Muscle-derived interleukin 6 increases exercise capacity by signaling in osteoblasts

Given the numerous health benefits of exercise, understanding how exercise capacity is regulated is a question of paramount importance. Circulating interleukin 6 (IL-6) levels surge during exercise and IL-6 favors exercise capacity. However, neither the cellular origin of circulating IL-6 during exe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of clinical investigation 2020-06, Vol.130 (6), p.2888-2902
Hauptverfasser: Chowdhury, Subrata, Schulz, Logan, Palmisano, Biagio, Singh, Parminder, Berger, Julian M, Yadav, Vijay K, Mera, Paula, Ellingsgaard, Helga, Hidalgo, Juan, Brüning, Jens, Karsenty, Gerard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2902
container_issue 6
container_start_page 2888
container_title The Journal of clinical investigation
container_volume 130
creator Chowdhury, Subrata
Schulz, Logan
Palmisano, Biagio
Singh, Parminder
Berger, Julian M
Yadav, Vijay K
Mera, Paula
Ellingsgaard, Helga
Hidalgo, Juan
Brüning, Jens
Karsenty, Gerard
description Given the numerous health benefits of exercise, understanding how exercise capacity is regulated is a question of paramount importance. Circulating interleukin 6 (IL-6) levels surge during exercise and IL-6 favors exercise capacity. However, neither the cellular origin of circulating IL-6 during exercise nor the means by which this cytokine enhances exercise capacity has been formally established yet. Here we show through genetic means that the majority of circulating IL-6 detectable during exercise originates from muscle and that to increase exercise capacity, IL-6 must signal in osteoblasts to favor osteoclast differentiation and the release of bioactive osteocalcin in the general circulation. This explains why mice lacking the IL-6 receptor only in osteoblasts exhibit a deficit in exercise capacity of similar severity to the one seen in mice lacking muscle-derived IL-6 (mIL-6), and why this deficit is correctable by osteocalcin but not by IL-6. Furthermore, in agreement with the notion that IL-6 acts through osteocalcin, we demonstrate that mIL-6 promotes nutrient uptake and catabolism into myofibers during exercise in an osteocalcin-dependent manner. Finally, we show that the crosstalk between osteocalcin and IL-6 is conserved between rodents and humans. This study provides evidence that a muscle-bone-muscle endocrine axis is necessary to increase muscle function during exercise in rodents and humans.
doi_str_mv 10.1172/JCI133572
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7260002</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A627278057</galeid><sourcerecordid>A627278057</sourcerecordid><originalsourceid>FETCH-LOGICAL-c647t-f41961e307a93472962c9710f6cc92b3db7f242c7b06574c7dae50b2ca1de94a3</originalsourceid><addsrcrecordid>eNqN0k1vFCEYB_CJsbFr9eAXMJOYGHuYyssAM5cmzcaXNTVNtHolDPPMLJWFFZim--2lad12zR4MBwL8-DMDT1G8wugEY0Hef5kvMKVMkCfFDDPWVA2hzdNihhDBVStoc1g8j_EKIVzXrH5WHFKCRMMaPisuv05RW6h6COYa-tK4BMHC9Mu4kueRDqAixBJuIGgTodRqrbRJm7LblNGMTlnjxgxLHxP4zqqY4oviYFA2wsv7_qj48fHD5fxzdX7xaTE_O680r0Wqhhq3HANFQrW0FqTlRLcCo4Fr3ZKO9p0YSE206BBnotaiV8BQR7TCPbS1okfF6V3ueupW0GtwKSgr18GsVNhIr4zcXXFmKUd_LQXhKF9ODnh3HxD87wlikisTNVirHPgpSkJbRhjjtMn0zT_0yk8h_35Wdb5XwhvMH9SoLEjjBp_P1beh8owTQUSDmMiq2qNGcJA_0jsYTJ7e8Sd7fG49rIzeu-F4Z0M2CW7SqKYY5eL7t_-3Fz937dtHdgnKpmX0dkrGu7g3VAcfY4Bh-ygYydualduazfb141fcyr9FSv8Ax-7ieg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2414426816</pqid></control><display><type>article</type><title>Muscle-derived interleukin 6 increases exercise capacity by signaling in osteoblasts</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><creator>Chowdhury, Subrata ; Schulz, Logan ; Palmisano, Biagio ; Singh, Parminder ; Berger, Julian M ; Yadav, Vijay K ; Mera, Paula ; Ellingsgaard, Helga ; Hidalgo, Juan ; Brüning, Jens ; Karsenty, Gerard</creator><creatorcontrib>Chowdhury, Subrata ; Schulz, Logan ; Palmisano, Biagio ; Singh, Parminder ; Berger, Julian M ; Yadav, Vijay K ; Mera, Paula ; Ellingsgaard, Helga ; Hidalgo, Juan ; Brüning, Jens ; Karsenty, Gerard</creatorcontrib><description>Given the numerous health benefits of exercise, understanding how exercise capacity is regulated is a question of paramount importance. Circulating interleukin 6 (IL-6) levels surge during exercise and IL-6 favors exercise capacity. However, neither the cellular origin of circulating IL-6 during exercise nor the means by which this cytokine enhances exercise capacity has been formally established yet. Here we show through genetic means that the majority of circulating IL-6 detectable during exercise originates from muscle and that to increase exercise capacity, IL-6 must signal in osteoblasts to favor osteoclast differentiation and the release of bioactive osteocalcin in the general circulation. This explains why mice lacking the IL-6 receptor only in osteoblasts exhibit a deficit in exercise capacity of similar severity to the one seen in mice lacking muscle-derived IL-6 (mIL-6), and why this deficit is correctable by osteocalcin but not by IL-6. Furthermore, in agreement with the notion that IL-6 acts through osteocalcin, we demonstrate that mIL-6 promotes nutrient uptake and catabolism into myofibers during exercise in an osteocalcin-dependent manner. Finally, we show that the crosstalk between osteocalcin and IL-6 is conserved between rodents and humans. This study provides evidence that a muscle-bone-muscle endocrine axis is necessary to increase muscle function during exercise in rodents and humans.</description><identifier>ISSN: 0021-9738</identifier><identifier>EISSN: 1558-8238</identifier><identifier>DOI: 10.1172/JCI133572</identifier><identifier>PMID: 32078586</identifier><language>eng</language><publisher>United States: American Society for Clinical Investigation</publisher><subject>Animals ; Antibodies ; Biomedical research ; Capacity ; Cytokines ; Exercise ; Experiments ; Female ; Fitness equipment ; Health insurance ; Interleukin 6 ; Interleukin 6 receptors ; Interleukin-6 - genetics ; Interleukin-6 - immunology ; Interleukins ; Macaca mulatta ; Mice ; Mice, Knockout ; Muscle function ; Muscle, Skeletal - immunology ; Nutrient uptake ; Osteoblastogenesis ; Osteoblasts ; Osteoblasts - immunology ; Osteocalcin ; Osteoclastogenesis ; Physiology ; Running ; Scientific equipment industry ; Signal Transduction - genetics ; Signal Transduction - immunology</subject><ispartof>The Journal of clinical investigation, 2020-06, Vol.130 (6), p.2888-2902</ispartof><rights>COPYRIGHT 2020 American Society for Clinical Investigation</rights><rights>Copyright American Society for Clinical Investigation Jun 2020</rights><rights>2020 American Society for Clinical Investigation 2020 American Society for Clinical Investigation</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c647t-f41961e307a93472962c9710f6cc92b3db7f242c7b06574c7dae50b2ca1de94a3</citedby><cites>FETCH-LOGICAL-c647t-f41961e307a93472962c9710f6cc92b3db7f242c7b06574c7dae50b2ca1de94a3</cites><orcidid>0000-0003-0921-1122 ; 0000-0002-1287-5256 ; 0000-0001-8941-4637 ; 0000-0002-2851-6805 ; 0000-0002-9253-7627</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7260002/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7260002/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32078586$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chowdhury, Subrata</creatorcontrib><creatorcontrib>Schulz, Logan</creatorcontrib><creatorcontrib>Palmisano, Biagio</creatorcontrib><creatorcontrib>Singh, Parminder</creatorcontrib><creatorcontrib>Berger, Julian