Melatonin inhibits cytosolic mitochondrial DNA-induced neuroinflammatory signaling in accelerated aging and neurodegeneration

Chronic inflammation is a pathologic feature of neurodegeneration and aging; however, the mechanism regulating this process is not understood. Melatonin, an endogenous free radical scavenger synthesized by neuronal mitochondria, decreases with aging and neurodegeneration. We proposed that insufficie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of clinical investigation 2020-06, Vol.130 (6), p.3124-3136
Hauptverfasser: Jauhari, Abhishek, Baranov, Sergei V, Suofu, Yalikun, Kim, Jinho, Singh, Tanisha, Yablonska, Svitlana, Li, Fang, Wang, Xiaomin, Oberly, Patrick, Minnigh, M Beth, Poloyac, Samuel M, Carlisle, Diane L, Friedlander, Robert M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3136
container_issue 6
container_start_page 3124
container_title The Journal of clinical investigation
container_volume 130
creator Jauhari, Abhishek
Baranov, Sergei V
Suofu, Yalikun
Kim, Jinho
Singh, Tanisha
Yablonska, Svitlana
Li, Fang
Wang, Xiaomin
Oberly, Patrick
Minnigh, M Beth
Poloyac, Samuel M
Carlisle, Diane L
Friedlander, Robert M
description Chronic inflammation is a pathologic feature of neurodegeneration and aging; however, the mechanism regulating this process is not understood. Melatonin, an endogenous free radical scavenger synthesized by neuronal mitochondria, decreases with aging and neurodegeneration. We proposed that insufficient melatonin levels impair mitochondrial homeostasis, resulting in mitochondrial DNA (mtDNA) release and activation of cytosolic DNA-mediated inflammatory response in neurons. We found increased mitochondrial oxidative stress and decreased mitochondrial membrane potential, with higher mtDNA release in brain and primary cerebro-cortical neurons of melatonin-deficient aralkylamine N-acetyltransferase (AANAT) knockout mice. Cytosolic mtDNA activated the cGAS/STING/IRF3 pathway, stimulating inflammatory cytokine generation. We found that Huntington's disease mice had increased mtDNA release, cGAS activation, and inflammation, all inhibited by exogenous melatonin. Thus, we demonstrated that cytosolic mtDNA activated the inflammatory response in aging and neurodegeneration, a process modulated by melatonin. Furthermore, our data suggest that AANAT knockout mice are a model of accelerated aging.
doi_str_mv 10.1172/JCI135026
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7260019</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A627278074</galeid><sourcerecordid>A627278074</sourcerecordid><originalsourceid>FETCH-LOGICAL-c647t-fa6b9da5c41e5ca53fcd21aefcee9449cf64891ab95f5f67ec75dfe3b89b42b33</originalsourceid><addsrcrecordid>eNqNkktv1DAUhSMEokNhwR9AkZAQLFLiRxJnU2k0vAYVKvHaWo5znXHl2MV2ELPgv-Oow9BBs8BeWLr-zrF878myx6g8Q6jBL9-v1ohUJa7vZAtUVaxgmLC72aIsMSrahrCT7EEIV2WJKK3o_eyEYMRwWovs1wcwIjqrba7tRnc6hlxuowvOaJmPOjq5cbb3Wpj81cdloW0_SehzC5N32iojxjHp_TYPerDCaDsko1xICQa8iAkVw1wUdifqYQA7X2lnH2b3lDABHu3O0-zrm9dfVu-Ki8u369XyopA1bWKhRN21vagkRVBJUREle4wEKAnQUtpKVVPWItG1lapU3YBsql4B6VjbUdwRcpqd3_heT90IvQQbvTD82utR-C13QvPDG6s3fHA_eIPr1LU2GTzfGXj3fYIQ-ahD-qIRFtwUOCYNY4yguk7o03_QKzf51JpE0TQATFvM_lKDMMBTI116V86mfFnjBjesbGiiiiPUTf-Ms6B0Kh_wZ0f4tHsYtTwqeHEgSEyEn3EQUwh8_fnT_7OX3w7ZZ7fYDQgTNylS0zz0cNRUeheCB7UfCir5HG6-D3din9ye4p78k2byG4tn9GY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2414424928</pqid></control><display><type>article</type><title>Melatonin inhibits cytosolic mitochondrial DNA-induced neuroinflammatory signaling in accelerated aging and neurodegeneration</title><source>Open Access: PubMed Central</source><source>MEDLINE</source><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><creator>Jauhari, Abhishek ; Baranov, Sergei V ; Suofu, Yalikun ; Kim, Jinho ; Singh, Tanisha ; Yablonska, Svitlana ; Li, Fang ; Wang, Xiaomin ; Oberly, Patrick ; Minnigh, M Beth ; Poloyac, Samuel