison of related tools is conducted. Among various examples, we demonstrate SingleCellSignalR on mouse epidermis data and discover an oriented communication structure from external to basal layers.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>32196115</pmid><doi>10.1093/nar/gkaa183</doi><orcidid>https://orcid.org/0000-0002-2904-7430</orcidid><orcidid>https://orcid.org/0000-0002-1268-9058</orcidid><orcidid>https://orcid.org/0000-0003-2466-4824</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0305-1048
ispartof Nucleic acids research, 2020-06, Vol.48 (10), p.e55-e55
issn 0305-1048
1362-4962
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7261168
source MEDLINE; Open Access: Oxford University Press Open Journals; PubMed Central; Directory of Open Access Journals; Free Full-Text Journals in Chemistry
subjects Animals
Epidermis
Epidermis - metabolism
Gene Expression Profiling
Gene Expression Profiling - methods
Life Sciences
Ligands
Methods Online
Mice
Signal Transduction
Single-Cell Analysis
Single-Cell Analysis - methods
Software
Workflow
title SingleCellSignalR: inference of intercellular networks from single-cell transcriptomics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T13%3A25%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SingleCellSignalR:%20inference%20of%20intercellular%20networks%20from%20single-cell%20transcriptomics&rft.jtitle=Nucleic%20acids%20research&rft.au=Cabello-Aguilar,%20Simon&rft.date=2020-06-04&rft.volume=48&rft.issue=10&rft.spage=e55&rft.epage=e55&rft.pages=e55-e55&rft.issn=0305-1048&rft.eissn=1362-4962&rft_id=info:doi/10.1093/nar/gkaa183&rft_dat=%3Cproquest_pubme%3E2381625175%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2381625175&rft_id=info:pmid/32196115&rfr_iscdi=true