M</creatorcontrib><creatorcontrib>Yadav, Vijay K</creatorcontrib><creatorcontrib>Mera, Paula</creatorcontrib><creatorcontrib>Ellingsgaard, Helga</creatorcontrib><creatorcontrib>Hidalgo, Juan</creatorcontrib><creatorcontrib>Brüning, Jens</creatorcontrib><creatorcontrib>Karsenty, Gerard</creatorcontrib><title>Muscle-derived interleukin 6 increases exercise capacity by signaling in osteoblasts</title><title>The Journal of clinical investigation</title><addtitle>J Clin Invest</addtitle><description>Given the numerous health benefits of exercise, understanding how exercise capacity is regulated is a question of paramount importance. Circulating interleukin 6 (IL-6) levels surge during exercise and IL-6 favors exercise capacity. However, neither the cellular origin of circulating IL-6 during exercise nor the means by which this cytokine enhances exercise capacity has been formally established yet. Here we show through genetic means that the majority of circulating IL-6 detectable during exercise originates from muscle and that to increase exercise capacity, IL-6 must signal in osteoblasts to favor osteoclast differentiation and the release of bioactive osteocalcin in the general circulation. This explains why mice lacking the IL-6 receptor only in osteoblasts exhibit a deficit in exercise capacity of similar severity to the one seen in mice lacking muscle-derived IL-6 (mIL-6), and why this deficit is correctable by osteocalcin but not by IL-6. Furthermore, in agreement with the notion that IL-6 acts through osteocalcin, we demonstrate that mIL-6 promotes nutrient uptake and catabolism into myofibers during exercise in an osteocalcin-dependent manner. Finally, we show that the crosstalk between osteocalcin and IL-6 is conserved between rodents and humans. This study provides evidence that a muscle-bone-muscle endocrine axis is necessary to increase muscle function during exercise in rodents and humans.</description><subject>Animals</subject><subject>Antibodies</subject><subject>Biomedical research</subject><subject>Capacity</subject><subject>Cytokines</subject><subject>Exercise</subject><subject>Experiments</subject><subject>Female</subject><subject>Fitness equipment</subject><subject>Health insurance</subject><subject>Interleukin 6</subject><subject>Interleukin 6 receptors</subject><subject>Interleukin-6 - genetics</subject><subject>Interleukin-6 - immunology</subject><subject>Interleukins</subject><subject>Macaca mulatta</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Muscle function</subject><subject>Muscle, Skeletal - immunology</subject><subject>Nutrient uptake</subject><subject>Osteoblastogenesis</subject><subject>Osteoblasts</subject><subject>Osteoblasts - immunology</subject><subject>Osteocalcin</subject><subject>Osteoclastogenesis</subject><subject>Physiology</subject><subject>Running</subject><subject>Scientific equipment industry</subject><subject>Signal Transduction - genetics</subject><subject>Signal Transduction - immunology</subject><issn>0021-9738</issn><issn>1558-8238</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqN0k1vFCEYB_CJsbFr9eAXMJOYGHuYyssAM5cmzcaXNTVNtHolDPPMLJWFFZim--2lad12zR4MBwL8-DMDT1G8wugEY0Hef5kvMKVMkCfFDDPWVA2hzdNihhDBVStoc1g8j_EKIVzXrH5WHFKCRMMaPisuv05RW6h6COYa-tK4BMHC9Mu4kueRDqAixBJuIGgTodRqrbRJm7LblNGMTlnjxgxLHxP4zqqY4oviYFA2wsv7_qj48fHD5fxzdX7xaTE_O680r0Wqhhq3HANFQrW0FqTlRLcCo4Fr3ZKO9p0YSE206BBnotaiV8BQR7TCPbS1okfF6V3ueupW0GtwKSgr18GsVNhIr4zcXXFmKUd_LQXhKF9ODnh3HxD87wlikisTNVirHPgpSkJbRhjjtMn0zT_0yk8h_35Wdb5XwhvMH9SoLEjjBp_P1beh8owTQUSDmMiq2qNGcJA_0jsYTJ7e8Sd7fG49rIzeu-F4Z0M2CW7SqKYY5eL7t_-3Fz937dtHdgnKpmX0dkrGu7g3VAcfY4Bh-ygYydualduazfb141fcyr9FSv8Ax-7ieg</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Chowdhury, Subrata</creator><creator>Schulz, Logan</creator><creator>Palmisano, Biagio</creator><creator>Singh, Parminder</creator><creator>Berger, Julian