M ; Carlisle, Diane L ; Friedlander, Robert M</creator><creatorcontrib>Jauhari, Abhishek ; Baranov, Sergei V ; Suofu, Yalikun ; Kim, Jinho ; Singh, Tanisha ; Yablonska, Svitlana ; Li, Fang ; Wang, Xiaomin ; Oberly, Patrick ; Minnigh, M Beth ; Poloyac, Samuel M ; Carlisle, Diane L ; Friedlander, Robert M</creatorcontrib><description>Chronic inflammation is a pathologic feature of neurodegeneration and aging; however, the mechanism regulating this process is not understood. Melatonin, an endogenous free radical scavenger synthesized by neuronal mitochondria, decreases with aging and neurodegeneration. We proposed that insufficient melatonin levels impair mitochondrial homeostasis, resulting in mitochondrial DNA (mtDNA) release and activation of cytosolic DNA-mediated inflammatory response in neurons. We found increased mitochondrial oxidative stress and decreased mitochondrial membrane potential, with higher mtDNA release in brain and primary cerebro-cortical neurons of melatonin-deficient aralkylamine N-acetyltransferase (AANAT) knockout mice. Cytosolic mtDNA activated the cGAS/STING/IRF3 pathway, stimulating inflammatory cytokine generation. We found that Huntington's disease mice had increased mtDNA release, cGAS activation, and inflammation, all inhibited by exogenous melatonin. Thus, we demonstrated that cytosolic mtDNA activated the inflammatory response in aging and neurodegeneration, a process modulated by melatonin. Furthermore, our data suggest that AANAT knockout mice are a model of accelerated aging.</description><identifier>ISSN: 0021-9738</identifier><identifier>EISSN: 1558-8238</identifier><identifier>DOI: 10.1172/JCI135026</identifier><identifier>PMID: 32182222</identifier><language>eng</language><publisher>United States: American Society for Clinical Investigation</publisher><subject>Aging ; Aging - genetics ; Aging - metabolism ; Aging - pathology ; Animals ; Aralkylamine N-acetyltransferase ; Biomedical research ; Brain ; Cytokines ; Cytosol - metabolism ; Cytosol - pathology ; Deoxyribonucleic acid ; Development and progression ; DNA ; DNA, Mitochondrial - genetics ; DNA, Mitochondrial - metabolism ; Female ; Homeostasis ; Humans ; Huntington Disease - genetics ; Huntington Disease - metabolism ; Huntington Disease - pathology ; Huntington's disease ; Huntingtons disease ; Inflammation ; Interferon regulatory factor 3 ; Male ; Melatonin ; Melatonin - pharmacology ; Membrane potential ; Mice ; Mice, Knockout ; Mitochondrial DNA ; Neurodegeneration ; Neurons ; Neurons - metabolism ; Neurons - pathology ; Oxidative stress ; Rodents ; Signal Transduction - drug effects</subject><ispartof>The Journal of clinical investigation, 2020-06, Vol.130 (6), p.3124-3136</ispartof><rights>COPYRIGHT 2020 American Society for Clinical Investigation</rights><rights>Copyright American Society for Clinical Investigation Jun 2020</rights><rights>2020 American Society for Clinical Investigation 2020 American Society for Clinical Investigation</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c647t-fa6b9da5c41e5ca53fcd21aefcee9449cf64891ab95f5f67ec75dfe3b89b42b33</citedby><cites>FETCH-LOGICAL-c647t-fa6b9da5c41e5ca53fcd21aefcee9449cf64891ab95f5f67ec75dfe3b89b42b33</cites><orcidid>0000-0002-1728-4228 ; 0000-0002-0688-640X ; 0000-0002-6455-6337</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7260019/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7260019/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32182222$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jauhari, Abhishek</creatorcontrib><creatorcontrib>Baranov, Sergei V</creatorcontrib><creatorcontrib>Suofu, Yalikun</creatorcontrib><creatorcontrib>Kim, Jinho</creatorcontrib><creatorcontrib>Singh, Tanisha</creatorcontrib><creatorcontrib>Yablonska, Svitlana</creatorcontrib><creatorcontrib>Li, Fang</creatorcontrib><creatorcontrib>Wang, Xiaomin</creatorcontrib><creatorcontrib>Oberly, Patrick</creatorcontrib><creatorcontrib>Minnigh, M Beth</creatorcontrib><creatorcontrib>Poloyac, Samuel M</creatorcontrib><creatorcontrib>Carlisle, Diane L</creatorcontrib><creatorcontrib>Friedlander, Robert M</creatorcontrib><title>Melatonin inhibits cytosolic mitochondrial DNA-induced neuroinflammatory signaling in accelerated aging and neurodegeneration</title><title>The Journal of clinical investigation</title><addtitle>J Clin Invest</addtitle><description>Chronic inflammation is a pathologic feature of neurodegeneration and aging; however, the mechanism regulating this process is not understood. Melatonin, an endogenous free radical scavenger synthesized by neuronal mitochondria, decreases with aging and neurodegeneration. We proposed that insufficient melatonin levels impair mitochondrial homeostasis, resulting in mitochondrial DNA (mtDNA) release and activation of cytosolic DNA-mediated inflammatory response in neurons. We found increased mitochondrial oxidative stress and decreased mitochondrial membrane potential, with higher mtDNA release in brain and primary cerebro-cortical neurons of melatonin-deficient aralkylamine N-acetyltransferase (AANAT) knockout mice. Cytosolic mtDNA activated the cGAS/STING/IRF3 pathway, stimulating inflammatory cytokine generation. We found that Huntington's disease mice had increased mtDNA release, cGAS activation, and inflammation, all inhibited by exogenous melatonin. Thus, we demonstrated that cytosolic mtDNA activated the inflammatory response in aging and neurodegeneration, a process modulated by melatonin. Furthermore, our data suggest that AANAT knockout mice are a model of accelerated aging.</description><subject>Aging</subject><subject>Aging - genetics</subject><subject>Aging - metabolism</subject><subject>Aging - pathology</subject><subject>Animals</subject><subject>Aralkylamine N-acetyltransferase</subject><subject>Biomedical research</subject><subject>Brain</subject><subject>Cytokines</subject><subject>Cytosol - metabolism</subject><subject>Cytosol - pathology</subject><subject>Deoxyribonucleic acid</subject><subject>Development and progression</subject><subject>DNA</subject><subject>DNA, Mitochondrial - genetics</subject><subject>DNA, Mitochondrial - metabolism</subject><subject>Female</subject><subject>Homeostasis</subject><subject>Humans</subject><subject>Huntington Disease - genetics</subject><subject>Huntington Disease - metabolism</subject><subject>Huntington Disease - pathology</subject><subject>Huntington's disease</subject><subject>Huntingtons disease</subject><subject>Inflammation</subject><subject>Interferon regulatory factor 3</subject><subject>Male</subject><subject>Melatonin</subject><subject>Melatonin - pharmacology</subject><subject>Membrane potential</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Mitochondrial DNA</subject><subject>Neurodegeneration</subject><subject>Neurons</subject><subject>Neurons - metabolism</subject><subject>Neurons - pathology</subject><subject>Oxidative stress</subject><subject>Rodents</subject><subject>Signal Transduction - drug effects</subject><issn>0021-9738</issn><issn>1558-8238</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><recordid>eNqNkktv1DAUhSMEokNhwR9AkZAQLFLiRxJnU2k0vAYVKvHaWo5znXHl2MV2ELPgv-Oow9BBs8BeWLr-zrF878myx6g8Q6jBL9-v1ohUJa7vZAtUVaxgmLC72aIsMSrahrCT7EEIV2WJKK3o_eyEYMRwWovs1wcwIjqrba7tRnc6hlxuowvOaJmPOjq5cbb3Wpj81cdloW0_SehzC5N32iojxjHp_TYPerDCaDsko1xICQa8iAkVw1wUdifqYQA7X2lnH2b3lDABHu3O0-zrm9dfVu-Ki8u369XyopA1bWKhRN21vagkRVBJUREle4wEKAnQUtpKVVPWItG1lapU3YBsql4B6VjbUdwRcpqd3_heT90IvQQbvTD82utR-C13QvPDG6s3fHA_eIPr1LU2GTzfGXj3fYIQ-ahD-qIRFtwUOCYNY4yguk7o03_QKzf51JpE0TQATFvM_lKDMMBTI116V86mfFnjBjesbGiiiiPUTf-Ms6B0Kh_wZ0f4tHsYtTwqeHEgSEyEn3EQUwh8_fnT_7OX3w7ZZ7fYDQgTNylS0zz0cNRUeheCB7UfCir5HG6-D3din9ye4p78k2byG4tn9GY</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Jauhari, Abhishek</creator><creator>Baranov, Sergei