M</creator><creator>Yadav, Vijay K</creator><creator>Mera, Paula</creator><creator>Ellingsgaard, Helga</creator><creator>Hidalgo, Juan</creator><creator>Brüning, Jens</creator><creator>Karsenty, Gerard</creator><general>American Society for Clinical Investigation</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0X</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0921-1122</orcidid><orcidid>https://orcid.org/0000-0002-1287-5256</orcidid><orcidid>https://orcid.org/0000-0001-8941-4637</orcidid><orcidid>https://orcid.org/0000-0002-2851-6805</orcidid><orcidid>https://orcid.org/0000-0002-9253-7627</orcidid></search><sort><creationdate>20200601</creationdate><title>Muscle-derived interleukin 6 increases exercise capacity by signaling in osteoblasts</title><author>Chowdhury, Subrata ; Schulz, Logan ; Palmisano, Biagio ; Singh, Parminder ; Berger, Julian M ; Yadav, Vijay K ; Mera, Paula ; Ellingsgaard, Helga ; Hidalgo, Juan ; Brüning, Jens ; Karsenty, Gerard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c647t-f41961e307a93472962c9710f6cc92b3db7f242c7b06574c7dae50b2ca1de94a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Antibodies</topic><topic>Biomedical research</topic><topic>Capacity</topic><topic>Cytokines</topic><topic>Exercise</topic><topic>Experiments</topic><topic>Female</topic><topic>Fitness equipment</topic><topic>Health insurance</topic><topic>Interleukin 6</topic><topic>Interleukin 6 receptors</topic><topic>Interleukin-6 - genetics</topic><topic>Interleukin-6 - immunology</topic><topic>Interleukins</topic><topic>Macaca mulatta</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Muscle function</topic><topic>Muscle, Skeletal - immunology</topic><topic>Nutrient uptake</topic><topic>Osteoblastogenesis</topic><topic>Osteoblasts</topic><topic>Osteoblasts - immunology</topic><topic>Osteocalcin</topic><topic>Osteoclastogenesis</topic><topic>Physiology</topic><topic>Running</topic><topic>Scientific equipment industry</topic><topic>Signal Transduction - genetics</topic><topic>Signal Transduction - immunology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chowdhury, Subrata</creatorcontrib><creatorcontrib>Schulz, Logan</creatorcontrib><creatorcontrib>Palmisano, Biagio</creatorcontrib><creatorcontrib>Singh, Parminder</creatorcontrib><creatorcontrib>Berger, Julian M</creatorcontrib><creatorcontrib>Yadav, Vijay K</creatorcontrib><creatorcontrib>Mera, Paula</creatorcontrib><creatorcontrib>Ellingsgaard, Helga</creatorcontrib><creatorcontrib>Hidalgo, Juan</creatorcontrib><creatorcontrib>Brüning, Jens</creatorcontrib><creatorcontrib>Karsenty, Gerard</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Nursing and Allied Health Journals</collection><collection>ProQuest_Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of clinical investigation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chowdhury, Subrata</au><au>Schulz, Logan</au><au>Palmisano, Biagio</au><au>Singh, Parminder</au><au>Berger, Julian M</au><au>Yadav, Vijay K</au><au>Mera, Paula</au><au>Ellingsgaard, Helga</au><au>Hidalgo, Juan</au><au>Brüning, Jens</au><au>Karsenty, Gerard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Muscle-derived interleukin 6 increases exercise capacity by signaling in osteoblasts</atitle><jtitle>The Journal