V</creator><creator>Suofu, Yalikun</creator><creator>Kim, Jinho</creator><creator>Singh, Tanisha</creator><creator>Yablonska, Svitlana</creator><creator>Li, Fang</creator><creator>Wang, Xiaomin</creator><creator>Oberly, Patrick</creator><creator>Minnigh, M Beth</creator><creator>Poloyac, Samuel M</creator><creator>Carlisle, Diane L</creator><creator>Friedlander, Robert M</creator><general>American Society for Clinical Investigation</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0X</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1728-4228</orcidid><orcidid>https://orcid.org/0000-0002-0688-640X</orcidid><orcidid>https://orcid.org/0000-0002-6455-6337</orcidid></search><sort><creationdate>20200601</creationdate><title>Melatonin inhibits cytosolic mitochondrial DNA-induced neuroinflammatory signaling in accelerated aging and neurodegeneration</title><author>Jauhari, Abhishek ; Baranov, Sergei V ; Suofu, Yalikun ; Kim, Jinho ; Singh, Tanisha ; Yablonska, Svitlana ; Li, Fang ; Wang, Xiaomin ; Oberly, Patrick ; Minnigh, M Beth ; Poloyac, Samuel M ; Carlisle, Diane L ; Friedlander, Robert M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c647t-fa6b9da5c41e5ca53fcd21aefcee9449cf64891ab95f5f67ec75dfe3b89b42b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aging</topic><topic>Aging - genetics</topic><topic>Aging - metabolism</topic><topic>Aging - pathology</topic><topic>Animals</topic><topic>Aralkylamine N-acetyltransferase</topic><topic>Biomedical research</topic><topic>Brain</topic><topic>Cytokines</topic><topic>Cytosol - metabolism</topic><topic>Cytosol - pathology</topic><topic>Deoxyribonucleic acid</topic><topic>Development and progression</topic><topic>DNA</topic><topic>DNA, Mitochondrial - genetics</topic><topic>DNA, Mitochondrial - metabolism</topic><topic>Female</topic><topic>Homeostasis</topic><topic>Humans</topic><topic>Huntington Disease - genetics</topic><topic>Huntington Disease - metabolism</topic><topic>Huntington Disease - pathology</topic><topic>Huntington's disease</topic><topic>Huntingtons disease</topic><topic>Inflammation</topic><topic>Interferon regulatory factor 3</topic><topic>Male</topic><topic>Melatonin</topic><topic>Melatonin - pharmacology</topic><topic>Membrane potential</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Mitochondrial DNA</topic><topic>Neurodegeneration</topic><topic>Neurons</topic><topic>Neurons - metabolism</topic><topic>Neurons - pathology</topic><topic>Oxidative stress</topic><topic>Rodents</topic><topic>Signal Transduction - drug effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jauhari, Abhishek</creatorcontrib><creatorcontrib>Baranov, Sergei V</creatorcontrib><creatorcontrib>Suofu, Yalikun</creatorcontrib><creatorcontrib>Kim, Jinho</creatorcontrib><creatorcontrib>Singh, Tanisha</creatorcontrib><creatorcontrib>Yablonska, Svitlana</creatorcontrib><creatorcontrib>Li, Fang</creatorcontrib><creatorcontrib>Wang, Xiaomin</creatorcontrib><creatorcontrib>Oberly, Patrick</creatorcontrib><creatorcontrib>Minnigh, M Beth</creatorcontrib><creatorcontrib>Poloyac, Samuel M</creatorcontrib><creatorcontrib>Carlisle, Diane L</creatorcontrib><creatorcontrib>Friedlander, Robert M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale_Opposing Viewpoints In Context</collection><collection>Science (Gale in Context)</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Nursing &amp; Allied Health Database</collection><collection>Health &amp; Medicine (ProQuest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of clinical investigation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jauhari, Abhishek</au><au>Baranov, Sergei V</au><au>Suofu, Yalikun</au><au>Kim, Jinho</au><au>Singh, Tanisha</au><au>Yablonska, Svitlana</au><au>Li, Fang</au><au>Wang, Xiaomin</au><au>Oberly, Patrick</au><au>Minnigh, M Beth</au><au>Poloyac, Samuel M</au><au>Carlisle, Diane L</au><au>Friedlander, Robert M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Melatonin inhibits cytosolic mitochondrial DNA-induced neuroinflammatory signaling in accelerated aging and neurodegeneration</atitle><jtitle>The Journal of clinical investigation</jtitle><addtitle>J Clin Invest</addtitle><date>2020-06-01</date><risdate>2020</risdate><volume>130</volume><issue>6</issue><spage>3124</spage><epage>3136</epage><pages>3124-3136</pages><issn>0021-9738</issn><eissn>1558-8238</eissn><abstract>Chronic inflammation is a pathologic feature of neurodegeneration and aging; however, the mechanism regulating this process is not understood. Melatonin, an endogenous free radical scavenger synthesized by neuronal mitochondria, decreases with aging and neurodegeneration. We proposed that insufficient melatonin levels impair mitochondrial homeostasis, resulting in mitochondrial DNA (mtDNA) release and activation of cytosolic DNA-mediated inflammatory response in neurons. We found increased mitochondrial oxidative stress and decreased mitochondrial membrane potential, with higher mtDNA release in brain and primary cerebro-cortical neurons of melatonin-deficient aralkylamine N-acetyltransferase (AANAT) knockout mice. Cytosolic mtDNA activated the cGAS/STING/IRF3 pathway, stimulating inflammatory cytokine generation. We found that Huntington's disease mice had increased mtDNA release, cGAS activation, and inflammation, all inhibited by exogenous melatonin. Thus, we demonstrated that cytosolic mtDNA activated the inflammatory response in aging and neurodegeneration, a process modulated by melatonin. Furthermore, our data suggest that AANAT knockout mice are a model of accelerated aging.</abstract><cop>United States</cop><pub>American Society for Clinical Investigation</pub><pmid>32182222</pmid><doi>10.1172/JCI135026</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-1728-4228</orcidid><orcidid>https://orcid.org/0000-0002-0688-640X</orcidid><orcidid>https://orcid.org/0000-0002-6455-6337</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9738
ispartof The Journal of clinical investigation, 2020-06, Vol.130 (6), p.3124-3136
issn 0021-9738
1558-8238
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7260019
source Open Access: PubMed Central; MEDLINE; Alma/SFX Local Collection; EZB Electronic Journals Library
subjects Aging
Aging - genetics
Aging - metabolism
Aging - pathology
Animals
Aralkylamine N-acetyltransferase
Biomedical research
Brain
Cytokines
Cytosol - metabolism
Cytosol - pathology
Deoxyribonucleic acid
Development and progression
DNA
DNA, Mitochondrial - genetics
DNA, Mitochondrial - metabolism
Female
Homeostasis
Humans
Huntington Disease - genetics
Huntington Disease - metabolism
Huntington Disease - pathology
Huntington's disease
Huntingtons disease
Inflammation
Interferon regulatory factor 3
Male
Melatonin
Melatonin - pharmacology
Membrane potential
Mice
Mice, Knockout
Mitochondrial DNA
Neurodegeneration
Neurons
Neurons - metabolism
Neurons - pathology
Oxidative stress
Rodents
Signal Transduction - drug effects
title Melatonin inhibits cytosolic mitochondrial DNA-induced neuroinflammatory signaling in accelerated aging and neurodegeneration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T11%3A34%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Melatonin%20inhibits%20cytosolic%20mitochondrial%20DNA-induced%20neuroinflammatory%20signaling%20in%20accelerated%20aging%20and%20neurodegeneration&rft.jtitle=The%20Journal%20of%20clinical%20investigation&rft.au=Jauhari,%20Abhishek&rft.date=2020-06-01&rft.volume=130&rft.issue=6&rft.spage=3124&rft.epage=3136&rft.pages=3124-3136&rft.issn=0021-9738&rft.eissn=1558-8238&rft_id=info:doi/10.1172/JCI135026&rft_dat=%3Cgale_pubme%3EA627278074%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2414424928&rft_id=info:pmid/32182222&rft_galeid=A627278074&rfr_iscdi=true