of clinical investigation</jtitle><addtitle>J Clin Invest</addtitle><date>2020-06-01</date><risdate>2020</risdate><volume>130</volume><issue>6</issue><spage>2888</spage><epage>2902</epage><pages>2888-2902</pages><issn>0021-9738</issn><eissn>1558-8238</eissn><abstract>Given the numerous health benefits of exercise, understanding how exercise capacity is regulated is a question of paramount importance. Circulating interleukin 6 (IL-6) levels surge during exercise and IL-6 favors exercise capacity. However, neither the cellular origin of circulating IL-6 during exercise nor the means by which this cytokine enhances exercise capacity has been formally established yet. Here we show through genetic means that the majority of circulating IL-6 detectable during exercise originates from muscle and that to increase exercise capacity, IL-6 must signal in osteoblasts to favor osteoclast differentiation and the release of bioactive osteocalcin in the general circulation. This explains why mice lacking the IL-6 receptor only in osteoblasts exhibit a deficit in exercise capacity of similar severity to the one seen in mice lacking muscle-derived IL-6 (mIL-6), and why this deficit is correctable by osteocalcin but not by IL-6. Furthermore, in agreement with the notion that IL-6 acts through osteocalcin, we demonstrate that mIL-6 promotes nutrient uptake and catabolism into myofibers during exercise in an osteocalcin-dependent manner. Finally, we show that the crosstalk between osteocalcin and IL-6 is conserved between rodents and humans. This study provides evidence that a muscle-bone-muscle endocrine axis is necessary to increase muscle function during exercise in rodents and humans.</abstract><cop>United States</cop><pub>American Society for Clinical Investigation</pub><pmid>32078586</pmid><doi>10.1172/JCI133572</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-0921-1122</orcidid><orcidid>https://orcid.org/0000-0002-1287-5256</orcidid><orcidid>https://orcid.org/0000-0001-8941-4637</orcidid><orcidid>https://orcid.org/0000-0002-2851-6805</orcidid><orcidid>https://orcid.org/0000-0002-9253-7627</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9738
ispartof The Journal of clinical investigation, 2020-06, Vol.130 (6), p.2888-2902
issn 0021-9738
1558-8238
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7260002
source MEDLINE; PubMed Central; Alma/SFX Local Collection; EZB Electronic Journals Library
subjects Animals
Antibodies
Biomedical research
Capacity
Cytokines
Exercise
Experiments
Female
Fitness equipment
Health insurance
Interleukin 6
Interleukin 6 receptors
Interleukin-6 - genetics
Interleukin-6 - immunology
Interleukins
Macaca mulatta
Mice
Mice, Knockout
Muscle function
Muscle, Skeletal - immunology
Nutrient uptake
Osteoblastogenesis
Osteoblasts
Osteoblasts - immunology
Osteocalcin
Osteoclastogenesis
Physiology
Running
Scientific equipment industry
Signal Transduction - genetics
Signal Transduction - immunology
title Muscle-derived interleukin 6 increases exercise capacity by signaling in osteoblasts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T10%3A48%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Muscle-derived%20interleukin%206%20increases%20exercise%20capacity%20by%20signaling%20in%20osteoblasts&rft.jtitle=The%20Journal%20of%20clinical%20investigation&rft.au=Chowdhury,%20Subrata&rft.date=2020-06-01&rft.volume=130&rft.issue=6&rft.spage=2888&rft.epage=2902&rft.pages=2888-2902&rft.issn=0021-9738&rft.eissn=1558-8238&rft_id=info:doi/10.1172/JCI133572&rft_dat=%3Cgale_pubme%3EA627278057%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2414426816&rft_id=info:pmid/32078586&rft_galeid=A627278057&rfr_iscdi=true